Thyroid Stimulating Hormone Levels Are Related to Fatty Liver Indices Independently of Free Thyroxine: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Physical Examination and Anthropometric Measurements
2.3. Laboratory Measurements
2.4. Liver Steatosis and Fibrosis and Insulin Resistance Assessment
- Fatty liver index (FLI) [33]: eLP/(1 + eLP) × 100 where LP (linear predictor) = 0.953 × ln(triglycerides (mg/dL)) + 0.139 × BMI (kg/m2) + 0.718 × ln (GGT (U/L)) + 0.053 × WC (cm) − 15.745;
- Hepatic steatosis index (HSI) [34] = 8 × (ALT (U/L)/AST (U/L)) + BMI (kg/m2) + 2 if woman + 2 if diabetes mellitus;
- FIB-4 index [35]: Age ([years] × AST [U/L])/((PLT [10(9)/L]) × √(ALT [U/L])).
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lonardo, A.; Ballestri, S.; Mantovani, A.; Nascimbeni, F.; Lugari, S.; Targher, G. Pathogenesis of hypothyroidism-induced NAFLD: Evidence for a distinct disease entity? Dig. Liver Dis. 2019, 51, 462–470. [Google Scholar] [CrossRef]
- Song, Y.; Xu, C.; Shao, S.; Liu, J.; Xing, W.; Xu, J.; Qin, C.; Li, C.; Hu, B.; Yi, S.; et al. Thyroid-stimulating hormone regulates hepatic bile acid homeostasis via SREBP-2/HNF-4α/CYP7A1 axis. J. Hepatol. 2015, 62, 1171–1179. [Google Scholar] [CrossRef]
- Tian, L.; Song, Y.; Xing, M.; Zhang, W.; Ning, G.; Li, X.; Yu, C.; Qin, C.; Liu, J.; Tian, X.; et al. A novel role for thyroid-stimulating hormone: Up-regulation of hepatic 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase expression through the cyclic adenosine monophosphate/protein kinase A/cyclic adenosine monophosphate-responsive element binding prote. Hepatology 2010, 52, 1401–1409. [Google Scholar] [CrossRef]
- Yan, F.; Wang, Q.; Lu, M.; Chen, W.; Song, Y.; Jing, F.; Guan, Y.; Wang, L.; Lin, Y.; Bo, T.; et al. Thyrotropin increases hepatic triglyceride content through upregulation of SREBP-1c activity. J. Hepatol. 2014, 61, 1358–1364. [Google Scholar] [CrossRef]
- Zhou, L.; Wu, K.; Zhang, L.; Gao, L.; Chen, S. Liver-specific deletion of TSHR inhibits hepatic lipid accumulation in mice. Biochem. Biophys. Res. Commun. 2018, 497, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Sinha, R.A.; Singh, B.K.; Yen, P.M. Direct effects of thyroid hormones on hepatic lipid metabolism. Nat. Rev. Endocrinol. 2018, 14, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Wen, W.; Ye, S. TSH-SPP1/TRβ-TSH positive feedback loop mediates fat deposition of hepatocyte: Crosstalk between thyroid and liver. Front. Immunol. 2022, 13, 1009912. [Google Scholar] [CrossRef]
- Bao, S.; Li, F.; Duan, L.; Li, J.; Jiang, X. Thyroid-stimulating hormone may participate in insulin resistance by activating toll-like receptor 4 in liver tissues of subclinical hypothyroid rats. Mol. Biol. Rep. 2023, 50, 10637–10650. [Google Scholar] [CrossRef]
