Central Sleep Apnea in Adults: An Interdisciplinary Approach to Diagnosis and Management—A Narrative Review
Abstract
:1. Introduction
- Primary CSA;
- Central Cheyne–Stokes Apnea (CC-SA);
- High-altitude CSA;
- CSA due to medical conditions other than Cheyne–Stokes;
- CSA due to drugs or other noxious substances.
2. Mechanisms of CSA Production and Main Causes
- Heart failure, severe arrhythmias;
- Renal failure;
- Stroke, brain tumors, encephalitis, Parkinson’s disease, lesions of the medullary centers by neoplasms, infarctions, infections;
- “Shy Drager” syndrome with orthostatic hypotension and extrapyramidal syndrome;
- Post-poliomyelitis syndrome (progressive muscle weakness);
- Muscular dystrophy, myasthenia gravis.
- Diabetes mellitus;
- Hypothyroidism; acromegaly;
- “Arnold Chiari” syndrome types I–III (congenital condition of the cerebellum that herniates into a neighboring anatomical compartment);
- “Prader Willi” syndrome (genetic disease with muscle hypotonia, slowed development and growth, obsessive–compulsive behavior, hyperphagia, and obesity).
3. Symptoms of Central Sleep Apnea
- Excessive daytime sleepiness (less than OSA); lack of energy and daytime fatigue;
- Insomnia or awakenings—restless sleep;
- Apnea reported by sleep partners;
- Paroxysmal nocturnal dyspnea;
- Signs of underlying causes with frequent association with the following:
- -
- -
- Neurological diseases (stroke, tumors, Parkinson’s disease, encephalitis);
- -
- Neuromuscular disorders, muscular dystrophy, myasthenia gravis;
- -
- Chronic kidney disease;
- -
- Living at high altitude or recent variations in altitude;
- -
- Drug abuse (methadone, opioids);
- -
- Presence of obesity (BMI > 30 kg/m2) more strongly correlates with OSA rather than CSA.
4. Specific Laboratory Investigations in Sleep Apnea
- -
- Questionnaires for suspicion of daytime sleepiness (Epworth) and sleep apnea risk (Stop Bang Questionnaire, Berlin) should be applied to all patients with sleep apnea suspicion, before correctly differentiating OSA from CSA through more complex sleep study investigations;
- -
- Pulse oximetry; blood gas analysis;
- -
- Polygraphy/home sleep testing/level 3 testing (PG) and polysomnography/level 1 testing (PSG) with the following findings:
- -
- Lack of airflow at nose and mouth level for >10 s during sleep in an adult;
- -
- Lack of respiratory effort of the thoracic and abdominal muscles;
- -
- Nocturnal micro-awakenings;
- -
- Hypoxemia +/− hypercapnia.
- Decrease in airflow at the nose or mouth over 30% of the pre-event value, ≥10 s, together with absence of inspiratory effort and desaturation of +3% with or without arousal associated to the event; this is important to report, while frequently difficult to identify, due to multiple factors overlapping, such as the presence of insufficient respiratory effort or even lack in sensitivity of monitoring devices.
- (c)
- Cheyne–Stokes respiration/Central Cheyne–Stokes Apnea (CC-SA) (periodic ventilation) is characterized by respiratory events during sleep (succession of at least 3 events), with a progressive periodic amplification of ventilation “crescendo/decrescendo pattern” and then, with its progressive decrease, alternating with CSA/CSH [1,2]. The duration of the respiratory cycle from the onset of ventilation to the onset of another ventilation is ≥40 s [1].
- (d)
- Mixed apnea (MSA) is characterized by apnea during sleep that begins as a CSA (without thoraco-abdominal effort) and is followed by an OSA (ventilatory movements of the chest and abdomen).
- -
- Associated tests for causes and comorbidities: serological tests—glycemia, glycosylated Hb, LDL, HDL, uric acid, anti-acetylcholine receptor antibodies, blood gas analysis, renal function tests, ENT examination, EKG, cardiological examination, cardiac ultrasound, coronary angiography, spirometry, COPD Assessment test (CAT), 6-min-walk-test, imaging tests (MRI, brain CT), neurological and endocrinological examination, capnography.
- -
- Blood gas analysis may reveal respiratory alkalosis (PaCO2 < 40 mm Hg while awake) in patients with primary CSA, high-altitude periodic breathing, and CC-SA.
