Impact of Pupil-Decentration on Visual and Refractive Outcomes in Myopic Patients Undergoing High Astigmatic PRK Surgery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Data Collection
2.3. Main Outcome Measures
2.4. Surgical Technique
2.5. Statistical Analysis
3. Results
3.1. Preoperative Comparison of Patients Undergoing Pupillary Decentration Treatment vs. Pupil-Centered Ablation
3.2. Intraoperative Parameters of the Pupillary Decentration and No Pupillary Decentration Groups
3.3. Postoperative Visual and Refractive Results of the Pupillary Decentration and No Pupillary Decentration Groups
3.4. Comparison of Pupillary Decentration and No Pupillary Decentration Groups After Adjustment for Potential Confounders
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, J.; Wang, Y.; Chen, X.; Wu, W. Clinical Outcomes of Corneal Refractive Surgery Comparing Centration on the Corneal Vertex with the Pupil Center: A Meta-Analysis. Int. Ophthalmol. 2020, 40, 3555–3563. [Google Scholar] [CrossRef] [PubMed]
- Arba Mosquera, S.; Verma, S.; McAlinden, C. Centration Axis in Refractive Surgery. Eye Vis. 2015, 2, 4. [Google Scholar] [CrossRef]
- Mrochen, M.; Kaemmerer, M.; Mierdel, P.; Seiler, T. Increased Higher-Order Optical Aberrations after Laser Refractive Surgery: A Problem of Subclinical Decentration. J. Cataract Refract. Surg. 2001, 27, 362–369. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhao, Y.; Sun, S.; Wu, Y.; Wang, G.; Zhao, S.; Huang, Y. Effect of Preoperative Pupil Offset on Corneal Higher-Order Aberrations after Femtosecond Laser-Assisted in Situ Keratomileusis. BMC Ophthalmol. 2023, 23, 247. [Google Scholar] [CrossRef] [PubMed]
- Arba Mosquera, S.; Verma, S. Numerical Nonwavefront-Guided Algorithm for Expansion or Recentration of the Optical Zone. J. Biomed. Opt. 2014, 19, 88001. [Google Scholar] [CrossRef]
- Biscevic, A.; Ahmedbegovic-Pjano, M.; Pasalic, A.; Ziga, N.; Gabric, K.; Bohac, M. Changes in the Higher Order Ocular Aberrations and Central Corneal Thickness After T-PRK and Fs-LASIK. Acta Inform. Med. AIM J. Soc. Med. Inform. Bosnia Herzeg. Cas. Drus. Za Med. Inform. BiH 2020, 28, 98–102. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, S.-S.; Yu, Q.; Lian, J.-C. Comparison of Visual Effects of FS-LASIK for Myopia Centered on the Coaxially Sighted Corneal Light Reflex or the Line of Sight. Int. J. Ophthalmol. 2017, 10, 624–631. [Google Scholar] [CrossRef] [PubMed]
- Reinstein, D.Z.; Archer, T.J.; Gobbe, M. Is Topography-Guided Ablation Profile Centered on the Corneal Vertex Better Than Wavefront-Guided Ablation Profile Centered on the Entrance Pupil? J. Refract. Surg. 2012, 28, 139–143. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, S.; Kimura, K.; Funakura, M.; Ikeda, N.; Hiramatsu, H.; Bains, H.S. Comparison of Myopic LASIK Centered on the Coaxially Sighted Corneal Light Reflex or Line of Sight. J. Refract. Surg. 2009, 25, S944-50. [Google Scholar] [CrossRef] [PubMed]