- Fan, H.; Liu, Z.; Zhang, X.; Wu, S.; Shi, T.; Zhang, P.; Xu, Y.; Chen, X.; Zhang, T. Thyroid Stimulating Hormone Levels Are Associated With Genetically Predicted Nonalcoholic Fatty Liver Disease. J. Clin. Endocrinol. Metab. 2022, 107, 2522–2529. [Google Scholar] [CrossRef]
- Kim, S.S.; Dey, K.K.; Weissbrod, O.; Márquez-Luna, C.; Gazal, S.; Price, A.L. Improving the informativeness of Mendelian disease-derived pathogenicity scores for common disease. Nat. Commun. 2020, 11, 6258. [Google Scholar] [CrossRef]
- Chung, G.E.; Kim, D.; Kwak, M.-S.; Yim, J.Y.; Ahmed, A.; Kim, J.S. Longitudinal Change in Thyroid-Stimulating Hormone and Risk of Nonalcoholic Fatty Liver Disease. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 2021, 19, 848–849.e1. [Google Scholar] [CrossRef]
- Chung, G.E.; Kim, D.; Kim, W.; Yim, J.Y.; Park, M.J.; Kim, Y.J.; Yoon, J.-H.; Lee, H.-S. Non-alcoholic fatty liver disease across the spectrum of hypothyroidism. J. Hepatol. 2012, 57, 150–156. [Google Scholar] [CrossRef]
- Hutchison, A.L.; Tavaglione, F.; Romeo, S.; Charlton, M. Endocrine aspects of metabolic dysfunction-associated steatotic liver disease (MASLD): Beyond insulin resistance. J. Hepatol. 2023, 79, 1524–1541. [Google Scholar] [CrossRef]
- Arab, J.P.; Arrese, M.; Trauner, M. Recent Insights into the Pathogenesis of Nonalcoholic Fatty Liver Disease. Annu. Rev. Pathol. 2018, 13, 321–350. [Google Scholar] [CrossRef]
- Milić, S.; Lulić, D.; Štimac, D. Non-alcoholic fatty liver disease and obesity: Biochemical, metabolic and clinical presentations. World J. Gastroenterol. 2014, 20, 9330–9337. [Google Scholar] [CrossRef]
- Riazi, K.; Azhari, H.; Charette, J.H.; Underwood, F.E.; King, J.A.; Afshar, E.E.; Swain, M.G.; Congly, S.E.; Kaplan, G.G.; Shaheen, A.-A. The prevalence and incidence of NAFLD worldwide: A systematic review and meta-analysis. lancet. Gastroenterol. Hepatol. 2022, 7, 851–861. [Google Scholar] [CrossRef] [PubMed]
- Bravo, A.A.; Sheth, S.G.; Chopra, S. Liver biopsy. N. Engl. J. Med. 2001, 344, 495–500. [Google Scholar] [CrossRef] [PubMed]
- Nogami, A.; Yoneda, M.; Iwaki, M.; Kobayashi, T.; Honda, Y.; Ogawa, Y.; Imajo, K.; Saito, S.; Nakajima, A. Non-invasive imaging biomarkers for liver steatosis in non-alcoholic fatty liver disease: Present and future. Clin. Mol. Hepatol. 2023, 29, S123–S135. [Google Scholar] [CrossRef]
- Marchesini, G.; Day, C.P.; Dufour, J.F.; Canbay, A.; Nobili, V.; Ratziu, V.; Tilg, H.; Roden, M.; Gastaldelli, A.; Yki-Jarvinen, H.; et al. EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J. Hepatol. 2016, 64, 1388–1402. [Google Scholar] [CrossRef]
- Foschi, F.G.; Conti, F.; Domenicali, M.; Giacomoni, P.; Borghi, A.; Bevilacqua, V.; Napoli, L.; Berardinelli, D.; Altini, M.; Cucchetti, A.; et al. External Validation of Surrogate Indices of Fatty Liver in the General Population: The Bagnacavallo Study. J. Clin. Med. 2021, 10, 520. [Google Scholar] [CrossRef]