4.1. Cardio-Respiratory Ventilatory Polygraphy (PG)
4.2. Polysomnography (PSG)
- Sleep structure: electrical brain activity (electroencephalography—EEG) that identifies sleep stages, microarousals; electrooculogram (EOG); chin electromyogram (EMG); anterior tibial electromyogram that can prove limb movement or atonia during sleep.
- Respiratory events—detection of nose/mouth air flow and another sensor for snoring detection.
- Thoracal and abdominal movements detected by 2 strips attached to the patient.
- Repercussions of respiratory events: (a) Consequences on sleep structure (sleep fragmentation); (b) Gasometry (nocturnal SaO2 and PaCO2) and cardiovascular repercussions through EKG; pulse measurement should be considered when identifying the potential mechanism of CSA.
- Patient behavior recorded by PSG-associated camera and by a position sensor (“positional sleep apnea”, actigraphy).
5. Assessment of Comorbidities
- Investigation of the cardiovascular system:
- EKG, cardiorespiratory exercise test, blood pressure, pulse measurement;
- Cardiac ultrasound (often the ejection fraction is <40%);
- Imaging investigations—ultrasound, magnetic resonance imaging, positron emission tomography of myocardial perfusion;
- Coronary angiography;
- Investigation of metabolic syndrome (BMI, waist circumference), blood count, blood sugar, glycosylated Hb, expanded lipidogram;
- Neuropsychiatric consultation.
6. Treatment of Central Apnea
6.1. Treatment with Positive Airway Pressure (PAP)
- (a)
- Continuous positive airway pressure (CPAP) devices
- (b)
- Bilevel positive airway pressure (BPAP)
- Decreases respiratory effort (takes over the effort of the inspiratory muscles);
- Increases tidal volume and ventilation/minute;
- Improves gas exchange;
- Decreases the apnea–hypopnea index.
- Keeps the upper airways (UAW) open during sleep in those with unstable CC-SA;
- Reduces the mechanical work and respiratory effort due to end-expiratory pressure;
- Recruits alveoli and improves oxygenation;
- Eliminates obstructive apneas.
- (c)
- Adaptive servo ventilation (ASV)
6.2. Other Treatment Recommendations
6.3. Treatment Algorithms
- For Primary CSA, the recommended approach is to trial CPAP first; if CSA worsens, adaptive servo-ventilation (ASV) should be considered, and if ASV fails, oxygen therapy or acetazolamide may be used.
- In Heart Failure-Related CSA, the priority is optimizing heart failure therapy; if CSA persists, ASV is recommended for patients with a left ventricular ejection fraction (LVEF) above 45%, while oxygen therapy or phrenic nerve stimulation may be considered if ASV fails.
- Emergent CSA from CPAP therapy should be monitored for 8–12 weeks; if it persists, reducing CPAP pressure or switching to BiPAP is advised, followed by ASV if necessary, and, in refractory cases, oxygen therapy or acetazolamide may be introduced.
- Opioid-Induced CSA should be managed primarily by reducing opioid dosage; if CSA persists, CPAP or BiPAP can be used, escalating to ASV if needed, with acetazolamide as an alternative if ASV fails.
- High-Altitude CSA is best addressed with acetazolamide as first-line treatment, followed by oxygen therapy if CSA persists, and CPAP or BiPAP for patients with ongoing symptoms.
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Simmonds, A.; de Backer, W. ERS Handbook of Respiratory Sleep Medicine; European Respiratory Society: Sheffield, UK, 2012; Available online: http://www.ers-education.org/publications/handbook-series/ers-handbook-of-respiratory-sleep-medicine.aspx (accessed on 17 January 2025).
