HPV Infection in Children and Adolescents—A Comprehensive Review
Abstract
:1. Introduction
2. Virus Characterisation
The HPV Genome and Proteins
3. Routes of Infection
4. HPV Life Cycle and Epithelial Differentiation
5. Manifestations of HPV Infection
5.1. Skin Warts
5.2. Anogenital Warts
5.3. Epidermodysplasia Verruciformis
5.4. Recurrent Respiratory Papillomatosis
5.5. Retinoblastoma
5.6. Conjunctival Papilloma
5.7. Cervical SILs
6. Strategies to Prevent HPV Infection and Treat HPV-Related Lesions
6.1. Treatments of HPV-Related Lesions
6.2. Preventive Vaccination
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- World Health Organization. Global Strategy to Accelerate the Elimination of Cervical Cancer as a Public Health Problem; World Health Organization: Geneva, Switzerland, 2020; Available online: https://iris.who.int/handle/10665/336583 (accessed on 4 December 2024).
- Kombe Kombe, A.J.; Li, B.; Zahid, A.; Mengist, H.M.; Bounda, G.A.; Zhou, Y.; Jin, T. Epidemiology and Burden of Human Papillomavirus and Related Diseases, Molecular Pathogenesis, and Vaccine Evaluation. Front. Public Health 2021, 8, 552028. [Google Scholar] [CrossRef]
- Zur Hausen, H. Papillomaviruses in the Causation of Human Cancers—A Brief Historical Account. Virology 2009, 384, 260–265. [Google Scholar] [CrossRef] [PubMed]
- Pfister, H.; zur Hausen, H. Seroepidemiological Studies of Human Papilloma Virus (HPV-1) Infections. Int. J. Cancer 1978, 21, 161–165. [Google Scholar] [CrossRef] [PubMed]
- Lowy, D.R.; zur Hausen, H. Discoverer of Human Papillomavirus Infection as the Main Cause of Cervical Cancer. Proc. Natl. Acad. Sci. USA 2024, 121, e2400517121. [Google Scholar] [CrossRef]
- de Martel, C.; Georges, D.; Bray, F.; Ferlay, J.; Clifford, G.M. Global Burden of Cancer Attributable to Infections in 2018: A Worldwide Incidence Analysis. Lancet Glob. Health 2020, 8, e180–e190. [Google Scholar] [CrossRef]
- Ardekani, A.; Taherifard, E.; Mollalo, A.; Hemadi, E.; Roshanshad, A.; Fereidooni, R.; Rouholamin, S.; Rezaeinejad, M.; Farid-Mojtahedi, M.; Razavi, M.; et al. Human Papillomavirus Infection during Pregnancy and Childhood: A Comprehensive Review. Microorganisms 2022, 10, 1932. [Google Scholar] [CrossRef]
- Chido-Amajuoyi, O.G.; Fokom Domgue, J.; Obi-Jeff, C.; Schmeler, K.; Shete, S. A Call for the Introduction of Gender-Neutral HPV Vaccination to National Immunisation Programmes in Africa. Lancet Glob. Health 2019, 7, e20–e21. [Google Scholar] [CrossRef]
- Fabbrocini, G.; Cacciapuoti, S.; Monfrecola, G. Human papillomavirus infection in child. Open Dermatol. J. 2009, 3, 111–116. [Google Scholar] [CrossRef]
- Al Aboud, A.M.; Nigam, P.K. Wart. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK431047/ (accessed on 4 December 2024).