- Rinella, M.E.; Neuschwander-Tetri, B.A.; Siddiqui, M.S.; Abdelmalek, M.F.; Caldwell, S.; Barb, D.; Kleiner, D.E.; Loomba, R. AASLD Practice Guidance on the clinical assessment and management of nonalcoholic fatty liver disease. Hepatology 2023, 77, 1797–1835. [Google Scholar] [CrossRef] [PubMed]
- Cornier, M.-A.; Dabelea, D.; Hernandez, T.L.; Lindstrom, R.C.; Steig, A.J.; Stob, N.R.; Van Pelt, R.E.; Wang, H.; Eckel, R.H. The metabolic syndrome. Endocr. Rev. 2008, 29, 777–822. [Google Scholar] [CrossRef] [PubMed]
- Lebovitz, H.E. Insulin resistance: Definition and consequences. Exp. Clin. Endocrinol. Diabetes Off. J. Ger. Soc. Endocrinol. Ger. Diabetes Assoc. 2001, 109 (Suppl. S2), S135–S148. [Google Scholar] [CrossRef] [PubMed]
- Alberti, K.G.M.M.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.-C.; James, W.P.T.; Loria, C.M.; Smith, S.C.J. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef]
- Wallace, T.M.; Levy, J.C.; Matthews, D.R. Use and Abuse of HOMA Modeling. Diabetes Care 2004, 27, 1487–1495. [Google Scholar] [CrossRef]
- Ren, R.; Jiang, X.; Zhang, X.; Guan, Q.; Yu, C.; Li, Y.; Gao, L.; Zhang, H.; Zhao, J. Association between thyroid hormones and body fat in euthyroid subjects. Clin. Endocrinol. 2014, 80, 585–590. [Google Scholar] [CrossRef]
- Roef, G.; Lapauw, B.; Goemaere, S.; Zmierczak, H.-G.; Toye, K.; Kaufman, J.-M.; Taes, Y. Body composition and metabolic parameters are associated with variation in thyroid hormone levels among euthyroid young men. Eur. J. Endocrinol. 2012, 167, 719–726. [Google Scholar] [CrossRef] [PubMed]
- Kwon, H.; Cho, J.-H.; Lee, D.Y.; Park, S.E.; Park, C.-Y.; Lee, W.-Y.; Oh, K.-W.; Park, S.-W.; Rhee, E.-J. Association between thyroid hormone levels, body composition and insulin resistance in euthyroid subjects with normal thyroid ultrasound: The Kangbuk Samsung Health Study. Clin. Endocrinol. 2018, 89, 649–655. [Google Scholar] [CrossRef]
- Spadafranca, A.; Cappelletti, C.; Leone, A.; Vignati, L.; Battezzati, A.; Bedogni, G.; Bertoli, S. Relationship between thyroid hormones, resting energy expenditure and cardiometabolic risk factors in euthyroid subjects. Clin. Nutr. 2015, 34, 674–678. [Google Scholar] [CrossRef]
- Rodondi, N.; den Elzen, W.P.J.; Bauer, D.C.; Cappola, A.R.; Razvi, S.; Walsh, J.P.; Asvold, B.O.; Iervasi, G.; Imaizumi, M.; Collet, T.-H.; et al. Subclinical hypothyroidism and the risk of coronary heart disease and mortality. JAMA 2010, 304, 1365–1374. [Google Scholar] [CrossRef]
- Lohman, T.G.; Roche, A.F.; Martorell, R. Anthropometric Standardization Reference Manual; Human Kinetics Books: Champaign, IL, USA, 1988. [Google Scholar]
- Durnin, J.V.; Womersley, J. Body fat assessed from total body density and its estimation from skinfold thickness: Measurements on 481 men and women aged from 16 to 72 years. Br. J. Nutr. 1974, 32, 77–97. [Google Scholar] [CrossRef] [PubMed]