- American Academy of Sleep Medicine. International Classification of Sleep Disorders, 3rd ed.; Text Revision; American Academy of Sleep Medicine: Darian, IL, USA, 2023. [Google Scholar]
- White, D.P. Pathogenesis of Obstructive and Central Sleep Apnea. Am. J. Respir. Crit. Care Med. 2005, 172, 1363–1370. [Google Scholar] [CrossRef] [PubMed]
- Eckert, D.J.; Jordan, A.S.; Merchia, P.; Malhotra, A. Central Sleep Apnea: Pathophysiology and Treatment. Chest 2007, 131, 595–607. [Google Scholar]
- Johansson, P.; Alehagen, U.; Svanborg, E.; Dahlström, U.; Broström, A. Sleep disordered breathing in an elderly community-living population: Relationship to cardiac function, insomnia symptoms and daytime sleepiness. Sleep Med. 2009, 10, 1005–1011. [Google Scholar] [CrossRef] [PubMed]
- Donovan, L.M.; Kapur, V.K. Prevalence and Characteristics of Central Compared to Obstructive Sleep Apnea: Analyses from the Sleep Heart Health Study Cohort. Sleep 2016, 39, 1353–1359. [Google Scholar] [CrossRef] [PubMed]
- Arzt, M.; Harth, M.; Luchner, A.; Muders, F.; Holmer, S.R.; Blumberg, F.C.; Riegger, G.A.; Pfeifer, M. Enhanced Ventilatory Response to Exercise in Patients with Chronic Heart Failure and Central Sleep Apnea. Circulation 2003, 107, 1998–2003. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.S.; Shahabuddin, S.; Zahn, B.R.; Babcock, M.A.; Badr, M.S. Effect of gender on the development of hypocapnic apnea/hypopnea during NREM sleep. J. Appl. Physiol. 2000, 89, 192–199. [Google Scholar] [CrossRef]
- Bixler, E.O.; Vgontzas, A.N.; Have, T.T.; Tyson, K.; Kales, A. Effects of Age on Sleep Apnea in Men: I. Prevalence and Severity. Am. J. Respir. Crit. Care Med. 1998, 157, 144–148. [Google Scholar] [CrossRef]
- Beker, K. Central Sleep Apnea Syndromes. Available online: https://emedicine.medscape.com/article/304967-overview#a7 (accessed on 24 January 2025).
- Walker, J.M.; Farney, R.J.; Rhondeau, S.M.; Boyle, K.M.; Valentine, K.; Cloward, T.V.; Shilling, K.C. Chronic Opioid Use is a Risk Factor for the Development of Central Sleep Apnea and Ataxic Breathing. J. Clin. Sleep Med. 2007, 3, 455–461. [Google Scholar] [CrossRef]
- Verbraecken, J.A.; De Backer, W.A. Upper airway mechanics. Respiration 2009, 78, 121–133. [Google Scholar]
- Grunstein, R.R.; Ho, K.Y.; Sullivan, C.E. Sleep apnea in acromegaly. Ann. Intern. Med. 1991, 115, 527–532. [Google Scholar] [CrossRef]
- Leung, R.S.T.; Huber, M.A.; Rogge, T.; Maimon, N.; Chiu, K.-L.; Bradley, T.D. Association Between Atrial Fibrillation and Central Sleep Apnea. Sleep 2005, 28, 1543–1546. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.T.; Franco, R.A. Complex Sleep Apnea Syndrome. Sleep Disord. 2014, 2014, 798487. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Javaheri, S. Central Sleep Apnea in Congestive Heart Failure: Prevalence, Mechanisms, Impact, and Therapeutic Options. Semin. Respir. Crit. Care Med. 2005, 26, 44–55. [Google Scholar] [CrossRef] [PubMed]
- Javaheri, S.; Brown, L.K. Positive airway pressure therapy for hyperventilatory CSA: Idiopathic, heart failure, cerebrovascular disease, and high altitude. Sleep Med. Clin. 2017, 12, 565–572. [Google Scholar] [CrossRef]
- Kouri, I.; Kolla, B.P.; Morgenthaler, T.I.; Mansukhani, M.P. Frequency and outcomes of primary central sleep apnea in a population-based study. Sleep Med. 2019, 68, 177–183. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Feng, J.; Chen, B.-Y.; Cao, J. Complex sleep apnea syndrome. Patient Prefer. Adherence 2013, 7, 633–641. [Google Scholar] [CrossRef]
- Bitter, T.; Westerheide, N.; Hossain, M.S.; Lehmann, R.; Prinz, C.; Kleemeyer, A.; Horstkotte, D.; Oldenburg, O. Complex sleep apnoea in congestive heart failure. Thorax 2011, 66, 402–407. [Google Scholar] [CrossRef]
- Luo, Q.; Zhang, H.-L.; Tao, X.-C.; Zhao, Z.-H.; Yang, Y.-J.; Liu, Z.-H. Impact of untreated sleep apnea on prognosis of patients with congestive heart failure. Int. J. Cardiol. 2010, 144, 420–422. [Google Scholar] [CrossRef]
- van de Water, A.T.M.; Holmes, A.; Hurley, D.A. Objective measurements of sleep for non-laboratory settings as alternatives to polysomnography—A systematic review. J. Sleep Res. 2011, 20, 183–200. [Google Scholar] [CrossRef]
- Jimborean, G.; Arghir, O.; Postolache, P. Capitol în Tulburările Respiratorii în Timpul Somnului—Tratat de Diagnostic și Tratament. In Poligrafia în Timpul Somnului; Constanța, M., Ed.; 2017; ISBN 978-973-692-406-4. Available online: https://books.google.com.au/books/about/Tulbur%C4%83rile_respiratorii_%C3%AEn_timpul_som.html?id=6e8J0AEACAAJ&redir_esc=y (accessed on 12 January 2025).