- Bruggink, S.C.; Eekhof, J.A.; Egberts, P.F. Warts Transmitted in Families and Schools: A Prospective Cohort. Pediatrics 2013, 131, 928–934. [Google Scholar] [CrossRef]
- Antonsson, A.; Karanfilovska, S.; Lindqvist, P.G.; Hansson, B.G. General Acquisition of Human Papillomavirus Infections of Skin Occurs in Early Infancy. J. Clin. Microbiol. 2003, 41, 2509–2514. [Google Scholar] [CrossRef]
- Van Haalen, F.M.; Bruggink, S.C.; Gussekloo, J.; Assendelft, W.J. Warts in Primary Schoolchildren: Prevalence and Relation with Environmental Factors. Br. J. Dermatol. 2009, 161, 148–152. [Google Scholar] [CrossRef]
- Costa-Silva, M.; Fernandes, I.; Rodrigues, A.G.; Lisboa, C. Anogenital warts in pediatric population. An. Bras. Dermatol. 2017, 92, 675–681. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, D.K.; Handley, J.M. Anogenital warts in prepubertal children: Pathogenesis, HPV typing and management. Int. J. STD AIDS 1997, 8, 78–81. [Google Scholar] [CrossRef] [PubMed]
- Bacopoulou, F.; Karakitsos, P.; Kottaridi, C. Genital HPV in Children and Adolescents: Does Sexual Activity Make a Difference? J. Pediatr. Adolesc. Gynecol. 2016, 29, 228–233. [Google Scholar] [CrossRef] [PubMed]
- Syrjänen, S.; Rintala, M.; Sarkola, M. Oral Human Papillomavirus Infection in Children during the First 6 Years of Life, Finland. Emerg. Infect. Dis. 2021, 27, 759–766. [Google Scholar] [CrossRef]
- Jach, R.; Galarowicz, B.; Huras, H. Vertical Transmission of HPV in Pregnancy: A Prospective Clinical Study of HPV-Positive Pregnant Women. Ginekol. Polska 2014, 85, 672–676. [Google Scholar] [CrossRef]
- Liu, Y.; Chao, Z.; Ding, W.; Fang, T.; Gu, X.; Xue, M.; Wang, W.; Han, R.; Sun, W. A Multiplex RPA-CRISPR/Cas12a-Based POCT Technique and Its Application in Human Papillomavirus (HPV) Typing Assay. Cell. Mol. Biol. Lett. 2024, 29, 34. [Google Scholar] [CrossRef]
- de Villiers, E.-M.; Fauquet, C.; Broker, T.R.; Bernard, H.-U.; zur Hausen, H. Classification of Papillomaviruses. Virology 2004, 324, 17–27. [Google Scholar] [CrossRef]
- Patra, S.; Shand, H.; Ghosal, S.; Ghorai, S. HPV and Male Cancer: Pathogenesis, Prevention and Impact. J. Oman Med. Assoc. 2025, 2, 4. [Google Scholar] [CrossRef]
- Galloway, D.A.; Laimins, L.A. Human Papillomaviruses: Shared and Distinct Pathways for Pathogenesis. Curr. Opin. Virol. 2015, 14, 87–92. [Google Scholar] [CrossRef]
- Gheit, T. Mucosal and Cutaneous Human Papillomavirus Infections and Cancer Biology. Front. Oncol. 2019, 9, 355. [Google Scholar] [CrossRef]
- Wei, F.; Georges, D.; Man, I.; Baussano, I.; Clifford, G.M. Causal Attribution of Human Papillomavirus Genotypes to Invasive Cervical Cancer Worldwide: A Systematic Analysis of the Global Literature. Lancet 2024, 404, 435–444. [Google Scholar] [CrossRef]
- Szymonowicz, K.A.; Chen, J. Biological and Clinical Aspects of HPV-Related Cancers. Cancer Biol. Med. 2020, 17, 864–878. [Google Scholar] [CrossRef]
- Boda, D.; Docea, A.O.; Calina, D.; Ilie, M.A.; Caruntu, C.; Zurac, S.; Neagu, M.; Constantin, C.; Branisteanu, D.E.; Voiculescu, V.; et al. Human Papilloma Virus: Apprehending the Link with Carcinogenesis and Unveiling New Research Avenues (Review). Int. J. Oncol. 2018, 52, 637–655. [Google Scholar] [CrossRef]
- Bukowska, E.; Młynarczyk-Bonikowska, B.; Malejczyk, M.; Przedpełska, G.; de Walthoffen, S.W.; Młynarczyk, G.; Majewski, S. Human Papillomavirus (HPV) Coinfection with Other Sexually Transmitted Infections in Patients of the Department of Dermatology and Venereology at the Medical University of Warsaw. Prz. Dermatol. 2020, 107, 138–147. [Google Scholar] [CrossRef]
- Skelin, J.; Tomaić, V. Comparative Analysis of Alpha and Beta HPV E6 Oncoproteins: Insights into Functional Distinctions and Divergent Mechanisms of Pathogenesis. Viruses 2023, 15, 2253. [Google Scholar] [CrossRef]
- Egawa, N.; Doorbar, J. The Low-Risk Papillomaviruses. Virus Res. 2017, 231, 119–127. [Google Scholar] [CrossRef]
- Mammas, I.N.; Sourvinos, G.; Spandidos, D.A. Human Papilloma Virus (HPV) Infection in Children and Adolescents. Eur. J. Pediatr. 2008, 168, 267–273. [Google Scholar] [CrossRef]
