Remnant Cholesterol Levels at Diagnosis May Predict Acute Coronary Syndrome Occurrence During Follow-Up in Patients with Antineutrophil Cytoplasmic Antibody-Associated Vasculitis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.1.1. Inclusion Criteria
- Diagnosis with AAV for the first time at the Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Severance Hospital.
- Fulfilment of the 2007 European Medicines Agency algorithm for AAV, the 2012 revised Chapel Hill Consensus Conference nomenclature of vasculitides, and the 2022 American College of Rheumatology/European Alliance of Associations for Rheumatology classification criteria for MPA, GPA, and EGPA [1,2,3,4,5].
- Complete medical records, including information on clinical, laboratory, radiological, and histological data at diagnosis, as well as poor outcomes during follow-up.
- Followed up for a minimum of 3 months.
2.1.2. Exclusion Criteria
- Having serious medical conditions that mimic AAV or induce false ANCA positivity, such as malignancies, infectious diseases requiring hospitalisation, and other systemic autoimmune diseases at the time of AAV diagnosis.
- Receiving glucocorticoids (≥20 mg/day equivalent to prednisolone) or immunosuppressive drugs within 1 month before AAV diagnosis.
2.2. Clinical Data
2.3. Measurements of the Lipid Profile
2.4. Tertiles According to RC Levels
2.5. Statistical Analyses
3. Results
3.1. Characteristics of Patients with AAV at Diagnosis and During Follow-Up
3.2. AUC and Relative Risk for ACS
3.3. Number of Patients with ACS in Each Tertile Group Based on RC Levels
3.4. Comparison of ACS-Free Survival Rates
3.5. Cox Analyses
4. Discussion
4.1. Summary
4.2. Possible Mechanisms Underlying the Association
4.3. Interpretation of the ROC Curve and Cox Analyses
4.4. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ANCA | antineutrophil cytoplasmic antibody |
AAV | antineutrophil cytoplasmic antibody-associated vasculitis |
MPA | microscopic polyangiitis |
GPA | granulomatosis with polyangiitis |
EGPA | eosinophilic granulomatosis with polyangiitis |
CVD | cardiovascular disease |
ACS | acute coronary syndrome |
STEMI | ST-elevation myocardial infarction |
LDL-C | low-density lipoprotein cholesterol |
TG | triglyceride |
RC | remnant cholesterol |
SHAVE | Severance Hospital ANCA-associated Vasculitides |
IRB | Institutional Review Board |
BMI | body mass index |
BVAS | Birmingham vasculitis activity score |
FFS | five-factor score |
P-ANCA | perinuclear-antineutrophil cytoplasmic antibody |
C-ANCA | cytoplasmic-antineutrophil cytoplasmic antibody |
MPO | myeloperoxidase |
PR3 | proteinase 3 |
ESR | erythrocyte sedimentation rate |
CRP | C-reactive protein |
HDL-C | high-density lipoprotein cholesterol |
T2DM | type 2 diabetes mellitus |
CVA | cerebrovascular accidents |
ROC | receiver operating characteristic |
ANOVA | analysis of variance |
RR | relative risk |
HRs | hazard ratios |
CI | confidence interval |
TRL | triglyceride-rich lipoproteins |
References
- Jennette, J.C.; Falk, R.J.; Bacon, P.A.; Basu, N.; Cid, M.C.; Ferrario, F.; Flores-Suarez, L.F.; Gross, W.L.; Guillevin, L.; Hagen, E.C.; et al. 2012 revised international chapel hill consensus conference nomenclature of vasculitides. Arthritis Rheum 2013, 65, 1–11. [Google Scholar]