- Rabina, G.; Mimouni, M.; Slomovic, J.; Sorkin, N.; Nemet, A.; Kaiserman, I. Centration of Myopic Refractive Ablation: Should We Center Treatment on the Pupil or the Visual Axis? Lasers Med. Sci. 2021, 36, 1733–1739. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.S.M.; Law, A.K.P.; Ng, J.C.M.; Chan, V.K.C. Comparison of Refractive and Visual Outcomes with Centration Points 80% and 100% from Pupil Center toward the Coaxially Sighted Corneal Light Reflex. J. Cataract Refract. Surg. 2016, 42, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, S. Ocular Axes and Angles: Time for Better Understanding. J. Cataract Refract. Surg. 2016, 42, 351–352. [Google Scholar]
- Arbelaez, M.C.; Vidal, C.; Arba-Mosquera, S. Clinical Outcomes of Corneal Vertex versus Central Pupil References with Aberration-Free Ablation Strategies and LASIK. Investig. Ophthalmol. Vis. Sci. 2008, 49, 5287–5294. [Google Scholar] [CrossRef]
- Okamoto, S.; Kimura, K.; Funakura, M.; Ikeda, N.; Hiramatsu, H.; Bains, H.S. Comparison of Wavefront-Guided Aspheric Laser in Situ Keratomileusis for Myopia: Coaxially Sighted Corneal-Light-Reflex versus Line-of-Sight Centration. J. Cataract Refract. Surg. 2011, 37, 1951–1960. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Q.; Lian, J.C.; Zhang, J.; Yao, W.Q.; Zhang, S.S.; Ye, S. Comparison of visual effects after LASIK in myopia between centered on the coaxially sighted corneal light reflex and line of sight. Zhonghua Yan Ke Za Zhi 2016, 52, 499–506. [Google Scholar] [CrossRef] [PubMed]
- Gui, X.; Zhang, R.; Li, S.; Zhao, N.; Zhang, H.-R.; Zhou, Y.-K.; Huan, C.-Y.; Zhao, C.-Y.; Wang, H.-Y.; Song, H.-Y.; et al. Comparative Analysis of the Clinical Outcomes between Wavefront-Guided and Conventional Femtosecond LASIK in Myopia and Myopia Astigmatism. Int. J. Ophthalmol. 2021, 14, 1581–1588. [Google Scholar] [CrossRef] [PubMed]
- Damgaard, I.B.; Ang, M.; Mahmoud, A.M.; Farook, M.; Roberts, C.J.; Mehta, J.S. Functional Optical Zone and Centration Following SMILE and LASIK: A Prospective, Randomized, Contralateral Eye Study. J. Refract. Surg. 2019, 35, 230–237. [Google Scholar] [CrossRef] [PubMed]
- Donnenfeld, E. The Pupil Is a Moving Target: Centration, Repeatability, and Registration. J. Refract. Surg. 2004, 20, S593–S596. [Google Scholar] [CrossRef] [PubMed]
- Camellin, M.; Gambino, F.; Casaro, S. Measurement of the Spatial Shift of the Pupil Center. J. Cataract Refract. Surg. 2005, 31, 1719–1721. [Google Scholar] [CrossRef] [PubMed]
- De Ortueta, D.; Schreyger, F.D. Centration on the Cornea Vertex Normal During Hyperopic Refractive Photoablation Using Videokeratoscopy. J. Refract. Surg. 2007, 23, 198–200. [Google Scholar] [CrossRef] [PubMed]
Parameter Name | Pupil Decentration (n = 79) | No Pupil Decentration (n = 496) | p-Value |
---|---|---|---|
Age (years) | 26.7 ± 8.0 | 27.0 ± 7.9 | 0.691 |
Gender (% male) | 60.7 | 56.6 | 0.492 |
Side (% right) | 48.1 | 47.3 | 0.905 |
Pachymetry (μm) | 534.48 ± 34.77 | 528.90 ± 31.28 | 0.148 |
Average keratometry (D) | 44.22 ± 1.72 | 44.14 ± 1.65 | 0.707 |
Minimal keratometry (D) | 42.64 ± 1.76 | 42.47 ± 1.64 | 0.382 |
Maximal Keratometry (D) | 45.79 ± 1.75 | 45.82 ± 1.73 | 0.909 |