- Tampa, M.; Mitran, C.I.; Mitran, M.I.; Nicolae, I.; Dumitru, A.; Matei, C.; Manolescu, L.; Popa, G.L.; Caruntu, C.; Georgescu, S.R. The Role of Beta HPV Types and HPV-Associated Inflammatory Processes in Cutaneous Squamous Cell Carcinoma. J. Immunol. Res. 2020, 2020, 5701639. [Google Scholar] [CrossRef]
- Bandolin, L.; Borsetto, D.; Fussey, J.; Da Mosto, M.C.; Nicolai, P.; Menegaldo, A.; Calabrese, L.; Tommasino, M.; Boscolo-Rizzo, P. Beta Human Papillomaviruses Infection and Skin Carcinogenesis. Rev. Med. Virol. 2020, 30, e2104. [Google Scholar] [CrossRef]
- Tommasino, M. The Biology of Beta Human Papillomaviruses. Virus Res. 2017, 231, 128–138. [Google Scholar] [CrossRef] [PubMed]
- Braun-Falco, O.; Plewig, G.; Wolff, H.H.; Winkelmann, R.K. Dermatology; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Doorbar, J.; Egawa, N.; Griffin, H.; Kranjec, C.; Murakami, I. Human papillomavirus molecular biology and disease association. Rev. Med. Virol. 2015, 25, 2–23. [Google Scholar] [CrossRef]
- Ribeiro, A.L.; Caodaglio, A.S.; Sichero, L. Regulation of HPV transcription. Clinics 2018, 73, e486s. [Google Scholar] [CrossRef] [PubMed]
- Hoppe-Seyler, K.; Bossler, F.; Braun, J.A.; Herrmann, A.L.; Hoppe-Seyler, F. The HPV E6/E7 Oncogenes: Key Factors for Viral Carcinogenesis and Therapeutic Targets. Trends Microbiol. 2018, 26, 158–168. [Google Scholar] [CrossRef]
- Graham, S.V. Human Papillomavirus: Gene Expression, Regulation and Prospects For Novel Diagnostic Methods and Antiviral Therapies. Futur. Microbiol. 2010, 5, 1493–1506. [Google Scholar] [CrossRef]
- Zheng, Z.M.; Baker, C.C. Papillomavirus Genome Structure, Expression, and Post-Transcriptional Regulation. Front. Biosci. 2006, 11, 2286–2302. [Google Scholar] [CrossRef]
- Leiding, J.W.; Holland, S.M. Warts and All: HPV in Primary Immunodeficiencies. J. Allergy Clin. Immunol. 2012, 130, 1030–1048. [Google Scholar] [CrossRef] [PubMed]
- Sabeena, S.; Bhat, P.; Kamath, V.; Arunkumar, G. Possible Non-Sexual Modes of Transmission of Human Papilloma Virus. J. Obstet. Gynaecol. Res. 2017, 43, 429–435. [Google Scholar] [CrossRef]
- Ardekani, A.; Sepidarkish, M.; Mollalo, A. Worldwide Prevalence of Human Papillomavirus among Pregnant Women: A Systematic Review and Meta-Analysis. Rev. Med Virol. 2022, 33, e2374. [Google Scholar] [CrossRef]
- Freitas, A.C.; Mariz, F.C.; Silva, M.A.; Jesus, A.L. Human Papillomavirus Vertical Transmission: Review of Current Data. Clin. Infect. Dis. 2013, 56, 1451–1456. [Google Scholar] [CrossRef]
- Lee, S.M.; Park, J.S.; Norwitz, E.R. Risk of Vertical Transmission of Human Papillomavirus throughout Pregnancy: A Prospective Study. PLoS ONE 2013, 8, e66368. [Google Scholar] [CrossRef]
- Koskimaa, H.M.; Waterboer, T.; Pawlita, M.; Grénman, S.; Syrjänen, K.; Syrjänen, S. Human Papillomavirus Genotypes Present in the Oral Mucosa of Newborns and Their Concordance with Maternal Cervical Human Papillomavirus Genotypes. J. Pediatr. 2012, 160, 837–843. [Google Scholar] [CrossRef] [PubMed]
- Nantel, É.; Mayrand, M.H.; Audibert, F. Association between the Mode of Delivery and Vertical Transmission of Human Papillomavirus. Viruses 2024, 16, 303. [Google Scholar] [CrossRef] [PubMed]
- Singhal, P.; Naswa, S.; Marfatia, Y.S. Pregnancy and Sexually Transmitted Viral Infections. Indian J. Sex. Transm. Dis. AIDS 2009, 30, 71–78. [Google Scholar]
- Khayargoli, P.; Niyibizi, J.; Mayrand, M.H. Human Papillomavirus Transmission and Persistence in Pregnant Women and Neonates. JAMA Pediatr. 2023, 177, 684–692. [Google Scholar] [CrossRef]
- Pereira, N.; Kucharczyk, K.M.; Estes, J.L. Human Papillomavirus Infection, Infertility, and Assisted Reproductive Outcomes. J. Pathog. 2015, 2015, 578423. [Google Scholar] [CrossRef]
- Petca, A.; Borislavschi, A.; Zvanca, M.E.; Petca, R.C.; Sandru, F.; Dumitrascu, M.C. Non-Sexual HPV Transmission and Role of Vaccination for a Better Future (Review). Exp. Ther. Med. 2020, 20, 186. [Google Scholar] [CrossRef]
- Egawa, N.; Egawa, K.; Griffin, H.; Papillomaviruses, D.J.H. Epithelial Tropisms, and the Development of Neoplasia. Viruses 2015, 7, 3863–3890. [Google Scholar] [CrossRef]