- Watts, R.; Lane, S.; Hanslik, T.; Hauser, T.; Hellmich, B.; Koldingsnes, W.; Mahr, A.; Segelmark, M.; Cohen-Tervaert, J.W.; Scott, D. Development and validation of a consensus methodology for the classification of the anca-associated vasculitides and polyarteritis nodosa for epidemiological studies. Ann. Rheum. Dis. 2007, 66, 222–227. [Google Scholar] [PubMed]
- Suppiah, R.; Robson, J.C.; Grayson, P.C.; Ponte, C.; Craven, A.; Khalid, S.; Judge, A.; Hutchings, A.; Merkel, P.A.; Luqmani, R.A.; et al. 2022 american college of rheumatology/european alliance of associations for rheumatology classification criteria for microscopic polyangiitis. Ann. Rheum. Dis. 2022, 81, 321–326. [Google Scholar]
- Robson, J.C.; Grayson, P.C.; Ponte, C.; Suppiah, R.; Craven, A.; Judge, A.; Khalid, S.; Hutchings, A.; Watts, R.A.; Merkel, P.A.; et al. 2022 american college of rheumatology/european alliance of associations for rheumatology classification criteria for granulomatosis with polyangiitis. Ann. Rheum. Dis. 2022, 81, 315–320. [Google Scholar] [PubMed]
- Grayson, P.C.; Ponte, C.; Suppiah, R.; Robson, J.C.; Craven, A.; Judge, A.; Khalid, S.; Hutchings, A.; Luqmani, R.A.; Watts, R.A.; et al. 2022 american college of rheumatology/european alliance of associations for rheumatology classification criteria for eosinophilic granulomatosis with polyangiitis. Ann. Rheum. Dis. 2022, 81, 309–314. [Google Scholar] [CrossRef]
- Floyd, L.; Morris, A.D.; Woywodt, A.; Dhaygude, A. Cardiovascular disease and anca-associated vasculitis: Are we missing a beat? Clin. Kidney J. 2022, 15, 618–623. [Google Scholar] [PubMed]
- Massicotte-Azarniouch, D.; Petrcich, W.; Walsh, M.; Canney, M.; Hundemer, G.L.; Milman, N.; Hladunewich, M.A.; Fairhead, T.; Sood, M.M. Association of anti-neutrophil cytoplasmic antibody-associated vasculitis and cardiovascular events: A population-based cohort study. Clin. Kidney J. 2022, 15, 681–692. [Google Scholar]
- Crea, F.; Libby, P. Acute coronary syndromes: The way forward from mechanisms to precision treatment. Circulation 2017, 136, 1155–1166. [Google Scholar]
- Falk, E. Pathogenesis of atherosclerosis. J. Am. Coll. Cardiol. 2006, 47, C7–C12. [Google Scholar]
- Virani, S.S.; Alonso, A.; Aparicio, H.J.; Benjamin, E.J.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Cheng, S.; Delling, F.N.; et al. Heart disease and stroke statistics-2021 update: A report from the american heart association. Circulation 2021, 143, e254–e743. [Google Scholar]
- Sampson, U.K.; Fazio, S.; Linton, M.F. Residual cardiovascular risk despite optimal ldl cholesterol reduction with statins: The evidence, etiology, and therapeutic challenges. Curr. Atheroscler. Rep. 2012, 14, 1–10. [Google Scholar] [CrossRef]
- Yun, S.J.; Jeong, I.K.; Cha, J.H.; Lee, J.; Cho, H.C.; Choi, S.H.; Chun, S.; Jeon, H.J.; Kang, H.C.; Kim, S.S.; et al. Current status of low-density lipoprotein cholesterol target achievement in patients with type 2 diabetes mellitus in korea compared with recent guidelines. Diabetes Metab. J. 2021, 46, 464–475. [Google Scholar] [CrossRef] [PubMed]
- Everett, B.M. Residual inflammatory risk: A common and important risk factor for recurrent cardiovascular events. J. Am. Coll. Cardiol. 2019, 73, 2410–2412. [Google Scholar] [PubMed]
- Takahashi, D.; Wada, H.; Ogita, M.; Yasuda, K.; Nishio, R.; Takeuchi, M.; Shitara, J.; Tsuboi, S.; Dohi, T.; Suwa, S.; et al. Impact of lipoprotein(a) as a residual risk factor in long-term cardiovascular outcomes in patients with acute coronary syndrome treated with statins. Am. J. Cardiol. 2022, 168, 11–16. [Google Scholar] [PubMed]