- Kapur, V.K.; Auckley, D.H.; Chowdhuri, S.; Kuhlmann, D.C.; Mehra, R.; Ramar, K.; Harrod, C.G. Clinical Practice Guideline for Diagnostic Testing for Adult Obstructive Sleep Apnea: An American Academy of Sleep Medicine Clinical Practice Guideline. J. Clin. Sleep Med. 2017, 13, 479–504. [Google Scholar] [CrossRef]
- Deutsch, P.A.; Simmons, M.S.; Wallace, J.M. Cost-Effectiveness of Split-Night Polysomnography and Home Studies in the Evaluation of Obstructive Sleep Apnea Syndrome. J. Clin. Sleep Med. 2006, 2, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Ueno, L.M.; Drager, L.F.; Rodrigues, A.C.T.; Rondon, M.U.P.B.; Braga, A.M.F.W.; Mathias, W.; Krieger, E.M.; Barretto, A.C.P.; Middlekauff, H.R.; Lorenzi-Filho, G.; et al. Effects of Exercise Training in Patients with Chronic Heart Failure and Sleep Apnea. Sleep 2009, 32, 637–647. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, Y.; Sedaghat, M.; Majedi, M.A.; Pakzad, B.; Ghaderi, A.; Raeisi, A. Comparative Evaluation of Therapeutic Approaches to Central Sleep Apnea. Adv. Biomed. Res. 2019, 8, 13. [Google Scholar] [CrossRef]
- Jamil, S.M.; Owens, R.L.; Lipford, M.C.; Marron, R.M.; Vega Sanchez, M.E.; Lam, M.T.; Sunwoo, B.Y.; Schmickl, C.; Orr, J.E.; Sharma, S.; et al. ATS Core Curriculum 2020. Adult Sleep Medicine. ATS Sch. 2020, 1, 476–494. [Google Scholar] [PubMed]
- Bradley, T.D.; Logan, A.G.; Kimoff, R.J.; Sériès, F.; Morrison, D.; Ferguson, K.; Belenkie, I.; Pfeifer, M.; Fleetham, J.; Hanly, P.; et al. Continuous Positive Airway Pressure for Central Sleep Apnea and Heart Failure. N. Engl. J. Med. 2005, 353, 2025–2033. [Google Scholar] [CrossRef]
- Sin, D.D.; Logan, A.G.; Fitzgerald, F.S.; Liu, P.P.; Bradley, T.D. Effects of Continuous Positive Airway Pressure on Cardiovascular Outcomes in Heart Failure Patients with and Without Cheyne-Stokes Respiration. Circulation 2000, 102, 61–66. [Google Scholar] [CrossRef]
- Ruttanaumpawan, P.; Logan, A.G.; Floras, J.S.; Bradley, T.D.; for the CANPAP Investigators. Effect of Continuous Positive Airway Pressure on Sleep Structure in Heart Failure Patients with Central Sleep Apnea. Sleep 2009, 32, 91–98. [Google Scholar] [CrossRef]
- Dohi, T.; Kasai, T.; Narui, K.; Ishiwata, S.; Ohno, M.; Yamaguchi, T.; Momomura, S.-I. Bi-Level Positive Airway Pressure Ventilation for Treating Heart Failure with Central Sleep Apnea That is Unresponsive to Continuous Positive Airway Pressure. Circ. J. 2008, 72, 1100–1105. [Google Scholar] [CrossRef]
- Schoebel, C.; Ghaderi, A.; Amra, B.; Soltaninejad, F.; Penzel, T.; Fietze, I. Comparison of Therapeutic Approaches to Addicted Patients with Central Sleep Apnea. Tanaffos 2018, 17, 155–162. [Google Scholar]
- Gilmartin, G.; McGeehan, B.; Vigneault, K.; Daly, R.W.; Manento, M.; Weiss, J.W.; Thomas, R.J. Treatment of Positive Airway Pressure Treatment-Associated Respiratory Instability with Enhanced Expiratory Rebreathing Space (EERS). J. Clin. Sleep Med. 2010, 6, 529–538. [Google Scholar] [CrossRef]
- Arnal, J.-M.; Thevenin, C.-P.; Couzinou, B.; Texereau, J.; Garnero, A. Setting up home noninvasive ventilation. Chronic Respir. Dis. 2019, 16, 1479973119844090. [Google Scholar] [CrossRef]
