Neuroinflammation at the Neuroforamina and Spinal Cord in Patients with Painful Cervical Radiculopathy and Pain-Free Participants: An [11C]DPA713 PET/CT Proof-of-Concept Study
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Clinical Assessment, Physical Examination, and Questionnaires
2.3. Scanning Protocol, Image Segmentation, and Kinetic Analysis
2.4. Sample Size
2.5. Statistical Analysis
3. Results
3.1. Participants
3.2. Levels of Neuroinflammation in Patients with Cervical Radiculopathy Compared with Pain-Free Participants
3.3. Association Between Neuroinflammation and Clinical Parameters
4. Discussion
4.1. Comparison with Existing Literature
4.2. Clinical Considerations
4.3. Limitations and Further Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Data Collection
Appendix A
Neuroforamina | 1T2k VT | p-Value | 1T2k_WB VT | p-Value | Logan VT | p Value |
---|---|---|---|---|---|---|
Age | −0.30 (0.13) | 0.39 | 0.39 (0.09) | 0.20 | −0.15 (0.15) | 0.65 |
Sex | 0.14 (3.11) | 0.69 | −0.27 (1.98) | 0.38 | 0.19 (3.49) | 0.54 |
BMI | −0.30 (0.45) | 0.37 | 0.06 (0.29) | 0.85 | −0.19 (0.54) | 0.54 |
hsCRP (mg/L) | −0.13 (0.14) | 0.71 | 0.05 (0.010 | 0.89 | 0.01 (0.17) | 0.98 |
Physical Activity (IPAQ) | 0.24 (0.01) | 0.49 | 0.45 (0.00) | 0.12 | 0.28 (0.01) | 0.37 |
Kinesiophobia (TSK-11, 0–44) | −0.40 (0.19) | 0.22 | −0.07 (0.14) | 0.81 | −0.50 (0.20) | 0.09 |
Anxiety (DASS21, 0–21) | 0.04 (0.40) | 0.91 | 0.77 (0.19) | 0.01 | 0.03 (0.45) | 0.94 |
Depression (DASS21, 0–21) | 0.02 (0.28) | 0.96 | 0.26 (0.19) | 0.37 | −0.13 (0.32) | 0.67 |
Stress (DASS21, 0–21) | 0.14 (0.40) | 0.68 | 0.56 (0.21) | 0.04 | −0.09 (0.44) | 0.77 |
Sleep (PSQI, 0–21) | −0.05 (0.19) | 0.89 | 0.35 (0.12) | 0.24 | −0.12 (0.21) | 0.69 |
Neck pain intensity (VAS 0–100) | 0.21 (0.08) | 0.52 | 0.30 (0.04) | 0.34 | 0.48 (0.08) | 0.11 |
Arm pain intensity (VAS 0–100) | 0.12 (0.07) | 0.75 | 0.44 (0.00) | 0.87 | 0.35 (0.07) | 0.29 |
Likelihood of central sensitisation (CSI, 0–100) | −0.19 (0.09) | 0.56 | 0.21 (0.05) | 0.49 | −0.14 (0.10) | 0.66 |
Likelihood of neuropathic pain (PainDetect, 0–30) | 0.36 (0.23) | 0.30 | 0.60 (0.14) | 0.04 | 0.47 (0.25) | 0.14 |
Cervical range of rotation affected side | −0.04 (0.12) | 0.91 | −0.63 (0.07) | 0.04 | −0.03 (0.14) | 0.93 |
Cervical range of rotation unaffected side | 0.29 (0.10) | 0.39 | −0.55 (0.06) | 0.10 | 0.23 (0.12) | 0.46 |
Pain at maximal cervical rotation affected side | 0.40 (0.06) | 0.22 | 0.52 (0.03) | 0.12 | 0.49 (0.06) | 0.10 |
Pain at maximal cervical rotation VAS unaffected side | 0.38 (0.05) | 0.26 | 0.27 (0.04) | 0.44 | 0.54 (0.05) | 0.07 |
PPT trapezius affected side | −0.53 (0.01) | 0.09 | −0.14 (0.01) | 0.65 | −0.67 (0.01) | 0.02 |
PPT trapezius unaffected side | −0.45 (0.01) | 0.17 | −0.08 (0.01) | 0.81 | −0.67 (0.01) | 0.02 |
PPT tibialis anterior muscle | −0.43 (0.01) | 0.19 | 0.02 (0.00) | 0.94 | 0.61 (0.01) | 0.03 |
Spinal Cord | 1T2k VT | p-Value | 1T2k_WB VT | p-Value | Logan VT | p Value |
---|---|---|---|---|---|---|
Age | 0.07 (0.19) | 0.82 | 0.64 (0.13) | 0.83 | −0.12 (0.17) | 0.71 |
Sex | −0.27 (4.23) | 0.29 | −0.46 (2.77) | 0.12 | −0.02 (3.85) | 0.96 |
BMI | 0.01 (0.67) | 0.99 | 0.15 (0.43) | 0.60 | −0.08 (0.55) | 0.81 |
hsCRP (mg/L) | −0.07 (0.21) | 0.84 | 0.02 (0.15) | 0.95 | −0.15 (0.17) | 0.66 |
Physical Activity (IPAQ) | −0.19 (−0.65) | 0.53 | 0.02 (0.21) | 0.95 | −0.40 (0.22) | 0.20 |
Kinesiophobia (TSK-11, 0–44) | 0.16 (0.55) | 0.63 | 0.65 (0.31) | 0.01 | 0.15 (0.45) | 0.64 |
Anxiety (DASS21, 0–21) | −0.08 (0.40) | 0.79 | 0.18 (0.29) | 0.55 | −0.01 (0.62) | 0.97 |
Depression (DASS21, 0–21) | 0.16 (0.54) | 0.61 | 0.54 (0.31) | 0.05 | 0.10 (0.44) | 0.76 |
Stress (DASS21, 0–21) | 0.01 (0.26) | 0.99 | 0.17 (0.19) | 0.56 | −0.03 (0.23) | 0.93 |
Sleep (PSQI, 0–21) | 0.26 (0.01) | 0.40 | 0.46 (0.00) | 0.10 | 0.25 (0.01) | 0.44 |
Neck pain intensity (VAS 0–100) | 0.16 (0.25) | 0.63 | 0.23 (0.17) | 0.45 | 0.06 (0.21) | 0.85 |