- Yoshida, H.; Hirowatari, Y.; Ogura, M.; Harada-Shiba, M. Current concept and residual issues of lipoprotein(a) determination for a cardiovascular risk factor. Eur. J. Clin. Investig. 2022, 52, e13700. [Google Scholar]
- Quispe, R.; Martin, S.S.; Michos, E.D.; Lamba, I.; Blumenthal, R.S.; Saeed, A.; Lima, J.; Puri, R.; Nomura, S.; Tsai, M.; et al. Remnant cholesterol predicts cardiovascular disease beyond ldl and apob: A primary prevention study. Eur. Heart J. 2021, 42, 4324–4332. [Google Scholar]
- Huh, J.H.; Han, K.D.; Cho, Y.K.; Roh, E.; Kang, J.G.; Lee, S.J.; Ihm, S.H. Remnant cholesterol and the risk of cardiovascular disease in type 2 diabetes: A nationwide longitudinal cohort study. Cardiovasc. Diabetol. 2022, 21, 228. [Google Scholar]
- Myasoedova, E.; Crowson, C.S.; Kremers, H.M.; Roger, V.L.; Fitz-Gibbon, P.D.; Therneau, T.M.; Gabriel, S.E. Lipid paradox in rheumatoid arthritis: The impact of serum lipid measures and systemic inflammation on the risk of cardiovascular disease. Ann. Rheum. Dis. 2011, 70, 482–487. [Google Scholar]
- Robinson, G.; Pineda-Torra, I.; Ciurtin, C.; Jury, E.C. Lipid metabolism in autoimmune rheumatic disease: Implications for modern and conventional therapies. J. Clin. Investig. 2022, 132, e148552. [Google Scholar]
- Mukhtyar, C.; Lee, R.; Brown, D.; Carruthers, D.; Dasgupta, B.; Dubey, S.; Flossmann, O.; Hall, C.; Hollywood, J.; Jayne, D.; et al. Modification and validation of the birmingham vasculitis activity score (version 3). Ann. Rheum. Dis. 2009, 68, 1827–1832. [Google Scholar]
- Guillevin, L.; Pagnoux, C.; Seror, R.; Mahr, A.; Mouthon, L.; Toumelin, P.L. The five-factor score revisited: Assessment of prognoses of systemic necrotizing vasculitides based on the french vasculitis study group (fvsg) cohort. Medicine 2011, 90, 19–27. [Google Scholar] [PubMed]
- McAdoo, S.P.; Medjeral-Thomas, N.; Gopaluni, S.; Tanna, A.; Mansfield, N.; Galliford, J.; Griffith, M.; Levy, J.; Cairns, T.D.; Jayne, D.; et al. Long-term follow-up of a combined rituximab and cyclophosphamide regimen in renal anti-neutrophil cytoplasm antibody-associated vasculitis. Nephrol. Dial. Transplant. 2019, 34, 63–73. [Google Scholar]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [PubMed]
- Zhang, K.; Qi, X.; Zhu, F.; Dong, Q.; Gou, Z.; Wang, F.; Xiao, L.; Li, M.; Chen, L.; Wang, Y.; et al. Remnant cholesterol is associated with cardiovascular mortality. Front. Cardiovasc. Med. 2022, 9, 984711. [Google Scholar]
- Castañer, O.; Pintó, X.; Subirana, I.; Amor, A.J.; Ros, E.; Hernáez, Á.; Martínez-González, M.; Corella, D.; Salas-Salvadó, J.; Estruch, R.; et al. Remnant cholesterol, not ldl cholesterol, is associated with incident cardiovascular disease. J. Am. Coll. Cardiol. 2020, 76, 2712–2724. [Google Scholar] [CrossRef] [PubMed]
- Nordestgaard, B.G.; Tybjaerg-Hansen, A.; Lewis, B. Influx in vivo of low density, intermediate density, and very low density lipoproteins into aortic intimas of genetically hyperlipidemic rabbits. Roles of plasma concentrations, extent of aortic lesion, and lipoprotein particle size as determinants. Arterioscler. Thromb. 1992, 12, 6–18. [Google Scholar]
- Borén, J.; Taskinen, M.R.; Björnson, E.; Packard, C.J. Metabolism of triglyceride-rich lipoproteins in health and dyslipidaemia. Nat. Rev. Cardiol. 2022, 19, 577–592. [Google Scholar] [CrossRef]
