Antibiotic Use Patterns at Jimma Medical Center in Southwest Ethiopia: A Call for Local Antibiogram-Guided Prescription
Abstract
:1. Introduction
2. Methods
2.1. Study Design, Period, and Setting
2.2. Study Participants
2.3. Data Collection
2.4. Data Analysis
2.5. Ethical Considerations
3. Results
3.1. Patient Demographics and Clinical Characteristics
3.2. Indication for Antibiotics
3.3. Antibiotic Regimen and Prescription Patterns
3.4. Empiric Antibiotic Prescription Patterns and Guideline Compliance
3.5. Diagnostic Utilization and Patient Outcomes
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AMR | Antimicrobial resistance |
ASP | Antimicrobial stewardship program |
AST | Antimicrobial susceptibility test |
AWaRe | Access, Watch, and Reserve |
DOTs | Days of therapy |
LMICs | Low- and middle-income countries |
MDROs | Multidrug-resistant organisms |
WHO | World Health Organization |
References
- Aminov, R.I. A brief history of the antibiotic era: Lessons learned and challenges for the future. Front. Microbiol. 2010, 1, 134. [Google Scholar]
- Cantón, R.; Akova, M.; Langfeld, K.; Torumkuney, D. Relevance of the Consensus Principles for Appropriate Antibiotic Prescribing in 2022. J. Antimicrob. Chemother. 2022, 77 (Suppl. S1), i2–i9. [Google Scholar] [PubMed]
- Fair, R.J.; Tor, Y. Antibiotics and bacterial resistance in the 21st century. Perspect. Med. Chem. 2014, 6, 25–64. [Google Scholar]
- Hashemi, S.; Nasrollah, A.; Rajabi, M. Irrational antibiotic prescribing: A local issue or global concern? EXCLI J. 2013, 12, 384–395. [Google Scholar] [PubMed]
- Sweileh, W.M. Global research publications on irrational use of antimicrobials: Call for more research to contain antimicrobial resistance. Glob. Health 2021, 17, 94. [Google Scholar]
- Charani, E.; Cooke, J.; Holmes, A. Antibiotic stewardship programmes—What’s missing? J. Antimicrob. Chemother. 2010, 65, 2275–2277. [Google Scholar]
- Ventola, C.L. The antibiotic resistance crisis: Part 1, causes and threats. Pharm. Ther. 2015, 40, 277–283. [Google Scholar]
- Dadgostar, P. Antimicrobial Resistance: Implications and Costs. Infect. Drug Resist. 2019, 12, 3903–3910. [Google Scholar]
- Sartelli, M.C.; Hardcastle, T.; Catena, F.; Chichom-Mefire, A.; Coccolini, F.; Dhingra, S.; Haque, M.; Hodonou, A.; Iskandar, K.; Labricciosa, F.M.; et al. Antibiotic Use in Low and Middle-Income Countries and the Challenges of Antimicrobial Resistance in Surgery. Antibiotics 2020, 9, 497. [Google Scholar] [CrossRef]
- Ghimire, K.; Banjara, M.R.; Marasini, B.P.; Gyanwali, P.; Poudel, S.; Khatri, E.; Dhimal, M. Antibiotics Prescription, Dispensing Practices and Antibiotic Resistance Pattern in Common Pathogens in Nepal: A Narrative Review. Microbiol. Insights 2023, 16, 11786361231167239. [Google Scholar]
- Essack, S.Y.; Desta, A.T.; Abotsi, R.E.; Agoba, E.E. Antimicrobial resistance in the WHO African region: Current status and roadmap for action. J. Public Health 2017, 39, 8–13. [Google Scholar]
