An Investigation of Muscle Mechanical Properties in Acute Burns and Burn Types
Abstract
:1. Introduction
2. Patients and Methods
2.1. Study Design
2.2. Evaluation of Creatine Kinase
2.3. Evaluation of the Mechanical Properties of the Biceps Brachii Muscle
2.4. Statistical Analysis
2.5. Ethical Consideration
3. Results
4. Discussion
4.1. In This Regard, We Consider That Our Study Is Valuable
4.2. Creatine Kinase (CK)
4.3. Mechanical Properties (Tone, Stiffness, and Elasticity)
5. Conclusions
5.1. Limitations of the Study
5.2. Future Research Directions
5.3. Clinical Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ogunbileje, J.O.; Herndon, D.N.; Murton, A.J.; Porter, C. The role of mitochondrial stress in muscle wasting following severe burn trauma. J. Burn Care Res. 2017, 39, 100–108. [Google Scholar] [CrossRef]
- Peck, M.D. Epidemiology of burns throughout the world. Part I: Distribution and risk factors. Burns 2011, 37, 1087–1100. [Google Scholar] [CrossRef] [PubMed]
- Pereira, C.; Murphy, K.; Jeschke, M.; Herndon, D.N. Post burn muscle wasting and the effects of treatments. Int. J. Biochem. Cell Biol. 2005, 37, 1948–1961. [Google Scholar] [CrossRef]
- Klein, G.L. Burn injury and restoration of muscle function. Bone 2020, 132, 115194. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, M.; Celis, M.M.; Meyer, W.; Tropez-Arceneaux, L.; McEntire, S.J.; Fuchs, H.; Richardson, L.; Holzer, C.; Herndon, D.N.; Suman, O.E. Effects of a hospital-based wellness and exercise program on quality of life of children with severe burns. Burns 2013, 39, 599–609. [Google Scholar] [CrossRef]
- Feng, Y.N.; Li, Y.P.; Liu, C.L.; Zhang, Z.J. Assessing the elastic properties of skeletal muscle and tendon using shearwave ultrasound elastography and MyotonPRO. Sci. Rep. 2018, 8, 17064. [Google Scholar] [CrossRef] [PubMed]
- Mooney, K.; Warner, M.; Stokes, M. Symmetry and within-session reliability of mechanical properties of biceps brachii muscles in healthy young adult males using the MyotonPRO device. Work. Pap. Health Sci. 2013, 1, 1–11. Available online: https://www.academia.edu/3710026/Symmetry_and_within_session_reliability_of_mechanical_properties_of_biceps_brachii_muscles_in_healthy_young_adult_males_using_the_MyotonPRO_device (accessed on 15 January 2021).
- Biolo, A.; Fleming, R.Y.D.; Maggi, S.P.; Nguyen, T.T.; Herndon, D.N.; Wolfe, R.R. Muscle protein metabolism and the regulation of muscle mass in severely burned patients. J. Burn Care Res. 2002, 23, 477–482. [Google Scholar]
- Nielson, C.B.; Duethman, N.C.; Howard, J.M.; Moncure, M.; Wood, J.G. Burns: Pathophysiology of systemic complications and current management. J. Burn. Care Res. 2017, 38, e469–e481. [Google Scholar] [CrossRef]
- Çınar, M.A.; Bayramlar, K.; Erkılıç, A.; Güneş, A.; Yakut, Y. The effects of early physiotherapy on biochemical parameters in major burn patients: A burn center’s experience. Turk. J. Trauma Emerg. Surg. 2019, 25, 489–495. [Google Scholar] [CrossRef]