- Bedogni, G.; Bellentani, S.; Miglioli, L.; Masutti, F.; Passalacqua, M.; Castiglione, A.; Tiribelli, C. The Fatty Liver Index: A simple and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterol. 2006, 6, 33. [Google Scholar] [CrossRef]
- Lee, J.-H.; Kim, D.; Kim, H.J.; Lee, C.-H.; Yang, J.I.; Kim, W.; Kim, Y.J.; Yoon, J.-H.; Cho, S.-H.; Sung, M.-W.; et al. Hepatic steatosis index: A simple screening tool reflecting nonalcoholic fatty liver disease. Dig. liver Dis. Off. J. Ital. Soc. Gastroenterol. Ital. Assoc. Study Liver 2010, 42, 503–508. [Google Scholar] [CrossRef]
- Sterling, R.K.; Lissen, E.; Clumeck, N.; Sola, R.; Correa, M.C.; Montaner, J.; S Sulkowski, M.; Torriani, F.J.; Dieterich, D.T.; Thomas, D.L.; et al. Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection. Hepatology 2006, 43, 1317–1325. [Google Scholar] [CrossRef] [PubMed]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef]
- Kanwal, F.; Shubrook, J.H.; Adams, L.A.; Pfotenhauer, K.; Wai-Sun Wong, V.; Wright, E.; Abdelmalek, M.F.; Harrison, S.A.; Loomba, R.; Mantzoros, C.S.; et al. Clinical Care Pathway for the Risk Stratification and Management of Patients With Nonalcoholic Fatty Liver Disease. Gastroenterology 2021, 161, 1657–1669. [Google Scholar] [CrossRef]
- Agretti, P.; Chiovato, L.; De Marco, G.; Marcocci, C.; Mazzi, B.; Sellari-Franceschini, S.; Vitti, P.; Pinchera, A.; Tonacchera, M. Real-time PCR provides evidence for thyrotropin receptor mRNA expression in orbital as well as in extraorbital tissues. Eur. J. Endocrinol. 2002, 147, 733–739. [Google Scholar] [CrossRef]
- Zhang, W.; Tian, L.M.; Han, Y.Y.; Ma, H.Y.; Wang, L.C.; Guo, J.; Gao, L.; Zhao, J.J. Presence of thyrotropin receptor in hepatocytes: Not a case of illegitimate transcription. J. Cell. Mol. Med. 2009, 13, 4636–4642. [Google Scholar] [CrossRef]
- Wang, X.; Mao, J.; Zhou, X.; Li, Q.; Gao, L.; Zhao, J. Thyroid Stimulating Hormone Triggers Hepatic Mitochondrial Stress through Cyclophilin D Acetylation. Oxid. Med. Cell. Longev. 2020, 2020, 1249630. [Google Scholar] [CrossRef]
- Williams, G.R. Extrathyroidal expression of TSH receptor. Ann. Endocrinol. 2011, 72, 68–73. [Google Scholar] [CrossRef]
- Gor, R.; Siddiqui, N.A.; Wijeratne Fernando, R.; Sreekantan Nair, A.; Illango, J.; Malik, M.; Hamid, P. Unraveling the Role of Hypothyroidism in Non-alcoholic Fatty Liver Disease Pathogenesis: Correlations, Conflicts, and the Current Stand. Cureus 2021, 13, e14858. [Google Scholar] [CrossRef] [PubMed]
- He, W.; An, X.; Li, L.; Shao, X.; Li, Q.; Yao, Q.; Zhang, J.-A. Relationship between Hypothyroidism and Non-Alcoholic Fatty Liver Disease: A Systematic Review and Meta-analysis. Front. Endocrinol. 2017, 8, 335. [Google Scholar] [CrossRef]