- Awasthi, S.; Ornelas, J.; Armstrong, A.; Johnson, J.A.; Eisen, D.B. Anogenital Warts and Relationship to Child Sexual Abuse: Systematic Review and Meta-Analysis. Pediatr. Dermatol. 2021, 38, 842–850. [Google Scholar] [CrossRef]
- Unger, E.R.; Fajman, N.N.; Maloney, E.M. Anogenital Human Papillomavirus in Sexually Abused and Nonabused Children: A Multicenter Study. Pediatrics 2011, 128, e658–e665. [Google Scholar] [CrossRef]
- Bristow, I. Paediatric Cutaneous Warts and Verrucae: An Update. Int. J. Environ. Res. Public Health 2022, 19, 16400. [Google Scholar] [CrossRef] [PubMed]
- El-Komy, M.H.M.; Shamma, S.G.; Bedair, N.I. The Efficacy and Safety of Intralesional Candida Vaccine versus Topical Diphencyproprobenone in Immunotherapy of Verruca Vulgaris: A Randomized Comparative Study. Arch. Dermatol. Res. 2022, 315, 583–591. [Google Scholar] [CrossRef]
- Plewig, G.; French, L.; Ruzicka, T.; Kaufmann, R.; Hertl, M. (Eds.) Braun-Falco’s Dermatology; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- James, W.D.; Elston, D.; Berger, T. Andrew’s Diseases of the Skin E-Book: Clinical Dermatology; Elsevier Health Sciences: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Boettler, M.A.; Cartron, A.M.; Shearer, S.M.; Chung, C.; Trinidad, J. Multimodal Treatment of Epidermodysplasia Verruciformis in an HIV-Positive Man. Cutis 2023, 111, E13–E15. [Google Scholar] [CrossRef] [PubMed]
- Mourya, C.; Modak, S.; Kumbhakar, S.; Gupta, S.D. Epidermodysplasia Verruciformis: A Rare Threat to Homo Sapiens. World J. Pharmaceut. Res. 2023, 13, 1261–1271. [Google Scholar]
- Enrique, O.H.; Eloy, S.H.; Adrian, T.P.; Perla, V. Systemic Bevacizumab as Adjuvant Therapy for Recurrent Respiratory Papillomatosis in Children: A Series of Three Pediatric Cases and Literature Review. Am. J. Otolaryngol. 2021, 42, 103126. [Google Scholar] [CrossRef]
- Rivera, G.A.; Morell, F. Laryngeal Papillomas. (updated 8 August 2023). In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar] [PubMed]
- Rao, R.; Honavar, S.G. Retinoblastoma. Indian J. Pediatr. 2017, 84, 937–944. [Google Scholar] [CrossRef]
- Javanmard, D.; Moein, M.; Esghaei, M. Molecular evidence of human papillomaviruses in the retinoblastoma tumor. VirusDisease 2019, 30, 360–366. [Google Scholar] [CrossRef]
- Heck, J.E.; Lombardi, C.A.; Meyers, T.J.; Cockburn, M.; Wilhelm, M.; Ritz, B. Perinatal characteristics and retinoblastoma. Cancer Causes Control 2012, 23, 1567–1575. [Google Scholar] [CrossRef]
- Soltani, S.; Tabibzadeh, A.; Yousefi, P. HPV Infections in Retinoblastoma: A Systematic Review. J. Clin. Lab. Anal. 2021, 35, e23981. [Google Scholar] [CrossRef] [PubMed]
- Theotoka, D.; Morkin, M.I.; Galor, A.; Karp, C.L. Update on Diagnosis and Management of Conjunctival Papilloma. Eye Vis. 2019, 6, 18. [Google Scholar] [CrossRef]
- Mammas, I.N.; Dalianis, T.; Doukas, S.G. Paediatric Virology and Human Papillomaviruses: An Update. Exp. Ther. Med. 2019, 17, 4337–4343. [Google Scholar] [CrossRef] [PubMed]
- Blanco, R.; Carrillo-Beltrán, D.; Muñoz, J.P. Characterization of High-Risk HPV/EBV Co-Presence in Pre-Malignant Cervical Lesions and Squamous Cell Carcinomas. Microorganisms 2022, 10, 888. [Google Scholar] [CrossRef] [PubMed]
- Mount, S.L.; Papillo, J.L. A Study of 10,296 Pediatric and Adolescent Papanicolaou Smear Diagnoses in Northern New England. Pediatrics 1999, 103, 539–545. [Google Scholar] [CrossRef] [PubMed]
- Soenjoyo, K.R.; Chua, B.W.B.; Wee, L.W.Y.; Koh, M.J.A.; Ang, S.B. Treatment of Cutaneous Viral Warts in Children: A Review. Dermatol. Ther. 2020, 33, e14034. [Google Scholar] [CrossRef]
- Gerlero, P.; Hernández-Martín, Á. Treatment of warts in children: An update. Actas Dermosifiliogr. 2016, 107, 551–558. [Google Scholar] [CrossRef]
- Prohaska, J.; Jan, A.H. Cryotherapy in Dermatology (updated 15 September 2023). In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar] [PubMed]
- García-Oreja, S.; Álvaro-Afonso, F.J.; Tardáguila-García, A.; López-Moral, M.; García-Madrid, M.; Lázaro-Martínez, J.L. Efficacy of Cryotherapy for Plantar Warts: A Systematic Review and Meta-Analysis. Dermatol. Ther. 2022, 35, e15480. [Google Scholar] [CrossRef]