- Agyapong-Badu, S.; Aird, L.; Bailey, L.; Mooney, K.; Mullix, J.; Warner, M.; Samuel, D.; Stokes, M. Interrater reliability of muscle tone, stiffness and elasticity measurements of rectus femoris and biceps brachii in healthy young and older males. Work Pap. Health Sci. 2013, 4, 1–11. [Google Scholar]
- Ramazanoglu, E.; Turhan, B.; Usgu, S. Evaluation of the tone and viscoelastic properties of the masseter muscle in the supine position, and its relation to age and gender. Dent. Med. Probl. 2021, 58, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Gravetter, F.J.; Wallnau, L.B. Using t statistics for inferences about population means and mean differences. In Statistics for the Behavioral Sciences, 9th ed.; Wadsworth: Belmont, CA, USA, 2012; pp. 283–351. [Google Scholar]
- McBride, J.W.; Labrosse, K.R.; McCoy, H.G.; Ahrenholz, D.H.; Solem, L.D.; Goldenberg, I.F. Is serum creatine kinase-MB in electrically injured patients predictive of myocardial injury? JAMA 1986, 255, 764–768. [Google Scholar] [CrossRef] [PubMed]
- Kopp, J.; Loos, B.; Spilker, G.; Horch, R.E. Correlation between serum creatinine kinase levels and extent of muscle damage in electrical burns. Burns 2004, 30, 680–683. [Google Scholar] [CrossRef]
- Babu, V.S.; Sharma, S.; Manas, R.K.; Kaur, C.; Rajkumar, R. Study of serum creatine kinase and lactate dehydrogenase levels and their correlation in high-voltage electric contact burns. Eur. J. Plast. Surg. 2020, 43, 103–110. [Google Scholar] [CrossRef]
- Baumgart, F. Stiffness—An unknown world of mechanical science? Injury 2000, 31 (Suppl. S2), 14–84. [Google Scholar] [CrossRef]
- Brightwell, C.R.; Hanson, M.E.; El Ayadi, A.; Prasai, A.; Wang, Y.; Finnerty, C.C.; Fry, C.S. Thermal injury initiates pervasive fibrogenesis in skeletal muscle. Am. J. Physiol. Cell Physiol. 2020, 319, C277–C287. [Google Scholar] [CrossRef]
- Hernandez, P.; Buller, D.; Mitchell, T.; Wright, J.; Liang, H.; Manchanda, K.; Welch, T.; Huebinger, R.M.; Carlson, D.L.; Wolf, S.E.; et al. Severe burn-induced inflammation and remodeling of Achilles tendon in a rat model. Shock 2018, 50, 346–350. [Google Scholar] [CrossRef]
- Duke, J.M.; Randall, S.M.; Fear, M.W.; Boyd, J.H.; Rea, S.; Wood, F.M. Burn-induced nervous system morbidity among burn and non-burn trauma patients compared with non-injured people. Burns 2019, 45, 1041–1050. [Google Scholar] [CrossRef]
- Anderson, J.R.; Zorbas, J.S.; Phillips, J.K.; Harrison, J.L.; Dawson, L.F.; Bolt, S.E.; Rea, S.M.; Klatte, J.E.; Paus, R.; Zhu, B.; et al. Systemic decreases in cutaneous innervation after burn injury. J. Investig. Dermatol. 2010, 130, 1948–1951. [Google Scholar] [CrossRef]
- Berlanga-Acosta, J.; Mendoza-Marí, Y.; Rodríguez-Rodríguez, N.; Herrera, D.G.d.B.; García-Ojalvo, A.; Fernández-Mayola, M.; Guillén-Nieto, G.; Valdés-Sosa, P.A. Burn injury insulin resistance and central nervous system complications: A review. Burns Open 2020, 4, 41–52. [Google Scholar] [CrossRef]
- Hughes, J.R.; Cayaffa, J.J.; Boswick, J.A. Seizures following burns of the skin. III. Electroencephalographic recordings. Dis. Nerv. Syst. 1975, 36, 443–447. Available online: https://europepmc.org/article/med/1164866 (accessed on 16 January 2021).