Arm pain intensity (VAS 0–100) | 0.07 (0.11) | 0.82 | 0.13 (0.07) | 0.66 | 0.23 (0.09) | 0.47 |
Likelihood of central sensitisation (CSI, 0–100) | 0.93 (0.00) | 0.99 | 0.30 (0.32) | 0.80 | 0.96 (0.11) | 0.32 |
Likelihood of neuropathic pain (PainDetect, 0–30) | −0.25 (0.12) | 0.41 | 0.14 (0.08) | 0.63 | −0.28 (0.09) | 0.39 |
Cervical range of rotation affected side | 0.28 (0.33) | 0.38 | 0.48 (0.23) | 0.12 | 0.42 (0.26) | 0.21 |
Cervical range of rotation unaffected side | −0.44 (0.16) | 0.17 | −0.45 (0.10) | 0.13 | −0.26 (0.12) | 0.43 |
Pain at maximal cervical rotation affected side | −0.14 (0.15) | 0.65 | −0.23 (0.10) | 0.45 | 0.14 (0.12) | 0.67 |
Pain at maximal cervical rotation VAS unaffected side | 0.53 (0.07) | 0.07 | 0.57 (0.05) | 0.04 | 0.37 (0.06) | 0.24 |
PPT trapezius affected side | 0.49 (0.07) | 0.09 | 0.43 (0.05) | 0.14 | 0.49 (0.06) | 0.10 |
PPT trapezius unaffected side | −0.15 (0.01) | 0.64 | 0.13 (0.01) | 0.68 | −0.25 (0.01) | 0.44 |
PPT tibialis anterior muscle | −0.11 (0.01) | 0.73 | 0.15 (0.01) | 0.63 | −0.26 (0.01) | 0.43 |
PPT tibialis anterior muscle | −0.12 (0.01) | 0.70 | 0.15 (0.01) | 0.63 | −0.17 (0.01) | 0.61 |
References
- Rihn, J.A.; Bhat, S.; Grauer, J.; Harrop, J.; Ghogawala, Z.; Vaccaro, A.R.; Hilibrand, A.S. Economic and Outcomes Analysis of Recalcitrant Cervical Radiculopathy: Is Nonsurgical Management or Surgery More Cost-Effective? J. Am. Acad. Orthop. Surg. 2019, 27, 533–540. [Google Scholar] [PubMed]
- Bogduk, N. On the definitions and physiology of back pain, referred pain, and radicular pain. Pain 2009, 147, 17–19. [Google Scholar]
- Näkki, A.; Battié, M.C.; Kaprio, J. Genetics of disc-related disorders: Current findings and lessons from other complex diseases. Eur. Spine J. 2014, 23, 354–363. [Google Scholar] [CrossRef] [PubMed]
- Abbed, K.M.; Coumans, J.-V.C. Cervical radiculopathy: Pathophysiology, presentation, and clinical evaluation. Neurosurgery 2007, 60, S1–S28. [Google Scholar]
- Woods, B.I.; Hilibrand, A.S. Cervical radiculopathy: Epidemiology, etiology, diagnosis, and treatment. J. Spinal Disord. Tech. 2015, 28, E251–E259. [Google Scholar]
- Javanshir, N.; Salehpour, F.; Aghazadeh, J.; Mirzaei, F.; Alavi, S.A.N. The distribution of infection with Propionibacterium acnes is equal in patients with cervical and lumbar disc herniation. Eur. Spine J. 2017, 26, 3135–3140. [Google Scholar] [PubMed]
- Dahlin, L.B.; Lundborg, G. The neurone and its response to peripheral nerve compression. J. Hand Surg. 1990, 15, 5–10. [Google Scholar]
- Chen, Y.; Wang, X.; Zhang, X.; Ren, H.; Huang, B.; Chen, J.; Liu, J.; Shan, Z.; Zhu, Z.; Zhao, F. Low virulence bacterial infections in cervical intervertebral discs: A prospective case series. Eur. Spine J. 2018, 27, 2496–2505. [Google Scholar] [CrossRef]
- Hu, P.; Bembrick, A.L.; Keay, K.A.; McLachlan, E.M. Immune cell involvement in dorsal root ganglia and spinal cord after chronic constriction or transection of the rat sciatic nerve. Brain Behav. Immun. 2007, 21, 599–616. [Google Scholar]
- Mosconi, T.; Kruger, L. Fixed-diameter polyethylene cuffs applied to the rat sciatic nerve induce a painful neuropathy: Ultrastructural morphometric analysis of axonal alterations. Pain 1996, 64, 37–57. [Google Scholar]
- Austin, P.J.; Moalem-Taylor, G. The neuro-immune balance in neuropathic pain: Involvement of inflammatory immune cells, immune-like glial cells and cytokines. J. Neuroimmunol. 2010, 229, 26–50. [Google Scholar] [PubMed]
- Du, Z.; Yin, S.; Song, X.; Zhang, L.; Yue, S.; Jia, X.; Zhang, Y. Identification of Differentially Expressed Genes and Key Pathways in the Dorsal Root Ganglion After Chronic Compression. Front. Mol. Neurosci. 2020, 13, 71. [Google Scholar]
- Huang, Z.-J.; Song, W.B.; Song, X.-S.; Fuhr, A.F.; Rosner, A.L.; Ndtan, H.; Rupert, R.L. Attenuation Effect of Spinal Manipulation on Neuropathic and Postoperative Pain Through Activating Endogenous Anti-Inflammatory Cytokine Interleukin 10 in Rat Spinal Cord. J. Manip. Physiol. Ther. 2016, 39, 42–53. [Google Scholar]
