Yearly Assessment of Bone Disease in Patients with Asymptomatic Multiple Myeloma Identifies Early Progression Events and Should Be the Standard Clinical Practice
Abstract
:1. Introduction
2. The Role of WBLDCT in Symptomatic MM
3. The Role of WBLDCT Assessment in the Asymptomatic Precursors of MM
3.1. Findings from Previously Published Prospective and Retrospective Studies
3.2. Updated Findings from a Prospective Evaluation of Asymptomatic MM Patients Based on Yearly WBLDCT Assessments
4. Key Take-Away and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Palumbo, A.; Anderson, K. Multiple myeloma. N. Engl. J. Med. 2011, 364, 1046–1060. [Google Scholar] [CrossRef] [PubMed]
- Kyle, R.A.; Therneau, T.M.; Rajkumar, S.V.; Offord, J.R.; Larson, D.R.; Plevak, M.F.; Melton, L.J., 3rd. A long-term study of prognosis in monoclonal gammopathy of undetermined significance. N. Engl. J. Med. 2002, 346, 564–569. [Google Scholar] [CrossRef]
- Rajkumar, S.V. Updated Diagnostic Criteria and Staging System for Multiple Myeloma. Am. Soc. Clin. Oncol. Educ. Book 2016, 35, e418–e423. [Google Scholar] [CrossRef]
- Hameed, A.; Brady, J.J.; Dowling, P.; Clynes, M.; O’Gorman, P. Bone disease in multiple myeloma: Pathophysiology and management. Cancer Growth Metastasis 2014, 7, 33–42. [Google Scholar] [CrossRef]
- Regelink, J.C.; Minnema, M.C.; Terpos, E.; Kamphuis, M.H.; Raijmakers, P.G.; Pieters-van den Bos, I.C.; Heggelman, B.G.; Nievelstein, R.J.; Otten, R.H.; van Lammeren-Venema, D.; et al. Comparison of modern and conventional imaging techniques in establishing multiple myeloma-related bone disease: A systematic review. Br. J. Haematol. 2013, 162, 50–61. [Google Scholar] [CrossRef]
- Bredella, M.A.; Steinbach, L.; Caputo, G.; Segall, G.; Hawkins, R. Value of FDG PET in the assessment of patients with multiple myeloma. AJR Am. J. Roentgenol. 2005, 184, 1199–1204. [Google Scholar] [CrossRef]
- Walker, R.; Barlogie, B.; Haessler, J.; Tricot, G.; Anaissie, E.; Shaughnessy, J.D., Jr.; Epstein, J.; van Hemert, R.; Erdem, E.; Hoering, A.; et al. Magnetic resonance imaging in multiple myeloma: Diagnostic clinical implications. J. Clin. Oncol. 2007, 25, 1121–1128. [Google Scholar] [CrossRef]
- Gleeson, T.G.; Moriarty, J.; Shortt, C.P.; Gleeson, J.P.; Fitzpatrick, P.; Byrne, B.; McHugh, J.; O’Connell, M.; O’Gorman, P.; Eustace, S.J. Accuracy of whole-body low-dose multidetector CT (WBLDCT) versus skeletal survey in the detection of myelomatous lesions, and correlation of disease distribution with whole-body MRI (WBMRI). Skelet. Radiol. 2009, 38, 225–236. [Google Scholar] [CrossRef]
- Rodríguez-Laval, V.; Lumbreras-Fernández, B.; Aguado-Bueno, B.; Gómez-León, N. Imaging of Multiple Myeloma: Present and Future. J. Clin. Med. 2024, 13, 264. [Google Scholar] [CrossRef]
- Terpos, E.; Dimopoulos, M.A.; Moulopoulos, L.A. The Role of Imaging in the Treatment of Patients with Multiple Myeloma in 2016. Am. Soc. Clin. Oncol. Educ. Book 2016, 35, e407–e417. [Google Scholar] [CrossRef]
- Moulopoulos, L.A.; Koutoulidis, V.; Hillengass, J.; Zamagni, E.; Aquerreta, J.D.; Roche, C.L.; Lentzsch, S.; Moreau, P.; Cavo, M.; Miguel, J.S.; et al. Recommendations for acquisition, interpretation and reporting of whole body low dose CT in patients with multiple myeloma and other plasma cell disorders: A report of the IMWG Bone Working Group. Blood Cancer J. 2018, 8, 95. [Google Scholar] [CrossRef]