- Ma, L.; Zhou, Y.; Khan, M.A.S.; Yasuhara, S.; Martyn, J.A.J. Burn-induced microglia activation is associated with motor neuron degeneration and muscle wasting in mice. Shock 2019, 51, 569–579. [Google Scholar] [CrossRef] [PubMed]
- Higashimori, H.; Whetzel, T.P.; Mahmood, T.; Carlsen, R.C. Peripheral axon caliber and conduction velocity are decreased after burn injury in mice. Muscle Nerve 2005, 31, 610–620. [Google Scholar] [CrossRef] [PubMed]
- Agyapong-Badu, S.; Warner, M.; Samuel, D.; Stokes, M. Practical considerations for standardized recording of muscle mechanical properties using a myometric device: Recording site, muscle length, state of contraction and prior activity. J. Musculoskelet. Res. 2018, 21, 1850010. [Google Scholar] [CrossRef]
- Dega, S.; Gnaneswar, S.G.; Rao, P.R.; Ramani, P.; Krishna, D.M. Electrical burn injuries: Some unusual clinical situations and management. Burns 2007, 33, 653–665. [Google Scholar] [CrossRef]
- Hogan, M.C.; Grassi, B.; Samaja, M.; Stary, C.M.; Gladden, L.B. Effect of contraction frequency on the contractile and noncontractile phases of muscle venous blood flow. J. Appl. Physiol. 2003, 95, 1139–1144. [Google Scholar] [CrossRef]
Flame (n = 12) | Electrical (n = 10) | Scald (n = 8) | |||
---|---|---|---|---|---|
Sex | n (%) | n (%) | n (%) | χ2 | p |
Male | 11 (91.7) | 9 (90) | 7 (87.5) | 0.093 | 0.955 |
Female | 1 (8.3) | 1 (10) | 1 (12.5) | ||
Mean ± SD | Mean ± SD | Mean ± SD | F | p | |
Age (year) | 30.83 ± 11.01 | 27.1 ± 6.08 | 34.63 ± 18.64 | 0.833 | 0.446 |
Height (m) | 1.73 ± 0.09 | 1.72 ± 0.08 | 1.74 ± 0.08 | 0.150 | 0.861 |
Body Weight (kg) | 77.5 ± 8.6 | 68.1 ± 13.08 | 76.5 ± 9.21 | 0.497 | 0.101 |
Body Mass Index (kg/m2) | 26.12 ± 4.22 | 23.06 ± 4.86 | 25.16 ± 2.57 | 1.551 | 0.330 |
Burn Percentage (%) | 30.17 ± 11.92 | 31.6 ± 12.12 | 20.13 ± 8.56 | 3.231 | 0.055 |
Week 1 Mean (Min–Max) | Week 2 Mean (Min–Max) | Week 3 Mean (Min–Max) | χ2 | p | |
---|---|---|---|---|---|
Creatine Kinase (u/L) | 302 [180–783] a,b | 153 [69–261] | 104 [69–160] | 16.75 | 0.001 * |
Tone (Hz) | 15.65 [14.4–16.5] | 15.4 [14.1–16.7] | 14.9 [14.3–15.4] b,c | 23.261 | 0.001 * |
Stiffness (N/m) | 267.5 [231–298] | 257 [238–315] | 238.5 [215–270] b,c | 20.267 | 0.001 * |
Elasticity (log) | 1.13 [0.93–1.33] | 1.02 [0.82–1.15] | 0.98 [0.92–1.18] | 1.267 | 0.531 |
Flame (n = 12) | Electrical (n = 10) | Scald (n = 8) | Intergroup Comparison | ||
---|---|---|---|---|---|
Median [25–75%] | Median [25–75%] | Median [25–75%] | H | p | |
Creatine Kinase (u/L) | |||||
Week 1 | 228.5 [119–393] | 2216 [783–2719] a,c | 226 [92–306] | 15.197 | 0.001 * |