- Lim, J.T.; Goh, C.L. Carbon dioxide laser treatment of periungual and subungual viral warts. Australas. J. Dermatol. 1992, 33, 87–91. [Google Scholar] [CrossRef]
- Ockenfels, H.M. Therapeutic Management of Cutaneous and Genital Warts. J. Dtsch. Dermatol. Ges. 2016, 14, 892–899. [Google Scholar] [CrossRef]
- Fields, J.R.; Saikaly, S.K.; Schoch, J.J. Intralesional Immunotherapy for Pediatric Warts: A Review. Pediatr. Dermatol. 2020, 37, 265–271. [Google Scholar] [CrossRef]
- Bruggink, S.C.; Gussekloo, J.; Berger, M.Y. Cryotherapy with Liquid Nitrogen versus Topical Salicylic Acid Application for Cutaneous Warts in Primary Care: Randomized Controlled Trial. Can. Med Assoc. J. 2010, 182, 1624–1630. [Google Scholar] [CrossRef]
- Acar, E.M.; Uyar, B.; Elmas, Ö.F. Therapeutic Efficacy and Safety of Three Different Modalities in Pediatric Patients with Plantar Warts. Dermatol. Ther. 2021, 34, e15073. [Google Scholar] [CrossRef] [PubMed]
- Johnson, N.M.; Pickard, C.M. Resolution of diffuse facial verruca plana following nonavalent human papillomavirus immunization. Pediatr. Dermatol. 2020, 38, 292–293. [Google Scholar] [CrossRef]
- Yoham, A.L.; Casadesus, D. Tretinoin. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Gaston, A.; Garry, R.F. Topical vitamin A treatment of recalcitrant common warts. Virol. J. 2012, 9, 21. [Google Scholar] [CrossRef]
- Oren-Shabtai, M.; Snast, I.; Noyman, Y. Topical and Systemic Retinoids for the Treatment of Cutaneous Viral Warts: A Systematic Review and Meta-Analysis. Dermatol. Ther. 2020, 34, e14637. [Google Scholar] [CrossRef]
- Herzum, A.; Ciccarese, G.; Occella, C. Treatment of Pediatric Anogenital Warts in the Era of HPV-Vaccine: A Literature Review. J. Clin. Med. 2023, 12, 4230. [Google Scholar] [CrossRef]
- Micali, G.; Dall’Oglio, F.; Nasca, M.R. An Open Label Evaluation of the Efficacy of Imiquimod 5% Cream in the Treatment of Recalcitrant Subungual and Periungual Cutaneous Warts. J. Dermatol. Treat. 2003, 14, 233–236. [Google Scholar] [CrossRef]
- Grussendorf-Conen, E.I.; Jacobs, S. Efficacy of Imiquimod 5% Cream in the Treatment of Recalcitrant Warts in Children. Pediatr. Dermatol. 2002, 19, 263–266. [Google Scholar] [CrossRef]
- Kim, S.; Woo, Y.R.; Cho, S.H.; Lee, J.D.; Kim, H.S. Clinical Efficacy of 5-Fluorouracil and Bleomycin in Dermatology. J. Clin. Med. 2024, 13, 335. [Google Scholar] [CrossRef]
- Kollipara, R.; Ekhlassi, E.; Downing, C.; Guidry, J.; Lee, M.; Tyring, S.K. Advancements in Pharmacotherapy for Non-Cancerous Manifestations of HPV. J. Clin. Med. 2015, 4, 832–846. [Google Scholar] [CrossRef]
- Keam, S.J. Cantharidin Topical Solution 0.7%: First Approval. Pediatr. Drugs 2023, 26, 95–100. [Google Scholar] [CrossRef]
- Boull, C.; Groth, D. Update: Treatment of cutaneous viral warts in children. Pediatr. Dermatol. 2011, 28, 217–229. [Google Scholar] [CrossRef] [PubMed]
- Zhu, P.; Qi, R.Q.; Yang, Y. Clinical Guideline for the Diagnosis and Treatment of Cutaneous Warts (2022). J. Evidence-Based Med. 2022, 15, 284–301. [Google Scholar] [CrossRef]
- Johnson, S.M.; Roberson, P.K.; Horn, T.D. Intralesional Injection of Mumps or Candida Skin Test Antigens: A Novel Immunotherapy for Warts. Arch. Dermatol. 2001, 137, 451–454. [Google Scholar]
- Mohtashim, M.; Amin, S.; Adil, M. Efficacy of Intralesional MMR Vaccine in Treatment of Single or Multiple Refractory Cutaneous Warts. Dermatol. Rev. 2018, 105, 498–508. [Google Scholar] [CrossRef]
- Markowitz, L.E.; Unger, E.R. Human papillomavirus vaccination. N. Engl. J. Med. 2023, 388, 1790–1798. [Google Scholar] [CrossRef]
- Stanley, M. Immunobiology of HPV and HPV Vaccines. Gynecol. Oncol. 2008, 109, S15–S21. [Google Scholar] [CrossRef]
- World Health Organization. Human papillomavirus vaccines: WHO position paper (2022 update). Wkly. Epidemiol. Record 2022, 97, 645–672. [Google Scholar]
- World Health Organization. Considerations for Human Papillomavirus (HPV) Vaccine Product Choice; World Health Organization: Geneva, Switzerland, 2024; Available online: https://www.who.int/publications/i/item/9789240089167 (accessed on 28 April 2024).