- Schipholt, I.J.L.; Coppieters, M.W.; Meijer, O.G.; Tompra, N.; de Vries, R.B.M.; Scholten-Peeters, G.G.M. Effects of joint and nerve mobilisation on neuroimmune responses in animals and humans with neuromusculoskeletal conditions: A systematic review and meta-analysis. Pain Rep. 2021, 6, e927. [Google Scholar] [CrossRef] [PubMed]
- Grace, P.M.; Hutchinson, M.R.; Maier, S.F.; Watkins, L.R. Pathological pain and the neuroimmune interface. Nat. Rev. Immunol. 2014, 14, 217–231. [Google Scholar] [CrossRef]
- Ellis, A.; Bennett, D.L.H. Neuroinflammation and the generation of neuropathic pain. Br. J. Anaesth. 2013, 111, 26–37. [Google Scholar]
- Lim, J.S.; Kam, P.C. Neuroimmune mechanisms of pain: Basic science and potential therapeutic modulators. Anaesth. Intensive Care 2020, 48, 167–178. [Google Scholar]
- Malcangio, M. Role of the immune system in neuropathic pain. Scand. J. Pain 2019, 20, 33–37. [Google Scholar]
- Schmid, A.B.; Coppieters, M.W.; Ruitenberg, M.J.; McLachlan, E.M. Local and remote immune-mediated inflammation after mild peripheral nerve compression in rats. J. Neuropathol. Exp. Neurol. 2013, 72, 662–680. [Google Scholar]
- Xanthos, D.N.; Sandkühler, J. Neurogenic neuroinflammation: Inflammatory CNS reactions in response to neuronal activity. Nat. Rev. Neurosci. 2014, 15, 43–53. [Google Scholar]
- Jaggi, A.S.; Jain, V.; Singh, N. Animal models of neuropathic pain. Fundam. Clin. Pharmacol. 2011, 25, 1–28. [Google Scholar] [PubMed]
- Moalem, G.; Tracey, D.J. Immune and inflammatory mechanisms in neuropathic pain. Brain Res. Rev. 2006, 51, 240–264. [Google Scholar]
- Schmid, A.B.; Nee, R.J.; Coppieters, M.W. Reappraising entrapment neuropathies–mechanisms, diagnosis and management. Man. Ther. 2013, 18, 449–457. [Google Scholar] [PubMed]
- Albrecht, D.S.; Ahmed, S.U.; Kettner, N.W.; Borra, R.J.; Cohen-Adad, J.; Deng, H.; Houle, T.T.; Opalacz, A.; Roth, S.A.; Melo, M.F.V.; et al. Neuroinflammation of the spinal cord and nerve roots in chronic radicular pain patients. Pain 2018, 159, 968–977. [Google Scholar]
- Shimosegawa, E.; Matsunaga, K.; Hatazawa, J. Relevance of spinal neuroinflammation to neuropathic pain: An exploratory clinical study evaluated by 11C-DPA-713 PET and TSPO-related biomarkers. J. Nucl. Med. 2019, 60, 1487. [Google Scholar]
- Lutke Schipholt, I.J.; Scholten-Peeters, G.G.M.; Koop, M.A.; Coppieters, M.W.; Boellaard, R.; van de Giessen, E.; ter Meulen, B.C.; Coenen, M.; Vleggeert-Lankamp, C.; Depaauw, P.R.; et al. Quantification of neuroinflammation in spinal cord and neuroforamina in patients with painful cervical radiculopathy using [11C]-DPA713 PET-CT. 2024. submitted for publication. [Google Scholar]
- Loggia, M.L. “Neuroinflammation”: Does it have a role in chronic pain? Evidence from human imaging. Pain 2024, 165, S58–S67. [Google Scholar]
- Elm, E.v.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P.; Initiative, S.T.O.E. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. J. Clin. Epidemiol. 2008, 61, 344–349. [Google Scholar]
- Lam, K.N.; Heneghan, N.R.; Mistry, J.; Ojoawo, A.O.; Peolsson, A.; Verhagen, A.P.; Tampin, B.; Thoomes, E.; Jull, G.; -Peeters, G.G.S.; et al. Classification criteria for cervical radiculopathy: An international e-Delphi study. Musculoskelet. Sci. Pract. 2022, 61, 102596. [Google Scholar]
- Owen, D.R.; Guo, Q.; Rabiner, E.A.; Gunn, R.N. The impact of the rs6971 polymorphism in TSPO for quantification and study design. Clin. Transl. Imaging 2015, 3, 417–422. [Google Scholar]
- Jorritsma, W.; de Vries, G.E.; Dijkstra, P.U.; Geertzen, J.H.B.; Reneman, M.F. Neck Pain and Disability Scale and Neck Disability Index: Validity of Dutch language versions. Eur. Spine J. 2012, 21, 93–100. [Google Scholar]
- Freynhagen, R.; Baron, R.; Gockel, U.; Tölle, T.R. painDETECT: A new screening questionnaire to identify neuropathic components in patients with back pain. Curr. Med. Res. Opin. 2006, 22, 1911–1920. [Google Scholar]