- Jaruvongvanich, V.; Sanguankeo, A.; Upala, S. Nonalcoholic Fatty Liver Disease Is Not Associated with Thyroid Hormone Levels and Hypothyroidism: A Systematic Review and Meta-Analysis. Eur. Thyroid J. 2017, 6, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, A.; Nascimbeni, F.; Lonardo, A.; Zoppini, G.; Bonora, E.; Mantzoros, C.S.; Targher, G. Association between Primary Hypothyroidism and Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. Thyroid 2018, 28, 1270–1284. [Google Scholar] [CrossRef]
- Guo, Z.; Li, M.; Han, B.; Qi, X. Association of non-alcoholic fatty liver disease with thyroid function: A systematic review and meta-analysis. Dig. Liver Dis. 2018, 50, 1153–1162. [Google Scholar] [CrossRef]
- Qiu, S.; Cao, P.; Guo, Y.; Lu, H.; Hu, Y. Exploring the Causality Between Hypothyroidism and Non-alcoholic Fatty Liver: A Mendelian Randomization Study. Front. Cell Dev. Biol. 2021, 9, 643582. [Google Scholar] [CrossRef]
- Li, Y.; Wang, L.; Zhou, L.; Song, Y.; Ma, S.; Yu, C.; Zhao, J.; Xu, C.; Gao, L. Thyroid stimulating hormone increases hepatic gluconeogenesis via CRTC2. Mol. Cell. Endocrinol. 2017, 446, 70–80. [Google Scholar] [CrossRef]
- Zhu, P.; Liu, X.; Mao, X. Thyroid-Stimulating Hormone Levels Are Positively Associated with Insulin Resistance. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2018, 24, 342–347. [Google Scholar] [CrossRef]
- Muscogiuri, G.; Sorice, G.P.; Mezza, T.; Prioletta, A.; Lassandro, A.P.; Pirronti, T.; Della Casa, S.; Pontecorvi, A.; Giaccari, A. High-normal TSH values in obesity: Is it insulin resistance or adipose tissue’s guilt? Obesity 2013, 21, 101–106. [Google Scholar] [CrossRef]
- Park, H.T.; Cho, G.J.; Ahn, K.H.; Shin, J.H.; Hong, S.C.; Kim, T.; Hur, J.Y.; Kim, Y.T.; Lee, K.W.; Kim, S.H. Thyroid stimulating hormone is associated with metabolic syndrome in euthyroid postmenopausal women. Maturitas 2009, 62, 301–305. [Google Scholar] [CrossRef]
- Roos, A.; Bakker, S.J.L.; Links, T.P.; Gans, R.O.B.; Wolffenbuttel, B.H.R. Thyroid function is associated with components of the metabolic syndrome in euthyroid subjects. J. Clin. Endocrinol. Metab. 2007, 92, 491–496. [Google Scholar] [CrossRef] [PubMed]
- Mehran, L.; Amouzegar, A.; Tohidi, M.; Moayedi, M.; Azizi, F. Serum free thyroxine concentration is associated with metabolic syndrome in euthyroid subjects. Thyroid 2014, 24, 1566–1574. [Google Scholar] [CrossRef] [PubMed]
- Ferrannini, E.; Iervasi, G.; Cobb, J.; Ndreu, R.; Nannipieri, M. Insulin resistance and normal thyroid hormone levels: Prospective study and metabolomic analysis. Am. J. Physiol. Endocrinol. Metab. 2017, 312, E429–E436. [Google Scholar] [CrossRef] [PubMed]
- Harrison, S.A.; Bashir, M.R.; Guy, C.D.; Zhou, R.; Moylan, C.A.; Frias, J.P.; Alkhouri, N.; Bansal, M.B.; Baum, S.; Neuschwander-Tetri, B.A.; et al. Resmetirom (MGL-3196) for the treatment of non-alcoholic steatohepatitis: A multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 2019, 394, 2012–2024. [Google Scholar] [CrossRef]
Total N = 8825 | |||
---|---|---|---|