Week 2 | 112.5 [61.5–167] | 258.5 [83–670] | 123 [61.5–208.5] | 3.508 | 0.173 |
Week 3 | 109.5 [83.5–325] | 103.5 [45–130] | 97.5 [71–159.5] | 1.380 | 0.502 |
Intragroup Comparison | χ2 = 2.17, p = 0.338 | χ2 = 16.20, p = 0.001 * | χ2 = 7.03, p = 0.030 * |
Flame (n = 12) | Electrical (n = 10) | Scald (n = 8) | Intergroup Comparison | ||
---|---|---|---|---|---|
Median [25–75%] | Median [25–75%] | Median [25–75%] | H | p | |
BB Tone (Hz) | |||||
Week 1 | 15.65 [14.15–16.2] a,b | 16.2 [14.6–17.3] | 15.05 [14.15–16.45] | 1.120 | 0.571 |
Week 2 | 15.15 [13.45–16.45] | 16.2 [15.3–18.3] | 15.25 [14.15–15.65] | 3.206 | 0.201 |
Week 3 | 14.65 [14–15.3] | 15 [14.4–17] b,c | 14.7 [14.15–15.05] | 1.040 | 0.595 |
Intragroup Comparison | χ2 = 8.67, p = 0.013 * | χ2 = 12.20, p = 0.002 * | χ2 = 5.25, p = 0.072 | ||
BB Stiffness (N/m) | |||||
Week 1 | 277 [210.5–318] | 276.5 [237–285] | 235 [217.5–281] | 0.759 | 0.684 |
Week 2 | 265 [231.5–313.5] | 257.5 [243–330] | 250.5 [220–276] | 0.643 | 0.725 |
Week 3 | 234.5 [198.5–282] b,c | 241 [219–270] b,c | 236.5 [220–264] | 0.461 | 0.794 |
Intragroup Comparison | χ2 = 13.17, p = 0.001 * | χ2 = 9.60, p = 0.008 * | χ2 = 0.75, p = 0.687 | ||
BB Elasticity (log) | |||||
Week 1 | 1.18 [0.98–1.37] | 1.15 [0.79–1.22] | 1.07 [0.98–1.46] | 0.977 | 0.614 |
Week 2 | 1.1 [0.84–1.32] | 0.92 [0.81–1.04] | 1.05 [0.88–1.22] | 2.225 | 0.329 |
Week 3 | 1.06 [0.93–1.24] | 0.98 [0.9–1.05] | 0.99 [0.96–1.11] | 0.274 | 0.872 |
Intragroup Comparison | χ2 = 1.17, p = 0.558 | χ2 = 0.80, p = 0.670 | χ2 = 0.25, p = 0.882 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramazanoğlu, E.; Usgu, S.; Yakut, Y.; Çınar, M.A.; Bayramlar, K.; Güneş, A.; Erkiliç, A. An Investigation of Muscle Mechanical Properties in Acute Burns and Burn Types. J. Clin. Med. 2025, 14, 2344. https://doi.org/10.3390/jcm14072344
Ramazanoğlu E, Usgu S, Yakut Y, Çınar MA, Bayramlar K, Güneş A, Erkiliç A. An Investigation of Muscle Mechanical Properties in Acute Burns and Burn Types. Journal of Clinical Medicine. 2025; 14(7):2344. https://doi.org/10.3390/jcm14072344
Chicago/Turabian StyleRamazanoğlu, Engin, Serkan Usgu, Yavuz Yakut, Murat Ali Çınar, Kezban Bayramlar, Ali Güneş, and Ahmet Erkiliç. 2025. "An Investigation of Muscle Mechanical Properties in Acute Burns and Burn Types" Journal of Clinical Medicine 14, no. 7: 2344. https://doi.org/10.3390/jcm14072344
APA StyleRamazanoğlu, E., Usgu, S., Yakut, Y., Çınar, M. A., Bayramlar, K., Güneş, A., & Erkiliç, A. (2025). An Investigation of Muscle Mechanical Properties in Acute Burns and Burn Types. Journal of Clinical Medicine, 14(7), 2344. https://doi.org/10.3390/jcm14072344