- Shaygan, M.; Böger, A.; Kröner-Herwig, B. Clinical features of chronic pain with neuropathic characteristics: A symptom-based assessment using the pain DETECT questionnaire. Eur. J. Pain 2013, 17, 1529–1538. [Google Scholar] [PubMed]
- Neblett, R.; Cohen, H.; Choi, Y.; Hartzell, M.M.; Williams, M.; Mayer, T.G.; Gatchel, R.J. The Central Sensitization Inventory (CSI): Establishing clinically significant values for identifying central sensitivity syndromes in an outpatient chronic pain sample. J. Pain 2013, 14, 438–445. [Google Scholar] [PubMed]
- Kregel, J.; Vuijk, P.J.; Descheemaeker, F.; Keizer, D.; van der Noord, R.; Nijs, J.; Cagnie, B.; Meeus, M.; van Wilgen, P. The Dutch Central Sensitization Inventory (CSI): Factor Analysis, Discriminative Power, and Test-Retest Reliability. Clin. J. Pain 2016, 32, 624–630. [Google Scholar] [PubMed]
- Healey, E.L.; Allen, K.D.; Bennell, K.; Bowden, J.L.; Quicke, J.G.; Smith, R. Self-Report Measures of Physical Activity. Arthritis Care Res. 2020, 72, 717–730. [Google Scholar]
- Lee, P.H.; Macfarlane, D.J.; Lam, T.H.; Stewart, S.M. Validity of the international physical activity questionnaire short form (IPAQ-SF): A systematic review. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 115. [Google Scholar]
- Buysse, D.J.; Reynolds, C.F., III; Monk, T.H.; Berman, S.R.; Kupfer, D.J. The Pittsburgh sleep quality index: A new instrument for psychiatric practice and research. Psychiatry Res. 1989, 28, 193–213. [Google Scholar]
- Whibley, D.; AlKandari, N.; Kristensen, K.; Barnish, M.; Rzewuska, M.; Druce, K.L.; Tang, N.K.Y. Sleep and Pain: A Systematic Review of Studies of Mediation. Clin. J. Pain 2019, 35, 544–558. [Google Scholar]
- Smith, M.T.; Wegener, S.T. Measures of sleep: The Insomnia Severity Index, Medical Outcomes Study (MOS) Sleep Scale, Pittsburgh Sleep Diary (PSD), and Pittsburgh Sleep Quality Index (PSQI). Arthritis Care Res. 2003, 49, S184–S196. [Google Scholar]
- Sleijser-Koehorst, M.L.S.; Bijker, L.; Cuijpers, P.; Scholten-Peeters, G.G.M.; Coppieters, M.W. Preferred self-administered questionnaires to assess fear of movement, coping, self-efficacy, and catastrophizing in patients with musculoskeletal pain-A modified Delphi study. Pain 2019, 160, 600–606. [Google Scholar] [CrossRef] [PubMed]
- Bijker, L.; Sleijser-Koehorst, M.; Coppieters, M.; Cuijpers, P.; Scholten-Peeters, G. Preferred Self-Administered Questionnaires to Assess Depression, Anxiety and Somatization in People With Musculoskeletal Pain—A Modified Delphi Study. J. Pain 2019, 21, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Weermeijer, J.D.; Meulders, A. Clinimetrics: Tampa Scale for Kinesiophobia. J. Physiother. 2018, 64, 126. [Google Scholar] [CrossRef] [PubMed]
- Wainner, R.S.; Fritz, J.M.; Irrgang, J.J.; Boninger, M.L.; Delitto, A.; Allison, S. Reliability and diagnostic accuracy of the clinical examination and patient self-report measures for cervical radiculopathy. Spine 2003, 28, 52–62. [Google Scholar] [CrossRef]
- Vanderweeën, L.; Oostendorp, R.; Vaes, P.; Duquet, W. Pressure algometry in manual therapy. Man. Ther. 1996, 1, 258–265. [Google Scholar] [CrossRef]
- Kobayashi, M.; Jiang, T.; Telu, S.; Zoghbi, S.S.; Gunn, R.N.; Rabiner, E.A.; Owen, D.R.; Guo, Q.; Pike, V.W.; Innis, R.B.; et al. (11)C-DPA-713 has much greater specific binding to translocator protein 18 kDa (TSPO) in human brain than (11)C-( R)-PK11195. J. Cereb. Blood Flow. Metab. 2018, 38, 393–403. [Google Scholar] [CrossRef]
- Kagitani-Shimono, K.; Kato, H.; Kuwayama, R.; Tominaga, K.; Nabatame, S.; Kishima, H.; Hatazawa, J.; Taniike, M. Clinical evaluation of neuroinflammation in child-onset focal epilepsy: A translocator protein PET study. J. Neuroinflammation 2021, 18, 8. [Google Scholar] [CrossRef]