- Javaheri, S.; Malik, A.; Smith, J.; Chung, E. Adaptive pressure support servoventilation: A novel treatment for sleep apnea associated with use of opioids. J. Clin. Sleep Med. 2008, 4, 305–310. [Google Scholar] [CrossRef]
- D’Elia, E.; Vanoli, E.; La Rovere, M.T.; Fanfulla, F.; Maggioni, A.; Casali, V.; Damiano, S.; Specchia, G.; Mortara, A. Adaptive servo ventilation reduces central sleep apnea in chronic heart failure patients: Beneficial effects on autonomic modulation of heart rate. J. Cardiovasc. Med. 2013, 14, 296–300. [Google Scholar] [CrossRef] [PubMed]
- Cowie, M.R.; Woehrle, H.; Wegscheider, K.; Angermann, C.; D’ortho, M.-P.; Erdmann, E.; Levy, P.; Simonds, A.K.; Somers, V.K.; Zannad, F.; et al. Adaptive Servo-Ventilation for Central Sleep Apnea in Systolic Heart Failure. N. Engl. J. Med. 2015, 373, 1095–1105. [Google Scholar] [CrossRef]
- American Academy of Sleep Medicine. Special Safety Notice: ASV Therapy for Central Sleep Apnea Patients with Heart Failure. Available online: https://aasm.org/special-safety-notice-asv-therapy-for-central-sleep-apnea-patients-with-heart-failure/ (accessed on 12 January 2025).
- Fukumoto, Y.; Tada, T.; Suzuki, H.; Nishimoto, Y.; Moriuchi, K.; Arikawa, T.; Adachi, H.; Momomura, S.-I.; Seino, Y.; Yasumura, Y.; et al. Chronic Effects of Adaptive Servo-Ventilation Therapy on Mortality and the Urgent Rehospitalization Rate in Patients Experiencing Recurrent Admissions for Heart Failure—A Multicenter Prospective Observational Study (SAVIOR-L). Circ. J. 2024, 88, 692–702. [Google Scholar] [CrossRef] [PubMed]
- Philippe, C.; Stoïca-Herman, M.; Drouot, X.; Raffestin, B.; Escourrou, P.; Hittinger, L.; Michel, P.-L.; Rouault, S.; D’ortho, M.-P. Compliance with and effectiveness of adaptive servoventilation versus continuous positive airway pressure in the treatment of Cheyne-Stokes respiration in heart failure over a six month period. Heart 2005, 92, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Allam, J.S.; Olson, E.J.; Gay, P.C.; Morgenthaler, T.I. Efficacy of Adaptive Servoventilation in Treatment of Complex and Central Sleep Apnea Syndromes. Chest 2007, 132, 1839–1846. [Google Scholar] [CrossRef]
- Randerath, W.J.; Nothofer, G.; Priegnitz, C.; Anduleit, N.; Treml, M.; Kehl, V.; Galetke, W. Long-term auto servo-ventilation or constant positive pressure in heart failure and co-existing central with obstructive sleep apnea. Chest 2012, 142, 440–447. [Google Scholar] [CrossRef]
- Sasayama, S.; Izumi, T.; Matsuzaki, M.; Matsumori, A.; Asanoi, H.; Momomura, S.-I.; Seino, Y.; Ueshima, K.; The CHF-HOT Study Group. Improvement of Quality of Life with Nocturnal Oxygen Therapy in Heart Failure Patients With Central Sleep Apnea. Circ. J. 2009, 73, 1255–1262. [Google Scholar] [CrossRef]
- Rocha, A.; Pinto, A.C.P.N.; Pachito, D.V.; Drager, L.F.; Lorenzi-Filho, G.; Atallah, Á.N. Pharmacological treatment for central sleep apnoea in adults. Cochrane Database Syst. Rev. 2023, 2023, CD012922. [Google Scholar] [CrossRef]