- Illah, O.; Olaitan, A. Updates on HPV Vaccination. Diagnostics 2023, 13, 243. [Google Scholar] [CrossRef] [PubMed]
- Williamson, A.L. Recent developments in human papillomavirus (HPV) vaccinology. Viruses 2023, 15, 1440. [Google Scholar] [CrossRef]
- Meites, E.; Kempe, A.; Markowitz, L.E. Use of a 2-Dose Schedule for Human Papillomavirus Vaccination—Updated Recommendations of the Advisory Committee on Immunization Practices. Am. J. Transplant. 2017, 17, 834–837. [Google Scholar] [CrossRef]
- Ellingson, M.K.; Sheikha, H.; Nyhan, K.; Oliveira, C.R.; Niccolai, L.M. Human Papillomavirus Vaccine Effectiveness by Age at Vaccination: A Systematic Review. Hum. Vaccines Immunother. 2023, 19, 2239085. [Google Scholar] [CrossRef]
- Halemani, K.; Sannamma, H.J. Advancements in HPV Vaccination for Cervical Cancer Prevention: A Comprehensive Review. Saudi J. Nurs. Health Care 2024, 7, 122–123. [Google Scholar] [CrossRef]
- Nicol, A.F.; de Andrade, C.V.; Russomano, F.B.; Rodrigues, L.S.; Oliveira, N.S.; Provance, D.W.; Nuovo, G.J. HPV Vaccines: Their Pathology-Based Discovery, Benefits, and Adverse Effects. Ann. Diagn. Pathol. 2015, 19, 418–422. [Google Scholar] [CrossRef] [PubMed]
- Reuschenbach, M.; Doorbar, J.; del Pino, M.; Joura, E.A.; Walker, C.; Drury, R.; Rauscher, A.; Saah, A.J. Prophylactic HPV Vaccines in Patients with HPV-Associated Diseases and Cancer. Vaccine 2023, 41, 6194–6205. [Google Scholar] [CrossRef]
- Setiawan, D.; Nurulita, N.A.; Khoirunnisa, S.M.; Postma, M.J. The Clinical Effectiveness of One-Dose Vaccination with an HPV Vaccine: A Meta-Analysis of 902,368 Vaccinated Women. PLoS ONE 2024, 19, e0290808. [Google Scholar] [CrossRef]
- Whitworth, H.S.; Gallagher, K.E.; Howard, N. Al Efficacy and Immunogenicity of a Single Dose of Human Papillomavirus Vaccine Compared to No Vaccination or Standard Three and Two-Dose Vaccination Regimens: A Systematic Review of Evidence from Clinical Trials. Vaccine 2020, 38, 1302–1314. [Google Scholar] [CrossRef]
- MacIntyre, C.R.; Shaw, P.; Mackie, F.E. Immunogenicity and Persistence of Immunity of a Quadrivalent Human Papillomavirus (HPV) Vaccine in Immunocompromised Children. Vaccine 2016, 34, 4343–4350. [Google Scholar] [CrossRef]
- Pittet, L.F.; Posfay-Barbe, K.M. Vaccination of Immunocompromised Children—An Overview for Physicians. Eur. J. Pediatr. 2021, 180, 2035–2047. [Google Scholar] [CrossRef]
- Esposito, S.; Prada, E.; Lelii, M.; Castellazzi, L. Immunization of children with secondary immunodeficiency. Hum. Vaccines Immunother. 2015, 11, 2564–2570. [Google Scholar] [CrossRef]
- Garbuglia, A.R.; Lapa, D.; Sias, C.; Capobianchi, M.R.; Del Porto, P. The Use of Both Therapeutic and Prophylactic Vaccines in the Therapy of Papillomavirus Disease. Front. Immunol. 2020, 11, 188. [Google Scholar] [CrossRef]
- Yan, F.; Cowell, L.G.; Tomkies, A.; Day, A.T. Therapeutic Vaccination for HPV-Mediated Cancers. Curr. Otorhinolaryngol. Rep. 2023, 11, 44–61. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, L.; Jehan, M.; Azam, S. Advancements in mRNA Vaccines: A Promising Approach for Combating Human Papillomavirus-Related Cancers. Cancer Control 2024, 31, 10732748241238629. [Google Scholar] [CrossRef] [PubMed]
Method | Indications for Use | Age Requirement | Limitations | Efficacy | References |
---|---|---|---|---|---|
Procedures | |||||
Cryotherapy | Cutaneous warts | Patients > 2 years old were treated; may be used in children <2 years old, but it is generally not the preferred treatment | Lower clearance rates than other treatments (CPS formulation, immunotherapy, laser, topical antivirals, intralesional bleomycin). Possible side effects: pain, blistering, scarring, and hyperpigmentation or hypopigmentation; contraindicated for patients with cryoglobulinemia, multiple myeloma, Raynaud disease, cold urticaria, and disordered peripheral circulation. | 45–75%; cryotherapy is more effective for nonplantar warts, yet no clinically significant differences were seen after 13 weeks | [70,71,72,73] |