- Kelesidis, T.; Falagas, M.E. Substandard/counterfeit antimicrobial drugs. Clin. Microbiol. Rev. 2015, 28, 443–464. [Google Scholar] [PubMed]
- Ayukekbong, J.A.; Ntemgwa, M.; Atabe, A.N. The threat of antimicrobial resistance in developing countries: Causes and control strategies. Antimicrob. Resist. Infect. Control 2017, 6, 47. [Google Scholar] [PubMed]
- Yadesa, T.M.; Gudina, E.K.; Angamo, M.T. Antimicrobial Use-Related Problems and Predictors among Hospitalized Medical In-Patients in Southwest Ethiopia: Prospective Observational Study. PLoS ONE 2015, 10, e0138385. [Google Scholar]
- Gebeyehu, E.; Bantie, L.; Azage, M. Inappropriate Use of Antibiotics and Its Associated Factors among Urban and Rural Communities of Bahir Dar City Administration, Northwest Ethiopia. PLoS ONE 2015, 10, e0138179. [Google Scholar]
- Muhie, O.A. Antibiotic Use and Resistance Pattern in Ethiopia: Systematic Review and Meta-Analysis. Int. J. Microbiol. 2019, 2019, 2489063. [Google Scholar]
- Pauwels, I.; Versporten, A.; Drapier, N.; Vlieghe, E.; Goossens, H.; Global-PPS Network. Hospital antibiotic prescribing patterns in adult patients according to the WHO Access, Watch and Reserve classification (AWaRe): Results from a worldwide point prevalence survey in 69 countries. J. Antimicrob. Chemother. 2021, 76, 1614–1624. [Google Scholar]
- Berhe, D.F.; Beyene, G.T.; Seyoum, B.; Gebre, M.; Haile, K.; Tsegaye, M.; Boltena, M.T.; Tesema, E.; Kibret, T.C.; Biru, M.; et al. Prevalence of antimicrobial resistance and its clinical implications in Ethiopia: A systematic review. Antimicrob. Resist. Infect. Control 2021, 10, 168. [Google Scholar]
- Alhassan, J.A.K.; Abdallah, C.K. Health system interventions and responses to anti-microbial resistance: A scoping review of evidence from 15 African countries. PLOS Glob. Public Health 2024, 4, e0003688. [Google Scholar]
- WHO. WHO Releases the 2019 AWaRe Classification Antibiotics [Press Release]; WHO: Geneva, Switzerland, 2019. [Google Scholar]
- Ethiopian Food, Medicine and Healthcare Administration and Control Authority (FMHACA). Standard Treatment Guidelines for General Hospitals, Guidelines for General Hospitals, 3rd ed.; National Treatment Guideline; Ethiopian Food, Medicine and Healthcare Administration and Control Authority (FMHACA): Addis Ababa, Ethiopia, 2014. [Google Scholar]
- Tamma, P.D.; Miller, M.A.; Cosgrove, S.E. Rethinking How Antibiotics Are Prescribed: Incorporating the 4 Moments of Antibiotic Decision Making Into Clinical Practice. JAMA 2019, 321, 139–140. [Google Scholar]
- Crader, M.F.; Varacallo, M. Preoperative Antibiotic Prophylaxis. In StatPearls; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2024. [Google Scholar]