- Nordestgaard, B.G.; Varbo, A. Triglycerides and cardiovascular disease. Lancet 2014, 384, 626–635. [Google Scholar]
- Olufadi, R.; Byrne, C.D. Effects of vldl and remnant particles on platelets. Pathophysiol. Haemost. Thromb. 2006, 35, 281–291. [Google Scholar] [CrossRef]
- Wang, L.; Gill, R.; Pedersen, T.L.; Higgins, L.J.; Newman, J.W.; Rutledge, J.C. Triglyceride-rich lipoprotein lipolysis releases neutral and oxidized ffas that induce endothelial cell inflammation. J. Lipid Res. 2009, 50, 204–213. [Google Scholar] [CrossRef]
- Xu, H.; Barnes, G.T.; Yang, Q.; Tan, G.; Yang, D.; Chou, C.J.; Sole, J.; Nichols, A.; Ross, J.S.; Tartaglia, L.A.; et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Investig. 2003, 112, 1821–1830. [Google Scholar] [PubMed]
- Shah, A.; Mehta, N.; Reilly, M.P. Adipose inflammation, insulin resistance, and cardiovascular disease. JPEN J. Parenter. Enteral Nutr. 2008, 32, 638–644. [Google Scholar] [CrossRef]
- Ormazabal, V.; Nair, S.; Elfeky, O.; Aguayo, C.; Salomon, C.; Zuñiga, F.A. Association between insulin resistance and the development of cardiovascular disease. Cardiovasc. Diabetol. 2018, 17, 122. [Google Scholar] [PubMed]
- Damluji, A.A.; Forman, D.E.; Wang, T.Y.; Chikwe, J.; Kunadian, V.; Rich, M.W.; Young, B.A.; Page, R.L., 2nd; DeVon, H.A.; Alexander, K.P. Management of acute coronary syndrome in the older adult population: A scientific statement from the american heart association. Circulation 2023, 147, e32–e62. [Google Scholar] [PubMed]
- Park, S.J.; Ha, K.H.; Kim, D.J. Body mass index and cardiovascular outcomes in patients with acute coronary syndrome by diabetes status: The obesity paradox in a korean national cohort study. Cardiovasc. Diabetol. 2020, 19, 191. [Google Scholar]
- Varbo, A.; Nordestgaard, B.G. Directly measured vs. Calculated remnant cholesterol identifies additional overlooked individuals in the general population at higher risk of myocardial infarction. Eur. Heart J. 2021, 42, 4833–4843. [Google Scholar]
- Ginsberg, H.N.; Packard, C.J.; Chapman, M.J.; Borén, J.; Aguilar-Salinas, C.A.; Averna, M.; Ference, B.A.; Gaudet, D.; Hegele, R.A.; Kersten, S.; et al. Triglyceride-rich lipoproteins and their remnants: Metabolic insights, role in atherosclerotic cardiovascular disease, and emerging therapeutic strategies-a consensus statement from the european atherosclerosis society. Eur. Heart J. 2021, 42, 4791–4806. [Google Scholar]
- Kim, Y.R.; Jeong, M.H.; An, M.J.; Han, X.; Cho, K.H.; Sim, D.S.; Hong, Y.J.; Kim, J.H.; Ahn, Y. Comparison of prognosis according to the use of emergency medical services in patients with st-segment elevation myocardial infarction. Yonsei Med. J. 2022, 63, 124–132. [Google Scholar]
- Ahn, S.S.; Park, Y.B.; Lee, S.W. Serological biomarkers and indices for the current activity and prognosis of anca-associated vasculitis: Experience in a single centre in korea. Yonsei Med. J. 2021, 62, 279–287. [Google Scholar]
Variables | Values |
---|---|
At the AAV diagnosis | |
Demographic data | |
Age (years) | 58.0 (46.0–69.0) |
Male sex (N, (%)) | 44 (31.7) |
BMI (kg/m2) | 22.0 (19.6–24.0) |
Ex-smoker (N, (%)) | 10 (7.2) |
AAV subtype (N, (%)) | |
MPA | 77 (55.4) |
GPA | 30 (21.6) |
EGPA | 32 (23.0) |
ANCA type and positivity (N, (%)) | |
MPO-ANCA (or P-ANCA) positivity | 92 (66.2) |
PR3-ANCA (or C-ANCA) positivity | 22 (15.8) |
Double ANCA positivity | 5 (3.6) |
AAV-specific indices | |