N | % | ||
Sex (male) | 2648 | 33.1 | |
BMI category | |||
Normal weight | 2026 | 23 | |
Overweight | 3358 | 38 | |
Class I obesity | 2135 | 24 | |
Class II obesity | 867 | 10 | |
Class III obesity | 439 | 5 | |
Smoking status | |||
Non-smoker | 4372 | 49.5 | |
Ex-smoker | 1746 | 19.8 | |
Smoker | 2707 | 30.7 | |
Median | P25 | P75 | |
Age (years) | 46 | 37 | 54 |
BMI (kg/m2) | 28.45 | 25.31 | 32.44 |
Body fat (%) | 37.2 | 32.4 | 40.8 |
Waist circumference (cm) | 96.1 | 86.5 | 106.7 |
TSH (µUI/mL) | 1.88 | 1.36 | 2.54 |
fT4 (pg/mL) | 11.7 | 10.6 | 12.9 |
Triglycerides (mg/dL) | 90 | 65 | 130 |
GGT (U/L) | 18.5 | 12.7 | 29 |
Serum glucose (mg/dL) | 95 | 89 | 103 |
Insulin (U/L) | 9.86 | 6.81 | 14.94 |
HOMA-IR | 2.33 | 1.58 | 3.73 |
ALT (U/L) | 19 | 14 | 28 |
AST (U/L) | 18.7 | 15.6 | 22.9 |
FLI | 45.4 | 17.2 | 78.9 |
HSI | 40.1 | 35.9 | 45.3 |
Coefficient (β) | Standard Error | T Value | p Value | |
---|---|---|---|---|
FLI | 2.76 | 0.36 | 7.67 | <0.001 |
HSI | 0.58 | 0.09 | 6.2 | <0.001 |
Normal Weight | Overweight and Obesity | |||||||
---|---|---|---|---|---|---|---|---|
Coefficient (β) | Standard Error | T Value | p Value | Coefficient (β) | Standard Error | T Value | p Value | |
FLI | 0.61 | 0.26 | 2.35 | 0.02 | 2.17 | 0.37 | 5.92 | <0.001 |
HSI | 0.07 | 0.08 | 0.91 | 0.36 | 0.45 | 0.09 | 5.04 | <0.001 |
Coefficient (β) | Standard Error | T Value | p Value | |
---|---|---|---|---|
HOMA-IR | −0.04 | 0.04 | −1.12 | 0.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sileo, F.; Leone, A.; De Amicis, R.; Foppiani, A.; Vignati, L.; Menichetti, F.; Pozzi, G.; Bertoli, S.; Battezzati, A. Thyroid Stimulating Hormone Levels Are Related to Fatty Liver Indices Independently of Free Thyroxine: A Cross-Sectional Study. J. Clin. Med. 2025, 14, 2401. https://doi.org/10.3390/jcm14072401
Sileo F, Leone A, De Amicis R, Foppiani A, Vignati L, Menichetti F, Pozzi G, Bertoli S, Battezzati A. Thyroid Stimulating Hormone Levels Are Related to Fatty Liver Indices Independently of Free Thyroxine: A Cross-Sectional Study. Journal of Clinical Medicine. 2025; 14(7):2401. https://doi.org/10.3390/jcm14072401
Chicago/Turabian StyleSileo, Federica, Alessandro Leone, Ramona De Amicis, Andrea Foppiani, Laila Vignati, Francesca Menichetti, Giorgia Pozzi, Simona Bertoli, and Alberto Battezzati. 2025. "Thyroid Stimulating Hormone Levels Are Related to Fatty Liver Indices Independently of Free Thyroxine: A Cross-Sectional Study" Journal of Clinical Medicine 14, no. 7: 2401. https://doi.org/10.3390/jcm14072401
APA StyleSileo, F., Leone, A., De Amicis, R., Foppiani, A., Vignati, L., Menichetti, F., Pozzi, G., Bertoli, S., & Battezzati, A. (2025). Thyroid Stimulating Hormone Levels Are Related to Fatty Liver Indices Independently of Free Thyroxine: A Cross-Sectional Study. Journal of Clinical Medicine, 14(7), 2401. https://doi.org/10.3390/jcm14072401