- Prestinaci, F.; Pezzotti, P.; Pantosti, A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog. Glob. Health 2015, 109, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Gashaw, M.; Gudina, E.K.; Ali, S.; Gabriele, L.; Seeholzer, T.; Alemu, B.; Froeschl, G.; Kroidl, A.; Wieser, A. Molecular characterization of carbapenem-resistance in Gram-negative isolates obtained from clinical samples at Jimma Medical Center, Ethiopia. Front. Microbiol. 2024, 15, 1336387. [Google Scholar] [CrossRef] [PubMed]
- Gashaw, M.; Ali, S.; Berhane, M.; Tesfaw, G.; Eshetu, B.; Workneh, N.; Seeholzer, T.; Froeschl, G.; Kroidl, A.; Wieser, A. Neonatal Sepsis Due to Multidrug-resistant Bacteria at a Tertiary Teaching Hospital in Ethiopia. Pediatr. Infect. Dis. J. 2024, 43, 687–693. [Google Scholar] [CrossRef] [PubMed]
- Gashaw, M.; Berhane, M.; Bekele, S.; Kibru, G.; Teshager, L.; Yilma, Y.; Ahmed, Y.; Fentahun, N.; Assefa, H.; Wieser, A.; et al. Emergence of high drug resistant bacterial isolates from patients with health care associated infections at Jimma University medical center: A cross sectional study. Antimicrob. Resist. Infect. Control 2018, 7, 138. [Google Scholar] [CrossRef]
- Capoor, M.R.; Nair, D. Quinolone and cephalosporin resistance in enteric Fever. J. Glob. Infect. Dis. 2010, 2, 258–262. [Google Scholar] [CrossRef]
- Alemayehu, T.; Ali, M.; Mitiku, E.; Hailemariam, M. The burden of antimicrobial resistance at tertiary care hospital, southern Ethiopia: A three years’ retrospective study. BMC Infect. Dis. 2019, 19, 585. [Google Scholar] [CrossRef]
- Kakkar, A.K.; Shafiq, N.; Singh, G.; Ray, P.; Gautam, V.; Agarwal, R.; Muralidharan, J.; Arora, P. Antimicrobial stewardship programs in resource constrained environments: Understanding and addressing the need of the systems. Front. Public Health 2020, 8, 140. [Google Scholar] [CrossRef]
- Cohn, J.; Mendelson, M.; Kanj, S.S.; Shafiq, N.; Boszczowski, I.; Laxminarayan, R. Accelerating antibiotic access and stewardship: A new model to safeguard public health. Lancet Infect. Dis. 2024, 24, e584–e590. [Google Scholar] [CrossRef]
- Levy-Hara, G.; Amábile-Cuevas, C.F.; Gould, I.; Hutchinson, J.; Abbo, L.; Saxynger, L.; Vlieghe, E.; Cardoso, F.L.; Methar, S.; Kanj, S.; et al. “Ten Commandments” for the Appropriate use of Antibiotics by the Practicing Physician in an Outpatient Setting. Front. Microbiol. 2011, 2, 230. [Google Scholar]
- Matuschek, E.; Copsey-Mawer, S.; Petersson, S.; Åhman, J.; Morris, T.E.; Kahlmeter, G. The European committee on antimicrobial susceptibility testing disc diffusion susceptibility testing method for frequently isolated anaerobic bacteria. Clin. Microbiol. Infect. 2023, 29, 795.e1–795.e7. [Google Scholar]
- Brink, A.J.; Messina, A.P.; Feldman, C.; Richards, G.A.; Becker, P.J.; Goff, D.A.; Bauer, K.A.; Nathwani, D.; van den Bergh, D.; Netcare Antimicrobial Stewardship Study Alliance. Antimicrobial stewardship across 47 South African hospitals: An implementation study. Lancet Infect. Dis. 2016, 16, 1017–1025. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.; Patodia, J.; Mittal, J.; Singh, Y.; Agnihotri, V.; Sharma, V. Antibiotic stewardship in a tertiary care NICU of northern India: A quality improvement initiative. BMJ Open Qual. 2021, 10 (Suppl. S1), e001470. [Google Scholar] [PubMed]