Surgical curettage | Resistant and widespread cutaneous warts | Possible side effects: pain. | 55.6% over 2 years | [70] | |
Electrocoagulation | Filiform or small isolated warts | Patients > 3 years old were treated | Not a mainstay treatment for children; it requires the use of local anaesthesia and can leave a scar. | [71] | |
CO2 laser | Palmar–plantar warts; can be a first-line treatment for periungual and subungual warts | Patients > 2 years old were treated | Possible side effects: painful and can cause scarring. Pulsed-dye lasers can cause pain and scarring but less than CO2 lasers. | Complete resolution rates of 75% for children with palmar–plantar warts | [71,74] |
Photodynamic therapy | Refractory palmar and plantar warts | Possible side effects: erythema, a burning sensation, and pain. Procedure is painful; it is not recommended in children and is a high-cost treatment | Cure rate of 56% for treated warts after 18 weeks of treatment | [71,75] | |
Topical | |||||
Salicylic acid | Cutaneous warts; first-line treatment can be combined with 5-fluorouracil, lactic acid, cryotherapy, imiquimod, and cantharidin | It is not used in children under 2 years of age | Slow response (2–3 months). Possible side effects: skin irritation, pain, bleeding, and salicylic acid toxicity (tinnitus, nausea and vomiting). | Approximately two-thirds of all warts clear within 3 to 6 months of treatment with topical salicylic acid | [70,71,76,77] |
Lactic acid | Cutaneous warts; combined with salicylic acid | It is not used in children under 2 years of age | Possible side effects: skin irritation. | Clearance rate of 58.8–75% for SA+ lactic acid combined therapy | [70,78] |
Tretinoin | Common warts, resistant flat warts | Patients ≥ 12 years old (FDA) | FDA off-label use. Possible side effects: irritant contact dermatitis. | Clearance rate of 85% in children treated with tretinoin 0.05% | [79,80,81,82] |
5-fluorouracil | Palmoplantar warts; combined with salicylic acid | Not used in children under 6 years old (ChPL); inability to use in infants | Possible side effects: inflammation, skin erosion, and hyperpigmentation or hypopigmentation | Clearance rate of 20% for SA+ 5-fluorouracil combined therapy | [70,78] |
Imiquimod | Common warts, periungual and subungual warts, anogenital warts | Not FDA-approved for children under 12 years old but was effective in 6-month-old children | Possible side effects: local erythema, itch, vesiculation, ulceration and burning sensation, low pain. | Complete resolution in 80% of patients | [71,83,84,85] |
Bleomycin | Cutaneous warts | Not established (FDA) | Possible side effects: eschar formation and blackening of the skin. | Broadly varying cure rates (16–94%) | [86] |
Cantharidin | Cutaneous warts | FDA-approved for patients ≥ 2 years old | Possible side effects: burning, erythema, pain, and pruritus. | 96% cure rate | [87,88] |
Cidofovir | Warts on the oral mucosa, hands, and anogenital region | Patients ≥ 9 years old were treated in a trial | Possible side effects: pain, pruritus, and rash at the application site. | Clearance in 47%; more studies are required to further estimate the efficacy | [87,89] |
Intralesional | |||||
Bleomycin | Common warts, plantar warts | Not widely studied in paediatric population; not recommended for young children | Possible side effects: pain, dyspigmentation, necrosis; due to high pain levels, an anaesthetic may be necessary. | 95 to 97% resolution rate | [71,75,90] |
5-fluorouracil | Palmoplantar warts, anogenital warts | Not FDA-approved for paediatric patients with anogenital warts | Possible side effects: inflammation, blistering, pain, skin erosion, and hyperpigmentation or hypopigmentation | Studies have shown it to be effective, but it is not FDA-approved for children | [14,71,78] |