- Yaqub, M.; Verweij, N.J.; Pieplenbosch, S.; Boellaard, R.; Lammertsma, A.A.; van der Laken, C.J. Quantitative Assessment of Arthritis Activity in Rheumatoid Arthritis Patients Using [(11)C]DPA-713 Positron Emission Tomography. Int. J. Mol. Sci. 2020, 21, 3137. [Google Scholar] [CrossRef]
- Fujita, M.; Kobayashi, M.; Ikawa, M.; Gunn, R.N.; Rabiner, E.A.; Owen, D.R.; Zoghbi, S.S.; Haskali, M.B.; Telu, S.; Pike, V.W.; et al. Comparison of four 11C-labeled PET ligands to quantify translocator protein 18 kDa (TSPO) in human brain: (R)-PK11195, PBR28, DPA-713, and ER176—Based on recent publications that measured specific-to-non-displaceable ratios. EJNMMI Res. 2017, 7, 84. [Google Scholar] [CrossRef]
- Boellaard, R. Quantitative oncology molecular analysis suite: ACCURATE. J. Nucl. Med. 2018, 59, 1753. [Google Scholar]
- Burggraaff, C.N.; Rahman, F.; Kaßner, I.; Pieplenbosch, S.; Barrington, S.F.; Jauw, Y.W.; Zwezerijnen, G.J.; Müller, S.; Hoekstra, O.S.; Zijlstra, J.M.; et al. Optimizing Workflows for Fast and Reliable Metabolic Tumor Volume Measurements in Diffuse Large B Cell Lymphoma. Mol. Imaging Biol. 2020, 22, 1102–1110. [Google Scholar] [CrossRef] [PubMed]
- Zanotti-Fregonara, P.; Chen, K.; Liow, J.-S.; Fujita, M.; Innis, R.B. Image-derived input function for brain PET studies: Many challenges and few opportunities. J. Cereb. Blood Flow. Metab. 2011, 31, 1986–1998. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. The earth is round (p < 0.05). Am. Psychol. 1994, 49, 997–1003. [Google Scholar]
- Finnerup, N.B.; Kuner, R.; Jensen, T.S. Neuropathic Pain: From Mechanisms to Treatment. Physiol. Rev. 2021, 101, 259–301. [Google Scholar] [CrossRef]
- Zanderigo, F.; Ogden, R.T.; Parsey, R.V. Reference region approaches in PET: A comparative study on multiple radioligands. J. Cereb. Blood Flow. Metab. 2013, 33, 888–897. [Google Scholar] [CrossRef]
- Banati, R.B.; Cagnin, A.; Brooks, D.J.; Gunn, R.N.; Myers, R.; Jones, T.; Birch, R.; Anand, P. Long-term trans-synaptic glial responses in the human thalamus after peripheral nerve injury. Neuroreport 2001, 12, 3439–3442. [Google Scholar] [CrossRef]
- Sleijser-Koehorst, M.L.S.; Koop, M.A.; Coppieters, M.W.; Schipholt, I.J.L.; Radisic, N.; Hooijmans, C.R.; Scholten-Peeters, G.G.M. The effects of aerobic exercise on neuroimmune responses in animals with traumatic peripheral nerve injury: A systematic review with meta-analyses. J. Neuroinflammation 2023, 20, 104. [Google Scholar] [CrossRef]
- Raghavendra, V.; Tanga, F.; DeLeo, J.A. Inhibition of microglial activation attenuates the development but not existing hypersensitivity in a rat model of neuropathy. J. Pharmacol. Exp. Ther. 2003, 306, 624–630. [Google Scholar] [CrossRef]
- Anderberg, L.; Annertz, M.; Persson, L.; Brandt, L.; Säveland, H. Transforaminal steroid injections for the treatment of cervical radiculopathy: A prospective and randomised study. Eur. Spine J. 2007, 16, 321–328. [Google Scholar] [CrossRef]
- Cohen, S.P.; Hayek, S.; Semenov, Y.; Pasquina, P.F.; White, R.L.; Veizi, E.; Huang, J.H.Y.; Kurihara, C.; Zhao, Z.; Guthmiller, K.B.; et al. Epidural steroid injections, conservative treatment, or combination treatment for cervical radicular pain: A multicenter, randomized, comparative-effectiveness study. Anesthesiology 2014, 121, 1045–1055. [Google Scholar] [CrossRef]
- Hong, J.Y.; Park, J.-S.; Suh, S.-W.; Yang, J.-H.; Park, S.-Y.; Kim, B.T. Transforaminal epidural steroid injections in cervical spinal disease with moderate to severe disability: Comparative study in patients with or without surgery. Medicine 2020, 99, e19266. [Google Scholar] [CrossRef] [PubMed]
- Lesnak, J.B.; Sluka, K.A. Mechanism of exercise-induced analgesia: What we can learn from physically active animals. Pain Rep. 2020, 5, e850. [Google Scholar] [PubMed]
- Salniccia, F.; de Vidania, S.; Martinez-Caro, L. Peripheral and central changes induced by neural mobilization in animal models of neuropathic pain: A systematic review. Front. Neurol. 2023, 14, 1289361. [Google Scholar] [CrossRef]