- Abbas, S. The challenges of implementing infection prevention and antimicrobial stewardship programs in resource-constrained settings. Antimicrob. Steward. Healthc. Epidemiol. 2024, 4, e45. [Google Scholar]
- Medic, D.; Bozic Cvijan, B.; Bajcetic, M. Impact of Antibiotic Consumption on Antimicrobial Resistance to Invasive Hospital Pathogens. Antibiotics 2023, 12, 259. [Google Scholar] [CrossRef] [PubMed]
- Damlin, A.; Sharma, M.; Marrone, G.; Stålsby Lundborg, C. Antibiotic prescribing among patients with severe infectious diseases in two private sector hospitals in Central India—A time series analysis over 10 years. BMC Infect. Dis. 2020, 20, 340. [Google Scholar] [CrossRef]
- Bassetti, S.; Tschudin-Sutter, S.; Egli, A.; Osthoff, M. Optimizing antibiotic therapies to reduce the risk of bacterial resistance. Eur. J. Intern. Med. 2022, 99, 7–12. [Google Scholar]
Variables | Number | Percent | |
---|---|---|---|
Sex | Female | 177 | 46.1 |
Male | 207 | 53.9 | |
Age | <2 months | 38 | 9.9 |
2 months–14 years | 113 | 29.4 | |
15–49 years | 180 | 46.9 | |
≥50 years | 53 | 13.8 | |
Residency | Urban | 134 | 34.9 |
Rural | 250 | 65.1 | |
Educational status | Cannot read and write | 130 | 33.9 |
No formal education but can read and write | 91 | 23.7 | |
Elementary School | 52 | 13.5 | |
High School | 45 | 11.7 | |
Above high school | 66 | 17.2 | |
Occupation | Farmer | 177 | 46.1 |
Civil servant (public employee) | 68 | 17.7 | |
Merchant | 40 | 10.4 | |
Student | 36 | 9.4 | |
Daily Laborer | 23 | 6.0 | |
Others | 40 | 10.4 | |
Ward of admission | Pediatrics | 96 | 25.5 |
Emergency room | 60 | 15.6 | |
Obstetrics and Gynecology | 49 | 12.8 | |
General surgery | 41 | 10.7 | |
NICU | 33 | 8.6 | |
Internal Medicine | 25 | 6.5 | |
Orthopedic | 23 | 6.0 | |
Ophthalmology | 23 | 6.0 | |
Oral and maxillofacial surgery | 19 | 4.9 | |
ICU | 15 | 3.9 | |
Underlying medical conditions | Diabetes mellitus | 12 | 3.1 |
Hypertension | 12 | 3.1 | |
Heart failure | 6 | 1.6 | |
HIV infection | 4 | 1.0 | |
Tuberculosis | 3 | 0.8 | |
Severe malnutrition | 3 | 0.8 | |
Others | 4 | 1.0 | |
Main reasons for admission | Elective surgery | 73 | 19.0 |
Abscess and skin/soft tissue infection | 38 | 9.9 | |
Complicated labor | 32 | 8.3 | |
Community-acquired pneumonia | 32 | 8.3 | |
Sepsis/septic shock | 31 | 8.1 | |
Bacterial meningitis | 24 | 6.3 | |
Eye disorders (including infections) | 23 | 6.0 | |
Acute abdomen | 20 | 5.2 | |
Heart failure | 18 | 4.7 | |
Trauma/injury | 15 | 3.9 | |
Diabetes mellitus/Hypertension/Stroke | 14 | 3.6 | |
Hyaline membrane diseases | 9 | 2.3 | |
Acute renal insufficiency | 8 | 2.1 | |
HIV/TB/Malaria | 9 | 2.3 | |
Airway obstruction (COPD/UAO) | 6 | 1.6 | |
Others i | 32 | 8.3 |
Indications | Number | Percent |
---|---|---|