- Quadri, S.; Drake, C.; Hudgel, D.W. Improvement of idiopathic central sleep apnea with zolpidem. J. Clin. Sleep Med. 2009, 5, 122–129. [Google Scholar] [PubMed]
- Prowting, J.; Maresh, S.; Vaughan, S.; Kruppe, E.; Alsabri, B.; Badr, M.S.; Sankari, A. Mirtazapine reduces susceptibility to hypocapnic central sleep apnea in males with sleep-disordered breathing: A pilot study. J. Appl. Physiol. 2021, 131, 414–423. [Google Scholar] [CrossRef] [PubMed]
- Maresh, S.; Prowting, J.L.; Vaughan, S.; Kruppe, E.; Alsabri, B.; Yarandi, H.; Badr, M.S.; Sankari, A. Buspirone decreases susceptibility to hypocapnic central sleep apnea in chronic SCI patients. J. Appl. Physiol. 2020, 129, 675–682. [Google Scholar] [CrossRef] [PubMed]
- Javaheri, S.; Parker, T.; Wexler, L.; Liming, J.; Lindower, P.; Roselle, G. Effect of Theophylline on Sleep-Disordered Breathing in Heart Failure. N. Engl. J. Med. 1996, 335, 562–567. [Google Scholar] [CrossRef]
- Garrigue, S.; Bordier, P.; Jaïs, P.; Shah, D.C.; Hocini, M.; Raherison, C.; De Lara, M.T.; Haïssaguerre, M.; Clementy, J. Benefit of Atrial Pacing in Sleep Apnea Syndrome. N. Engl. J. Med. 2002, 346, 404–412. [Google Scholar] [CrossRef]
- Lowes, R. Implant to Treat Central Sleep Apnea Approved by FDA. Medscape Medical News. 6 October 2017. Available online: https://www.medscape.com/viewarticle/886744?nlid=118337_3901&src=wnl_newsalrt_171006_MSCPEDIT&uac=106950CX&impID=1451417&faf=1 (accessed on 10 October 2024).
- Hill, L.; Meyer, T.; McKane, S.; Lainscak, M.A.; Ahmed, Q. Transvenous phrenic nerve stimulation to treat central sleep apnoea in patients with heart failure may improve sleep, quality of life, and symptoms. Eur. J. Cardiovasc. Nurs. 2022, 22, 489–497. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Csipor Fodor, A.; Huțanu, D.; Budin, C.E.; Ianoși, M.B.; Rachiș, D.L.; Sárközi, H.-K.; Vultur, M.A.; Jimborean, G. Central Sleep Apnea in Adults: An Interdisciplinary Approach to Diagnosis and Management—A Narrative Review. J. Clin. Med. 2025, 14, 2369. https://doi.org/10.3390/jcm14072369
Csipor Fodor A, Huțanu D, Budin CE, Ianoși MB, Rachiș DL, Sárközi H-K, Vultur MA, Jimborean G. Central Sleep Apnea in Adults: An Interdisciplinary Approach to Diagnosis and Management—A Narrative Review. Journal of Clinical Medicine. 2025; 14(7):2369. https://doi.org/10.3390/jcm14072369
Chicago/Turabian StyleCsipor Fodor, Alpár, Dragoș Huțanu, Corina Eugenia Budin, Maria Beatrice Ianoși, Delia Liana Rachiș, Hédi-Katalin Sárközi, Mara Andreea Vultur, and Gabriela Jimborean. 2025. "Central Sleep Apnea in Adults: An Interdisciplinary Approach to Diagnosis and Management—A Narrative Review" Journal of Clinical Medicine 14, no. 7: 2369. https://doi.org/10.3390/jcm14072369
APA StyleCsipor Fodor, A., Huțanu, D., Budin, C. E., Ianoși, M. B., Rachiș, D. L., Sárközi, H.-K., Vultur, M. A., & Jimborean, G. (2025). Central Sleep Apnea in Adults: An Interdisciplinary Approach to Diagnosis and Management—A Narrative Review. Journal of Clinical Medicine, 14(7), 2369. https://doi.org/10.3390/jcm14072369