- Verweij, N.J.F.; de Jongh, J.; ter Wee, M.M.; Zwezerijnen, G.J.; Yaqub, M.; Voskuyl, A.E.; Lammertsma, A.A.; van Schaardenburg, D.; Boers, M.; Lems, W.F.; et al. Whole-Body Macrophage Positron Emission Tomography Imaging for Disease Activity Assessment in Early Rheumatoid Arthritis. J. Rheumatol. 2022, 49, 871–877. [Google Scholar]
- Alshelh, Z.; Brusaferri, L.; Saha, A.; Morrissey, E.; Knight, P.; Kim, M.; Zhang, Y.; Hooker, J.M.; Albrecht, D.; Torrado-Carvajal, A.; et al. Neuroimmune signatures in chronic low back pain subtypes. Brain 2022, 145, 1098–1110. [Google Scholar]
- Albrecht, D.S.; Kim, M.; Akeju, O.; Torrado-Carvajal, A.; Edwards, R.R.; Zhang, Y.; Bergan, C.; Protsenko, E.; Kucyi, A.; Wasan, A.D.; et al. The neuroinflammatory component of negative affect in patients with chronic pain. Mol. Psychiatry 2021, 26, 864–874. [Google Scholar] [PubMed]
- Loggia, M.L.; Chonde, D.B.; Akeju, O.; Arabasz, G.; Catana, C.; Edwards, R.R.; Hill, E.; Hsu, S.; Izquierdo-Garcia, D.; Ji, R.-R.; et al. Evidence for brain glial activation in chronic pain patients. Brain 2015, 138, 604–615. [Google Scholar]
- Banati, R.B. Brain plasticity and microglia: Is transsynaptic glial activation in the thalamus after limb denervation linked to cortical plasticity and central sensitisation? J. Physiol. 2002, 96, 289–299. [Google Scholar] [CrossRef]
Clinical Assessment | Physical Examination and Questionnaire | Description |
---|---|---|
Pain intensity | Visual analogue scale (VAS) | The VAS for pain is a commonly used assessment tool in healthcare to measure a patient’s pain intensity. It consists of a straight line, typically 10 centimetres in length, with “no pain” at one end and “worst pain imaginable” at the other. Participants are asked to mark the point on the line that corresponds to the intensity of their pain, providing a subjective but quantifiable measure of their discomfort. The mean pain intensity of the last 24 h was recorded. |
Neck disability | Neck disability questionnaire (NDI) | The NDI consists of ten items: pain intensity, personal care, lifting, reading, headaches, concentration, work, driving, sleeping, and recreation. Each item has six different assertions expressing progressive levels of pain or limitation in activities. Item scores range from 0 (no pain or limitation) to 5 (as much pain as possible or maximal limitation). The total NDI score ranges from 0 to 50 points. Higher scores indicate greater disability. The Dutch version of the NDI has been shown to be a valid and responsive measure of disability [31]. |
Likelihood of neuropathic pain | painDETECT (PD-Q) | The PD-Q is a simple tool to predict the likelihood of a neuropathic pain component being present in persistent pain patients [32]. The persistent pain will be categorized into two-mechanism based groups: nociceptive and neuropathic using the PD-Q [33]. The PD-Q is a reliable screening tool with high sensitivity and specificity [32]. The questionnaire consists of 7 questions regarding the graduation of pain, pain course pattern, and radiating pain. The result score of the painDETECT will be used on a continuous scale. |
Likelihood of Central Sensitisation | Central Sensitisation Inventory (CSI) | The CSI is a self-report screening instrument to help identify patients with central sensitivity syndromes. A cut-off score of 40 out of 100 best distinguishes between central sensitivity disorders and a non-patient comparison with a sensitivity of 81% and specificity of 75% [34]. The Dutch Central Sensitization Inventory (CSI) questionnaire has good internal consistency, good discriminative power, and excellent test-retest reliability [35]. The result score of the CSI will be used on a continuous scale. |
Physical activity | International Physical Activity Questionnaire—short form (IPAQ) | The IPAQ is an internationally recognized questionnaire to measure physical activity [36]. The short form of the IPAQ consists of seven items that are used to estimate the total amount of physical activity expressed in metabolic equivalent minutes per week and time spent sitting [37]. |