Therapeutic | 270 | 70.3 |
Pneumonia | 62 | 16.1 |
Abscess and skin/soft tissue infection | 38 | 9.9 |
Sepsis/septic shock | 32 | 8.3 |
Bacterial meningitis | 27 | 7.0 |
Eye infection | 18 | 4.7 |
Perforated viscus/abdominal surgery/intestinal obstruction | 19 | 4.9 |
Urinary tract infection | 13 | 3.4 |
Trauma/injury | 11 | 2.9 |
Hyaline membrane disease (HMD) | 9 | 2.3 |
DM/heart failure/stroke | 9 | 2.3 |
Acute gastroenteritis (AGE) | 7 | 1.8 |
Others | 25 | 6.5 |
Prophylactic | 114 | 29.7 |
Surgical prophylaxis | 95 | 24.7 |
Complicated labor (prevention of peripartum infection) | 14 | 3.6 |
Rheumatic heart disease prophylaxis | 5 | 1.3 |
Antibiotic Class | Antimicrobial Agents | Route | Frequency of Regimen N (%) | DOTs Cumulative | DOTs/100 Patient Days |
---|---|---|---|---|---|
Penicillin | Ampicillin | IV | 54 (8.5) | 235 | 8.16 |
Amoxicillin-clavulanic acid | PO | 23 (3.6) | 34 | 1.18 | |
Cloxacillin | IV | 21 (3.3) | 100 | 3.47 | |
Amoxicillin | PO | 12 (1.9) | 35 | 1.22 | |
Penicillin | IV/IM | 7 (1.1) | 14 | 0.49 | |
Macrolide | Azithromycin | PO | 22 (3.5) | 107 | 3.72 |
Clarithromycin | PO | 1 (0.2) | 6 | 0.21 | |
Cephalosporins | Ceftriaxone | IV | 268 (42.3) | 1286 | 44.65 |
Cefalexin | PO | 4 (0.4) | 14 | 0.49 | |
Ceftazidime | IV | 1 (0.2) | 3 | 0.10 | |
Amphenicols | Chloramphenicol | IV | 20 (3.2) | 54 | 1.88 |
Quinolones/fluoroquinolones | Ciprofloxacin | IV/PO | 23 (3.6) | 126 | 4.38 |
Norfloxacin | PO | 3 (0.5) | 10 | 0.35 | |
Sulfonamides + Diaminopyrimidines | Trimethoprim-sulfamethoxazole | PO | 2 (0.3) | 7 | 0.24 |
Tetracyclines | Doxycycline | PO/IV | 9 (1.4) | 28 | 0.97 |
Aminoglycosides | Gentamicin | IV | 68 (10.7) | 313 | 10.87 |
Nitroimidazoles | Metronidazole | IV/PO | 86 (13.6) | 480 | 16.67 |
Glycopeptides | Vancomycin | IV | 10 (1.6) | 28 | 0.97 |
Indications | Antibiotics Regimen Used | N (%) | STG Recommendation |
---|---|---|---|
Neonatal sepsis (n = 32) | Ampicillin + gentamicin | 22 (68.7) | Ampicillin † (or Benzylpenicillin) PLUS Gentamicin † |
Ceftriaxone + gentamicin | 4 (12.5) | ||
Ceftriaxone | 2 (6.3) | ||
Ceftriaxone + metronidazole | 2 (6.3) | ||
Ampicillin + gentamicin + cloxacillin | 2 (6.3) | ||
Community-acquired severe pneumonia in adults (n = 34) | Ceftriaxone | 17 (28.3) | Ceftriaxone † (or Benzyl penicillin) PLUS Azithromycin † (or clarithromycin) |
Ceftriaxone + azithromycin | 15 (25.0) | ||
Ceftriaxone + doxycycline | 2 (3.2) | ||
Community-acquired bacterial meningitis (n = 27) | Ceftriaxone | 9 (33.3) | Ceftriaxone † PLUS Vancomycin † Alternative Benzyl penicillin PLUS chloramphenicol Add ampicillin in high risk for Listeria monocytogenes |
Ceftriaxone + vancomycin | 3 (11.1) | ||
Ceftriaxone + metronidazole | 3 (11.1) | ||
Ampicillin + gentamicin | 3 (11.1) | ||
Ampicillin + ceftriaxone + gentamicin | 1 (3.7) | ||
Ampicillin + gentamicin + cloxacillin | 1 (3.7) | ||
Ceftriaxone + doxycycline | 2 (7.4) | ||