- Ormond Filho, A.G.; Carneiro, B.C.; Pastore, D.; Silva, I.P.; Yamashita, S.R.; Consolo, F.D.; Hungria, V.T.M.; Sandes, A.F.; Rizzatti, E.G.; Nico, M.A.C. Whole-Body Imaging of Multiple Myeloma: Diagnostic Criteria. Radiographics 2019, 39, 1077–1097. [Google Scholar] [CrossRef]
- Koutoulidis, V.; Terpos, E.; Klapa, I.; Cheliotis, G.; Ntanasis-Stathopoulos, I.; Boultadaki, A.; Gavriatopoulou, M.; Kastritis, E.; Dimopoulos, M.A.; Moulopoulos, L.A. Whole-Body Low-Dose CT in Multiple Myeloma: Diagnostic Value of Appendicular Medullary Patterns of Attenuation. AJR Am. J. Roentgenol. 2021, 216, 742–751. [Google Scholar] [CrossRef]
- Simeone, F.J.; Harvey, J.P.; Yee, A.J.; O’Donnell, E.K.; Raje, N.S.; Torriani, M.; Bredella, M.A. Value of low-dose whole-body CT in the management of patients with multiple myeloma and precursor states. Skelet. Radiol. 2019, 48, 773–779. [Google Scholar] [CrossRef]
- Virk, J.; Hillengass, J. Imaging in multiple myeloma. Presse Med. 2025, 54, 104263. [Google Scholar] [CrossRef]
- Terpos, E.; Malandrakis, P.; Ntanasis-Stathopoulos, I.; Kostopoulos, I.V.; Eleutherakis-Papaiakovou, E.; Kanellias, N.; Spiliopoulou, V.; Migkou, M.; Fotiou, D.V.; Theodorakakou, F.; et al. Sustained bone marrow and imaging MRD negativity for 3 years drives discontinuation of maintenance post ASCT in myeloma. Blood, 2025; online ahead of print. [Google Scholar] [CrossRef]
- Torkian, P.; Mansoori, B.; Hillengass, J.; Azadbakht, J.; Rashedi, S.; Lee, S.S.; Amini, B.; Bonaffini, P.A.; Chalian, M. Diffusion-weighted imaging (DWI) in diagnosis, staging, and treatment response assessment of multiple myeloma: A systematic review and meta-analysis. Skelet. Radiol. 2023, 52, 565–583. [Google Scholar] [CrossRef]
- Rasche, L.; Angtuaco, E.; McDonald, J.E.; Buros, A.; Stein, C.; Pawlyn, C.; Thanendrarajan, S.; Schinke, C.; Samant, R.; Yaccoby, S.; et al. Low expression of hexokinase-2 is associated with false-negative FDG-positron emission tomography in multiple myeloma. Blood 2017, 130, 30–34. [Google Scholar] [CrossRef]
- Mesguich, C.; Hulin, C.; Latrabe, V.; Lascaux, A.; Bordenave, L.; Hindié, E.; Marit, G. Prospective comparison of 18-FDG PET/CT and whole-body diffusion-weighted MRI in the assessment of multiple myeloma. Ann. Hematol. 2020, 99, 2869–2880. [Google Scholar] [CrossRef]
- Chen, J.; Li, C.; Tian, Y.; Xiao, Q.; Deng, M.; Hu, H.; Wen, B.; He, Y. Comparison of Whole-Body DWI and 18F-FDG PET/CT for Detecting Intramedullary and Extramedullary Lesions in Multiple Myeloma. AJR Am. J. Roentgenol. 2019, 213, 514–523. [Google Scholar] [CrossRef]
- Sachpekidis, C.; Mosebach, J.; Freitag, M.T.; Wilhelm, T.; Mai, E.K.; Goldschmidt, H.; Haberkorn, U.; Schlemmer, H.P.; Delorme, S.; Dimitrakopoulou-Strauss, A. Application of (18)F-FDG PET and diffusion weighted imaging (DWI) in multiple myeloma: Comparison of functional imaging modalities. Am. J. Nucl. Med. Mol. Imaging 2015, 5, 479–492. [Google Scholar]
- Messiou, C.; Porta, N.; Sharma, B.; Levine, D.; Koh, D.M.; Boyd, K.; Pawlyn, C.; Riddell, A.; Downey, K.; Croft, J.; et al. Prospective Evaluation of Whole-Body MRI versus FDG PET/CT for Lesion Detection in Participants with Myeloma. Radiol. Imaging Cancer 2021, 3, e210048. [Google Scholar] [CrossRef] [PubMed]