Sleep quality | Pittsburg Sleep Quality Index (PSQI) | The PSQI measures subjective sleep quality [38] and is frequently used in pain research [39,40]. |
Depressive, anxiety, and stress symptoms | Depression, Anxiety, Stress Scale (DASS21) | The DASS21 is the preferred questionnaire to assess depression, anxiety, stress, and fear of movement in musculoskeletal pain [41,42]. |
Kinesiophobia | Tampa Scale for Kinesiophobia (TSK-11) | The TSK-11 assess fear of movement- related pain and had an acceptable to excellent inter-consistency and high test-retest reliability [43]. To evaluate fear of movement in individuals with musculoskeletal pain, the TSK-11 is recommended [41]. |
Myotome | n/a | C4: shoulder elevation; C5 Shoulder abduction; C6 flexion elbow; C7 Extension elbow; C8: wrist extension; Th1: adduction thumb/ spreading fingers. Muscle strength was scored using the Medical Research Council (MRC 0–5) scale for muscle strength. It was recorded if a patient had an MRC score less than normal (5 = normal). |
Reflexes | n/a | Biceps brachii, triceps brachii reflexes. It was recorded if a patient had a hyporeflexia graded on a scale of −4 (absent) to +4 (continuous clonus) |
Gnostic and vital sensibility | n/a | The gnostic sensibility was assessed by gently brushing the skin area, while vital sensibility was evaluated with the use of a sharp skin roller. Any loss of sensation according to a dermatomal pattern in a participant was documented. |
Upper Limb Tension Test | ULTT1 | The ULTT1 is designed to stress the median nerve, the anterior interosseous nerve, and the nerve roots of C5 to C7. It involves positioning the patient with their affected arm abducted, wrist and fingers extended, while the examiner laterally flexes the patient’s neck to the opposite side, looking for any reproduction of symptoms along the nerve pathway[44]. |
Pressure Pain Threshold | PPT | The pressure pain threshold is defined as the amount of pressure required for the pressure sensation to first change to pain[45]. A baseline algometry was used to measure PPT levels. The electronic algometer (Somedic AB, FArsta, Sweden) consists of a 1-cm2 rubber, approximally 50 kPa/s increase in force was given. Subjects are instructed to press a button attached to the algometer when the sensation changed from pressure to pain. The mean of 3 trials was calculated and used for analysis. A 30-s resting period will be allowed between each measure. To determine changes in widespread pressure pain sensitivity, PPTs are assessed bilaterally over the mid-point trapezius muscle (pars descendens), and the non-dominant tibialis anterior muscle. |
Systemic inflammation | Serum high sensitive c-reactive protein | Serum levels of high-sensitive CRP (hsCRP) were measured using Cardiac C-Reactive Protein (Latex Slide Agglutination) High Sensitivity using Roche/Hitachi cobas c systems. Because of the heightened sensitivity of hsCRP (with a lower limit of quantification of 0.3 mg/L) in comparison to CRP (with a lower limit of quantification of 0.6 mg/L), and anticipating very low hsCRP/CRP levels, we chose to utilise the hsCRP assay over the CRP assay. |
Patients with Painful Radiculopathy (n = 15) Mean (SD) | Pain-Free Participants (n = 6) Mean (SD) | p-Value | |
---|---|---|---|
Participant demographics | |||
Age (Years) | 50 (12) | 43 (12) | 0.22 |
Duration of symptoms (weeks) | 49 (21) | N/A | N/A |
Sex (% male) | 53 | 50 | 0.89 |
BMI | 25 (3.5) | 25 (1.8) | 0.94 |
Systemic hsCRP (mg/L) (median, 25th–75th percentile) | 1.04 (0.55–2.76) | 0.51 (0.15–0.76) | 0.05 |
TSPO genotype (% high affinity) | 46% | 50% | 0.89 |
Injected dose, mCi | 370 (22) | 379 (18.7) | 0.28 |
Questionnaires | |||
Physical activity level (IPAQ) | 736 (800) | 2583 (1760) | 0.003 |
Neck pain intensity (mean VAS, 0–100) | 47 (22) | 0 (0) | N/A |