Candida albicans antigen | Common warts | Patients ≥ 5 years old were treated in a trial | Possible side effects: pain, subsequent bullae, oedema, desquamation, fever, burning, and blistering. | Complete resolution without recurrence in 72% | [76,91] |
Cidofovir | Common warts | Patients > 3 years old were treated in a trial | It is avoided as it is associated with nephrotoxicity, ocular injury (anterior uveitis, retinal detachment, iritis and permanent loss of vision), and teratogenicity. Possible side effects: pain, burning sensation, itching, erythema, and post-inflammatory hyperpigmentation. | Clearance in 99%; more studies are required to further estimate the efficacy | [87] |
MMR vaccine | Refractory cutaneous warts on the head and neck region and limbs; periungual and subungual warts | Patients ≥ 11 years old were treated in a trial | No response in 33% of patients in the trial. Possible side effects: mild pain during injection. | At 6 months of follow-up: full resolution of warts in 62.8% and partial response in 4.2% of patients | [92] |
Vaccine (Manufacturer) | Valence, HPV Types | Adjuvant | Registration Year | Vaccine Administration | Vaccine Schedule |
---|---|---|---|---|---|
Gardasil® (Merck & Co., Rahway, NJ, USA) | Quadrivalent (6, 11, 16, 18) | Amorphous aluminium hydroxyphosphate sulphate | 2006 | I.M. | 9–14 years: 0, 6 months; from the age of 15: 0, 2, 6 months |
Cervarix® (GlaxoSmithKline, Tsim Sha Tsui, Hong Kong) | Bivalent (16, 18) | ASO4: 3-O-deacylo-4′-monofosforylolipid A (MPL), adsorbed on aluminium hydroxide | 2007 | I.M. | 9–14 years: 0, 6 months; from the age of 15: 0, 1, 6 months |
Gardasil9® (Merck & Co.) | Nonavalent (6, 11, 16, 18, 31, 33, 45, 52, 58) | Amorphous aluminium hydroxyphosphate sulphate | 2014 | I.M. | 9–14 years: 0, 6 months; from the age of 15: 0, 2, 6 months |
Cecolin® (Xiamen Innovax Biotechnology, Xiamen, China) | Bivalent (16, 18) | Aluminium hydroxide | 2020 | I.M. | 9–14 years: 0, 6 or 0, 1, 6 months; from the age of 15: 0, 1, 6 months |
Walvax recombinant HPV vaccine (Hanghai Zerun Biotechnology, Shanghai, China; Subsidiary of Walvax Biotechnology, Shanghai, China) | Bivalent (16, 18) | Aluminium phosphate | 2022 | I.M. | 9–14 years: 0, 6 or 0, 2, 6 months; from the age of 15: 0, 2, 6 months |
Cervavac® (Serum Institute of India, Pune, India) | Quadrivalent (6, 11, 16, 18) | Aluminium (Al3+) | 2022 | I.M. | 9–14 years: 0, 6 months; from the age of 15: 0, 2, 6 months |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomecka, P.; Karwowska, A.; Kuźnicki, J.; Skinderowicz, K.; Wojno, A.; Markut, K.; Typek, P.; Ciesielska, U.; Kulbacka, J.; Drąg-Zalesińska, M. HPV Infection in Children and Adolescents—A Comprehensive Review. J. Clin. Med. 2025, 14, 2425. https://doi.org/10.3390/jcm14072425
Tomecka P, Karwowska A, Kuźnicki J, Skinderowicz K, Wojno A, Markut K, Typek P, Ciesielska U, Kulbacka J, Drąg-Zalesińska M. HPV Infection in Children and Adolescents—A Comprehensive Review. Journal of Clinical Medicine. 2025; 14(7):2425. https://doi.org/10.3390/jcm14072425
Chicago/Turabian StyleTomecka, Paulina, Anna Karwowska, Jacek Kuźnicki, Katarzyna Skinderowicz, Aleksandra Wojno, Kornelia Markut, Paulina Typek, Urszula Ciesielska, Julita Kulbacka, and Małgorzata Drąg-Zalesińska. 2025. "HPV Infection in Children and Adolescents—A Comprehensive Review" Journal of Clinical Medicine 14, no. 7: 2425. https://doi.org/10.3390/jcm14072425
APA StyleTomecka, P., Karwowska, A., Kuźnicki, J., Skinderowicz, K., Wojno, A., Markut, K., Typek, P., Ciesielska, U., Kulbacka, J., & Drąg-Zalesińska, M. (2025). HPV Infection in Children and Adolescents—A Comprehensive Review. Journal of Clinical Medicine, 14(7), 2425. https://doi.org/10.3390/jcm14072425