- Westerland, O.; Amlani, A.; Kelly-Morland, C.; Fraczek, M.; Bailey, K.; Gleeson, M.; El-Najjar, I.; Streetly, M.; Bassett, P.; Cook, G.J.R.; et al. Comparison of the diagnostic performance and impact on management of 18F-FDG PET/CT and whole-body MRI in multiple myeloma. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 2558–2565. [Google Scholar] [CrossRef] [PubMed]
- Chantry, A.; Kazmi, M.; Barrington, S.; Goh, V.; Mulholland, N.; Streetly, M.; Lai, M.; Pratt, G.; British Society for Haematology Guidelines. Guidelines for the use of imaging in the management of patients with myeloma. Br. J. Haematol. 2017, 178, 380–393. [Google Scholar] [CrossRef] [PubMed]
- Hillengass, J.; Usmani, S.; Rajkumar, S.V.; Durie, B.G.M.; Mateos, M.V.; Lonial, S.; Joao, C.; Anderson, K.C.; García-Sanz, R.; Riva, E.; et al. International myeloma working group consensus recommendations on imaging in monoclonal plasma cell disorders. Lancet Oncol. 2019, 20, e302–e312, Erratum in Lancet Oncol. 2019, 20, e346. [Google Scholar] [CrossRef]
- Dimopoulos, M.A.; Voorhees, P.M.; Schjesvold, F.; Cohen, Y.C.; Hungria, V.; Sandhu, I.; Lindsay, J.; Baker, R.I.; Suzuki, K.; Kosugi, H.; et al. Daratumumab or Active Monitoring for High-Risk Smoldering Multiple Myeloma. N. Engl. J. Med. 2024, 9. [Google Scholar] [CrossRef]
- Hillengass, J.; Moulopoulos, L.A.; Delorme, S.; Koutoulidis, V.; Mosebach, J.; Hielscher, T.; Drake, M.; Rajkumar, S.V.; Oestergaard, B.; Abildgaard, N.; et al. Whole-body computed tomography versus conventional skeletal survey in patients with multiple myeloma: A study of the International Myeloma Working Group. Blood Cancer J. 2017, 7, e599. [Google Scholar] [CrossRef]
- Gavriatopoulou, M.; Boultadaki, A.; Koutoulidis, V.; Ntanasis-Stathopoulos, I.; Bourgioti, C.; Malandrakis, P.; Fotiou, D.; Migkou, M.; Kanellias, N.; Eleutherakis-Papaiakovou, E.; et al. The Role of Low Dose Whole Body CT in the Detection of Progression of Patients with Smoldering Multiple Myeloma. Blood Cancer J. 2020, 10, 93. [Google Scholar] [CrossRef]
- Mateos, M.V.; Kumar, S.; Dimopoulos, M.A.; González-Calle, V.; Kastritis, E.; Hajek, R.; De Larrea, C.F.; Morgan, G.J.; Merlini, G.; Goldschmidt, H.; et al. International Myeloma Working Group risk stratification model for smoldering multiple myeloma (SMM). Blood Cancer J. 2020, 10, 102. [Google Scholar] [CrossRef]
- Visram, A.; Rajkumar, S.V.; Kapoor, P.; Dispenzieri, A.; Lacy, M.Q.; Gertz, M.A.; Buadi, F.K.; Hayman, S.R.; Dingli, D.; Kourelis, T.; et al. Assessing the prognostic utility of smoldering multiple myeloma risk stratification scores applied serially post diagnosis. Blood Cancer J. 2021, 11, 186. [Google Scholar] [CrossRef]
- Cowan, A.; Ferrari, F.; Freeman, S.S.; Redd, R.; El-Khoury, H.; Perry, J.; Patel, V.; Kaur, P.; Barr, H.; Lee, D.J.; et al. Personalised progression prediction in patients with monoclonal gammopathy of undetermined significance or smouldering multiple myeloma (PANGEA): A retrospective, multicohort study. Lancet Haematol. 2023, 10, e203–e212, Erratum in Lancet Haematol. 2024, 11, e181. https://doi.org/10.1016/S2352-3026(24)00040-1. [Google Scholar] [CrossRef]
- Gaddipati, G.; Mensah, B.; Sainatham, C.; Erasani, G.; Bilalaga, M.M.; Vasireddy, R.; Rath, S.; Atarere, J.; Ketineni, S.; Mohebtash, M. Early Versus Delayed Intervention in Smoldering Multiple Myeloma: A Meta-Analysis of Clinical Trials. Blood 2024, 144 (Suppl. S1), 3299. [Google Scholar] [CrossRef]
Variable | All Patients (n = 113) | Bone-Only Progressors (n = 11) | Other Progressors (n = 30) | p-Value |