BVAS | 13.0 (7.0–18.8) |
FFS | 1.0 (1.0–2.0) |
Acute phase reactants | |
ESR (mm/hr) | 60.5 (22.5–91.0) |
CRP (mg/L) | 7.0 (1.4–70.2) |
Lipid profile (mg/dL) | |
Total cholesterol | 171.0 (145.0–202.0) |
HDL-C | 48.0 (36.0–63.0) |
TG | 108.0 (86.0–155.0) |
LDL-C | 96.8 (78.4–121.2) |
RC (mg/dL) | 21.6 (17.2–31.0) |
Comorbidities (N, (%)) | |
Hypertension | 41 (29.5) |
T2DM | 39 (28.1) |
During the follow-up duration | |
Typical poor outcomes of AAV | |
All-cause mortality (N, (%)) | 11 (7.9) |
Follow-up duration based on all-cause mortality (months) | 34.1 (11.5–75.7) |
CVA (N, (%)) | 11 (7.9) |
Follow-up duration based on CVA (months) | 31.5 (9.2–70.1) |
ACS (N, (%)) | 9 (6.5) |
Follow-up duration based on ACS (months) | 32.9 (9.8–72.0) |
Variables | Univariable | Multivariable (RC Levels) | Multivariable (The Highest Tertile of RC Levels) | ||||||
---|---|---|---|---|---|---|---|---|---|
HR | 95% CI | p Value | HR | 95% CI | p Value | HR | 95% CI | p Value | |
Age (years) | 1.015 | 0.967–1.065 | 0.542 | ||||||
Male sex (N, (%)) | 5.613 | 1.374–22.927 | 0.016 | 2.788 | 0.564–13.766 | 0.208 | 9.054 | 1.786–45.910 | 0.008 |
BMI (kg/m2) | 1.131 | 0.922–1.388 | 0.238 | ||||||
Ex-smoker (N, (%)) | 4.635 | 0.948–22.671 | 0.058 | ||||||
MPO-ANCA (or P-ANCA) positivity | 2.185 | 0.447–10.670 | 0.334 | ||||||
PR3-ANCA (or C-ANCA) positivity | 0.574 | 0.071–4.609 | 0.601 | ||||||
BVAS | 1.130 | 1.028–1.243 | 0.012 | 1.116 | 1.003–1.242 | 0.044 | 1.147 | 1.033–1.274 | 0.010 |
FFS | 1.838 | 1.001–3.376 | 0.050 | ||||||
ESR (mm/h) | 1.006 | 0.989–1.023 | 0.514 | ||||||
CRP (mg/L) | 1.001 | 0.991–1.011 | 0.862 | ||||||
Hypertension | 2.604 | 0.692–9.801 | 0.157 | ||||||
T2DM | 5.139 | 1.285–20.554 | 0.021 | 3.782 | 0.904–15.818 | 0.068 | 4.057 | 0.927–17.752 | 0.063 |
RC levels (mg/dL) | 1.065 | 1.036–1.095 | <0.001 | 1.054 | 1.023–1.085 | <0.001 | |||
The highest tertile of RC levels | 4.077 | 1.019–16.318 | 0.047 | 10.818 | 1.867–62.689 | 0.008 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Do, H.; Kwon, O.C.; Ha, J.W.; Chung, J.; Park, Y.-B.; Huh, J.H.; Lee, S.-W. Remnant Cholesterol Levels at Diagnosis May Predict Acute Coronary Syndrome Occurrence During Follow-Up in Patients with Antineutrophil Cytoplasmic Antibody-Associated Vasculitis. J. Clin. Med. 2025, 14, 2260. https://doi.org/10.3390/jcm14072260
Do H, Kwon OC, Ha JW, Chung J, Park Y-B, Huh JH, Lee S-W. Remnant Cholesterol Levels at Diagnosis May Predict Acute Coronary Syndrome Occurrence During Follow-Up in Patients with Antineutrophil Cytoplasmic Antibody-Associated Vasculitis. Journal of Clinical Medicine. 2025; 14(7):2260. https://doi.org/10.3390/jcm14072260
Chicago/Turabian StyleDo, Hyunsue, Oh Chan Kwon, Jang Woo Ha, Jihye Chung, Yong-Beom Park, Ji Hye Huh, and Sang-Won Lee. 2025. "Remnant Cholesterol Levels at Diagnosis May Predict Acute Coronary Syndrome Occurrence During Follow-Up in Patients with Antineutrophil Cytoplasmic Antibody-Associated Vasculitis" Journal of Clinical Medicine 14, no. 7: 2260. https://doi.org/10.3390/jcm14072260
APA StyleDo, H., Kwon, O. C., Ha, J. W., Chung, J., Park, Y.-B., Huh, J. H., & Lee, S.-W. (2025). Remnant Cholesterol Levels at Diagnosis May Predict Acute Coronary Syndrome Occurrence During Follow-Up in Patients with Antineutrophil Cytoplasmic Antibody-Associated Vasculitis. Journal of Clinical Medicine, 14(7), 2260. https://doi.org/10.3390/jcm14072260