Arm pain intensity (mean VAS, 0–100) | 54 (23) | 0 (0) | N/A |
Likelihood of neuropathic pain (pain_DETECT, 0–30) | 16 (6.5) | 4 (6.9) | 0.001 |
Likelihood of central sensitisation (CSI, 0–100) | 39 (20) | 22 (11) | 0.06 |
Neck disability (NDI, 0–50) | 20 (9.2) | 3 (3.8) | <0.001 |
Kinesiophobia (TSK-11, 0–44) | 28 (7.1) | 13 (2.2) | <0.001 |
Sleep quality (PSQI, 0–21) | 18 (7.9) | 10 (7.1) | 0.06 |
Psychological stress (DASS21, 0–21) | 4.5 (4.2) | 4.3 (5.3) | 0.95 |
Anxiety (DASS21, 0–21) | 2.5 (3.7) | 1.3 (1.2) | 0.46 |
Depression (DASS21, 0–21) | 4 (5) | 2 (4) | 0.47 |
Physical examination | |||
ULTT1 positive | 80% | 0% | N/A |
Reduced reflexes | 100% | 0% | N/A |
Muscle weakness | 100% | 0% | N/A |
Vital sensory changes | 100% | 0% | N/A |
Gnostic sensory changes | 100% | 0% | N/A |
PPT trapezius affected side | 353 (180) | 486 (93) | 0.10 |
PPT trapezius unaffected side | 355 (225) | 458 (97) | 0.33 |
PPT tibialis anterior | 348 (166) | 678 (172) | 0.02 |
Cervical rotation affected side | 64 (15) | 74 (13) | 0.15 |
Pain intensity at maximal cervical rotation affected side | 34 (30) | 0 (0) | N/A |
Cervical rotation unaffected side | 64 (18) | 72 (14) | 0.34 |
Pain intensity at maximal cervical rotation unaffected side | 34 (30) | 0 (0) | N/A |
Neuroforamina | Painful Cervical Radiculopathy Mean (SD) | Pain-Free Participants Mean (SD) | Mean Difference (SE) | Cohen’s d | p-Value |
---|---|---|---|---|---|
VT 1T2k | 14.19 (4.78) | 9.44 (3.16) | 4.74 (2.17) | 4.34 | 0.04 |
VT 1T2k_WB | 10.53 (3.41) | 6.78 (1.94) | 3.74 (1.50) | 3.07 | 0.02 |
VT Logan | 12.31 (5.74) | 7.30 (1.08) | 5.01 (2.39) | 4.86 | 0.03 |
Spinal Cord | Painful Cervical Radiculopathy Mean (SD) | Pain-Free Participants Mean (SD) | Mean Difference (SE) | Cohen’s d | p-Value |
---|---|---|---|---|---|
VT 1T2k | 14.28 (7.13) | 9.69 (3.97) | 4.59 (3.14) | 6.36 | 0.16 |
VT 1T2k_WB | 10.39 (5.18) | 8.48 (4.68) | 1.91 (2.44) | 5.06 | 0.36 |
VT Logan | 12.37 (5.67) | 9.25 (3.77) | 3.12 (2.77) | 5.27 | 0.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lutke Schipholt, I.J.; Koop, M.A.; Coppieters, M.W.; van de Giessen, E.M.; Lammerstma, A.A.; ter Meulen, B.C.; Vleggeert-Lankamp, C.; van Berckel, B.N.M.; Bot, J.; van Helvoirt, H.; et al. Neuroinflammation at the Neuroforamina and Spinal Cord in Patients with Painful Cervical Radiculopathy and Pain-Free Participants: An [11C]DPA713 PET/CT Proof-of-Concept Study. J. Clin. Med. 2025, 14, 2420. https://doi.org/10.3390/jcm14072420
Lutke Schipholt IJ, Koop MA, Coppieters MW, van de Giessen EM, Lammerstma AA, ter Meulen BC, Vleggeert-Lankamp C, van Berckel BNM, Bot J, van Helvoirt H, et al. Neuroinflammation at the Neuroforamina and Spinal Cord in Patients with Painful Cervical Radiculopathy and Pain-Free Participants: An [11C]DPA713 PET/CT Proof-of-Concept Study. Journal of Clinical Medicine. 2025; 14(7):2420. https://doi.org/10.3390/jcm14072420
Chicago/Turabian StyleLutke Schipholt, Ivo J., Meghan A. Koop, Michel W. Coppieters, Elsmarieke M. van de Giessen, Adriaan A. Lammerstma, Bastiaan C. ter Meulen, Carmen Vleggeert-Lankamp, Bart N.M. van Berckel, Joost Bot, Hans van Helvoirt, and et al. 2025. "Neuroinflammation at the Neuroforamina and Spinal Cord in Patients with Painful Cervical Radiculopathy and Pain-Free Participants: An [11C]DPA713 PET/CT Proof-of-Concept Study" Journal of Clinical Medicine 14, no. 7: 2420. https://doi.org/10.3390/jcm14072420
APA StyleLutke Schipholt, I. J., Koop, M. A., Coppieters, M. W., van de Giessen, E. M., Lammerstma, A. A., ter Meulen, B. C., Vleggeert-Lankamp, C., van Berckel, B. N. M., Bot, J., van Helvoirt, H., Depauw, P. R., Boellaard, R., Yaqub, M., & Scholten-Peeters, G. (2025). Neuroinflammation at the Neuroforamina and Spinal Cord in Patients with Painful Cervical Radiculopathy and Pain-Free Participants: An [11C]DPA713 PET/CT Proof-of-Concept Study. Journal of Clinical Medicine, 14(7), 2420. https://doi.org/10.3390/jcm14072420