---|---|---|---|---|
Age (years) | 60 (35–85) | 58 (52–72) | 60.5 (38–83) | 0.385 |
Females (%) | 53.1 | 45.5 | 60 | 0.498 |
WBCT (n) | 3 (2–6) | 2 (2–4) | 3 (2–4) | 0.069 |
Hb (g/dL) | 12.9 (8.2–16.0) | 13.7 (11.4–14.8) | 12.6 (9.5–14.7) | 0.510 |
Cr (mg/dL) | 0.8 (0.4–8.3) | 0.8 (0.5–1.3) | 0.71 (0.4–1.5) | 0.361 |
Ca (mg/dL) | 9.4 (5.4–11.1) | 9.4 (8.5–10.6) | 9.6 (5.4–10.6) | 0.350 |
B2 microglobulin (mg/L) | 2.2 (0.9–15.1) | 2.2 (1.1–4.1) | 2.3 (0.9–4.0) | 0.672 |
LDH (U/L) | 169 (103–325) | 158 (103–221) | 168 (109–274) | 0.804 |
Alb (g/dL) | 4.3 (3.2–5.3) | 4.1 (3.7–4.8) | 4.2 (3.3–4.8) | 0.907 |
IgG (mg/dL) | 1550 (358–5824) | 1940 (626–4170) | 1720 (420–5824) | 0.758 |
IgA (mg/dL) | 109.5 (5–4181) | 50.9 (14–1336) | 103 (22–1650) | 0.758 |
IgM (mg/dL) | 43.5 (4.2–369) | 36.4 (17.4–171) | 40.0 (4.2–205.0) | 0.596 |
M-peak (g/dL) | 1.5 (0.0–4.9) | 2.6 (0.9–3.7) | 1.8 (0.0–4.9) | 0.382 |
κFLC (mg/L) | 19.5 (1.3–990.0) | 26.8 (11.5–635.0) | 25.0 (1.3–990.0) | 0.638 |
λFLC (mg/L) | 12.4 (1.1–988.0) | 11.8 (5.2–760.0) | 10.1 (1.1–988) | 0.369 |
FLC ratio > 8 (n, %) | 30 (26.5) | 5 (45.5) | 14 (46.7) | 0.617 |
BM infiltration (%) | 20 (2.4–55.0) | 20 (10–40) | 27.5 (10–55) | 0.666 |
Heavy chain (n) IgG IgA | 82 28 | 7 4 | 7 22 | |
Light chain (n) kappa lambda | 1 2 | 0 0 | 1 0 | - |
Progression risk (%) a Low Low-Intermediate Intermediate High | 36.3 33.6 24.0 4.4 | 9.1 36.4 45.5 9.1 | 13.3 30.0 46.7 10.0 | 0.987 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ntanasis-Stathopoulos, I.; Koutoulidis, V.; Malandrakis, P.; Fotiou, D.; Spiliopoulou, V.; Filippatos, C.; Migkou, M.; Kanellias, N.; Theodorakakou, F.; Eleutherakis-Papaiakovou, E.; et al. Yearly Assessment of Bone Disease in Patients with Asymptomatic Multiple Myeloma Identifies Early Progression Events and Should Be the Standard Clinical Practice. J. Clin. Med. 2025, 14, 2224. https://doi.org/10.3390/jcm14072224
Ntanasis-Stathopoulos I, Koutoulidis V, Malandrakis P, Fotiou D, Spiliopoulou V, Filippatos C, Migkou M, Kanellias N, Theodorakakou F, Eleutherakis-Papaiakovou E, et al. Yearly Assessment of Bone Disease in Patients with Asymptomatic Multiple Myeloma Identifies Early Progression Events and Should Be the Standard Clinical Practice. Journal of Clinical Medicine. 2025; 14(7):2224. https://doi.org/10.3390/jcm14072224
Chicago/Turabian StyleNtanasis-Stathopoulos, Ioannis, Vassilis Koutoulidis, Panagiotis Malandrakis, Despina Fotiou, Vasiliki Spiliopoulou, Charalampos Filippatos, Magdalini Migkou, Nikolaos Kanellias, Foteini Theodorakakou, Evangelos Eleutherakis-Papaiakovou, and et al. 2025. "Yearly Assessment of Bone Disease in Patients with Asymptomatic Multiple Myeloma Identifies Early Progression Events and Should Be the Standard Clinical Practice" Journal of Clinical Medicine 14, no. 7: 2224. https://doi.org/10.3390/jcm14072224
APA StyleNtanasis-Stathopoulos, I., Koutoulidis, V., Malandrakis, P., Fotiou, D., Spiliopoulou, V., Filippatos, C., Migkou, M., Kanellias, N., Theodorakakou, F., Eleutherakis-Papaiakovou, E., Kastritis, E., Terpos, E., Dimopoulos, M.-A., Moulopoulos, L.-A., & Gavriatopoulou, M. (2025). Yearly Assessment of Bone Disease in Patients with Asymptomatic Multiple Myeloma Identifies Early Progression Events and Should Be the Standard Clinical Practice. Journal of Clinical Medicine, 14(7), 2224. https://doi.org/10.3390/jcm14072224