UCVA (logMAR) | 1.10 ± 1.00 | 0.96 ± 0.89 | 0.081 |
Subjective SEQ (D) | −5.30 ± 3.12 | −4.26 ± 2.45 | <0.001 |
Subjective sphere (D) | −3.40 ± 3.13 | −2.31 ± 2.49 | <0.001 |
Subjective cylinder (D) | −3.81 ± 0.63 | −3.89 ± 0.68 | 0.278 |
Subjective axis (degrees) | 92.15 ± 72.08 | 96.99 ± 76.13 | 0.598 |
Subjective BCVA (logMAR) | 0.09 ± 0.89 | 0.11 ± 0.89 | 0.074 |
Parameter Name | Pupil Decentration | No Pupil Decentration | p-Value |
---|---|---|---|
Treated sphere (D) | −3.92 ± 2.71 | −2.61 ± 2.38 | <0.001 |
Treated cylinder (D) | −3.24 ± 0.53 | −3.49 ± 0.90 | 0.015 |
Maximum ablation depth (µm) | 101.78 ± 34.22 | 88.12 ± 52.51 | 0.026 |
Parameter Name | Pupil Decentration | No Pupil Decentration | p-Value |
---|---|---|---|
Follow-up time (days) | 138.2 ± 57.3 | 149.9 ± 66.4 | 0.139 |
UCVA (logMAR) | 0.11 ± 0.77 | 0.09 ± 0.72 | 0.302 |
Subjective SEQ (D) | −0.33 ± 0.93 | −0.19 ± 0.60 | 0.094 |
Subjective sphere (D) | 0.02 ± 0.98 | 0.15 ± 0.67 | 0.142 |
Subjective cylinder (D) | −0.71 ± 0.48 | −0.70 ± 0.55 | 0.894 |
Subjective BCVA (logMAR) | 0.07 ± 0.92 | 0.07 ± 0.82 | 0.982 |
Safety index | 1.07 ± 0.27 | 1.12 ± 0.31 | 0.236 |
Efficacy index | 0.99 ± 0.31 | 1.07 ± 0.35 | 0.065 |
Parameter Name | Pupil Decentration | No Pupil Decentration | p-Value |
---|---|---|---|
UCVA (logMAR) | 0.14 ± 0.68 | 0.11 ± 0.70 | 0.159 |
Subjective SEQ (D) | −0.32 ± 0.56 | −0.17 ± 0.53 | 0.132 |
Subjective sphere (D) | 0.007 ± 0.62 | 0.17 ± 0.64 | 0.147 |
Subjective cylinder (D) | −0.70 ± 0.61 | −0.65 ± 0.47 | 0.687 |
Subjective BCVA (logMAR) | 0.06 ± 0.96 | 0.07 ± 0.85 | 0.761 |
Safety index | 1.12 ± 0.24 | 1.10 ± 0.29 | 0.709 |
Efficacy index | 0.94 ± 0.33 | 1.01 ± 0.35 | 0.305 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sommer, A.; Safir, M.; Nasser, W.; Ben Ephraim Noyman, D.; Sela, T.; Munzer, G.; Kaiserman, I.; Cohen, E.; Mimouni, M. Impact of Pupil-Decentration on Visual and Refractive Outcomes in Myopic Patients Undergoing High Astigmatic PRK Surgery. J. Clin. Med. 2025, 14, 2282. https://doi.org/10.3390/jcm14072282
Sommer A, Safir M, Nasser W, Ben Ephraim Noyman D, Sela T, Munzer G, Kaiserman I, Cohen E, Mimouni M. Impact of Pupil-Decentration on Visual and Refractive Outcomes in Myopic Patients Undergoing High Astigmatic PRK Surgery. Journal of Clinical Medicine. 2025; 14(7):2282. https://doi.org/10.3390/jcm14072282
Chicago/Turabian StyleSommer, Adir, Margarita Safir, Waseem Nasser, Dror Ben Ephraim Noyman, Tzahi Sela, Gur Munzer, Igor Kaiserman, Eyal Cohen, and Michael Mimouni. 2025. "Impact of Pupil-Decentration on Visual and Refractive Outcomes in Myopic Patients Undergoing High Astigmatic PRK Surgery" Journal of Clinical Medicine 14, no. 7: 2282. https://doi.org/10.3390/jcm14072282
APA StyleSommer, A., Safir, M., Nasser, W., Ben Ephraim Noyman, D., Sela, T., Munzer, G., Kaiserman, I., Cohen, E., & Mimouni, M. (2025). Impact of Pupil-Decentration on Visual and Refractive Outcomes in Myopic Patients Undergoing High Astigmatic PRK Surgery. Journal of Clinical Medicine, 14(7), 2282. https://doi.org/10.3390/jcm14072282