Ceftriaxone + metronidazole + doxycycline | 1 (3.7) | ||
Ceftriaxone + metronidazole | 4 (14.9) | ||
Community-acquired urinary tract infection (n = 13) | Ceftriaxone | 5 (38.4) | Ciprofloxacin † or Norfloxacin† Alternative Trimethoprim-sulphamethoxazole OR Nitrofurantoin OR Ceftriaxone (for acute severe infection) |
Ciprofloxacin | 2 (15.4) | ||
Ceftriaxone + metronidazole | 1 (7.7) | ||
Cloxacillin | 1 (7.7) | ||
Cephalexin | 2 (15.4) | ||
Ceftriaxone + ciprofloxacin | 2 (15.4) | ||
Skin/soft tissue infections (excluding surgical site infection) (n = 33) | Ceftriaxone + cloxacillin | 7 (21.2) | Furuncle, carbuncle, folliculitis, impetigo Cloxacillin † Alternative (Erythromycin or cephalexin) Cellulitis and Erysipelas Procaine Penicillin † Alternative Cloxacillin OR Erythromycin OR Cephalexin |
Ceftriaxone | 6 (18.2) | ||
Amoxicillin/clavulanic acid | 6 (18.2) | ||
Ceftriaxone + metronidazole + chloramphenicol | 4 (12.1) | ||
Ampicillin + chloramphenicol | 3 (9.1) | ||
Cloxacillin + chloramphenicol | 3 (9.1) | ||
Ceftriaxone + metronidazole + chloramphenicol | 2 (6.1) | ||
Ceftriaxone + metronidazole | 1 (3.0) | ||
Cloxacillin | 1 (3.0) | ||
Perioperative prophylaxis (n = 94) | Ceftriaxone | 65 (68.4) | Cefazolin †, unless specified |
Ceftriaxone + metronidazole | 22 (23.2) | ||
Ceftriaxone + gentamicin | 3 (3.2) | ||
Ciprofloxacin | 2 (2.1) | ||
Ampicillin | 1 (1.1) | ||
Ampicillin + chloramphenicol | 1 (1.1) | ||
Ceftriaxone + cloxacillin | 1 (1.1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gashaw, M.; Berhane, M.; Bekele, S.; Melaku, T.; Lemmi, G.; Chelkeba, L.; Wakjira, T.; Tesfaw, G.; Mekonnen, Z.; Kroidl, A.; et al. Antibiotic Use Patterns at Jimma Medical Center in Southwest Ethiopia: A Call for Local Antibiogram-Guided Prescription. J. Clin. Med. 2025, 14, 2413. https://doi.org/10.3390/jcm14072413
Gashaw M, Berhane M, Bekele S, Melaku T, Lemmi G, Chelkeba L, Wakjira T, Tesfaw G, Mekonnen Z, Kroidl A, et al. Antibiotic Use Patterns at Jimma Medical Center in Southwest Ethiopia: A Call for Local Antibiogram-Guided Prescription. Journal of Clinical Medicine. 2025; 14(7):2413. https://doi.org/10.3390/jcm14072413
Chicago/Turabian StyleGashaw, Mulatu, Melkamu Berhane, Sisay Bekele, Tsegaye Melaku, Gemechu Lemmi, Legese Chelkeba, Tekle Wakjira, Getnet Tesfaw, Zeleke Mekonnen, Arne Kroidl, and et al. 2025. "Antibiotic Use Patterns at Jimma Medical Center in Southwest Ethiopia: A Call for Local Antibiogram-Guided Prescription" Journal of Clinical Medicine 14, no. 7: 2413. https://doi.org/10.3390/jcm14072413
APA StyleGashaw, M., Berhane, M., Bekele, S., Melaku, T., Lemmi, G., Chelkeba, L., Wakjira, T., Tesfaw, G., Mekonnen, Z., Kroidl, A., Wieser, A., Froeschl, G., Seeholzer, T., Ali, S., & Gudina, E. K. (2025). Antibiotic Use Patterns at Jimma Medical Center in Southwest Ethiopia: A Call for Local Antibiogram-Guided Prescription. Journal of Clinical Medicine, 14(7), 2413. https://doi.org/10.3390/jcm14072413