Prevalence and Predictors of Postoperative Hypoparathyroidism: A Multicenter Observational Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Data Collection Procedure
- Demographic data (age and sex).
- Underlying thyroid hormonal status and parathyroid diseases.
- Indication of surgery (benign or malignant indications).
- Type of surgery (lobectomy, total thyroidectomy, or completion thyroidectomy with or without lymph node dissection).
- Postoperative pathology (benign, malignant, or premalignant). Then, postoperative differentiated thyroid cancer (DTC) cases were classified based on the 2015 American Thyroid Association (ATA) risk stratification of thyroid cancer [13].
- Biochemical and hormonal profile:
- Preoperative vitamin D level: normal vitamin D level defined as over 75 nmol/L.
- Pre- and postoperative corrected calcium for albumin levels: normal corrected calcium level defined as 2.1–2.55 mmol/L.The following formula was used for the calculation of the corrected calcium level:Corrected calcium (mmol/L) = measured total calcium (mmol/L) + 0.02 [40—serum albumin (g/L)]
- Immediate postoperative PTH level: The first PTH measurement taken within 24 h after surgery. Due to the variations in normal ranges across the four centers, PTH levels were standardized to pmol/L. The median (first quartile–third quartile; Q1–Q3) reference range was 4.25 (1.55–7.24) pmol/L. A low PTH level was defined as <1.5 pmol/L.
- Follow-up of PTH levels for at least 6 months post-surgery to assess recovery or the persistence of HPT.
- According to the corrected calcium and PTH levels, patients were categorized into two groups: (1) No hypoparathyroidism, defined as normal corrected calcium and PTH level post-surgery, or (2) hypoparathyroidism, defined as low corrected calcium level with either inappropriately low or undetectable PTH level postoperatively [14]. Thereafter, the cases of HPT were categorized into two groups based on the recovery or persistence of HPT: (1) Transient HPT, defined as recovery of PTH level with stopping replacement therapy at or before 6 months post-surgery, or (2) permanent hypoparathyroidism, defined as the persistence of low PTH level and the continued need for replacement therapy at more than 6 months post-surgery [14].
2.3. Statistical Analysis
3. Results
3.1. Population Demographics and Comorbidities
3.2. Surgery Details and Postoperative Pathology
3.3. Baseline Bone Profile and Outcome of HPT
3.4. Biochemical Parameters of Patients with and Without HPT
3.5. Predictors of Hypoparathyroidism
3.6. Predictors of Permanent Hypoparathyroidism
4. Discussion
5. Conclusions
6. Strengths and Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
HPT | Hypoparathyroidism |
PTH | Parathyroid hormone |
CLND | Central lymph node dissection |
LLND | Lateral lymph node dissection |
DTC | Differentiated thyroid cancer |
KFHU | King Fahad Hospital of the University |
KFSH-D | King Fahad Specialist Hospital-Dammam |
KFMMC | King Fahad Military Medical Complex |
QCH | Qatif Central Hospital |
TSH | Thyroid-stimulating hormone |
T4 | Thyroxine |
T3 | Triiodothyronine |
ATA | American Thyroid Association |
Q1 | First quartile |
Q3 | Third quartile |
OR | Odds ratios |
CI | Confidence interval |
SD | Standard deviation |
ETE | Extrathyroidal extension |
PTC | Papillary thyroid cancer |
FTC | Follicular thyroid cancer |
NIFTP | Non-invasive thyroid neoplasm with papillary-like nuclear features |
References
- Gangappa, R.B.; Kenchannavar, M.B.; Chowdary, P.B.; Patanki, A.M.; Ishwar, M. Total Thyroidectomy for Benign Thyroid Diseases: What is the Price to be Paid? J. Clin. Diagn. Res. 2016, 10, PC04–PC07. [Google Scholar] [CrossRef] [PubMed]
- Akgun, I.E.; Unlu, M.T.; Aygun, N.; Kostek, M.; Tufan, A.E.; Yanar, C.; Yuksel, A.; Baran, E.; Cakir, Y.; Uludag, M. The Reality of Hypoparathyroidism After Thyroidectomy: Which Risk Factors are Effective? Single-Center Study. Sisli Etfal Hastan. Tip Bul. 2022, 56, 262–269. [Google Scholar] [CrossRef] [PubMed]
- Yazıcıoğlu, M.Ö.; Yılmaz, A.; Kocaöz, S.; Özçağlayan, R.; Parlak, Ö. Risks and prediction of postoperative hypoparathyroidism due to thyroid surgery. Sci. Rep. 2021, 11, 11876. [Google Scholar] [CrossRef]
- Hadker, N.; Egan, J.; Sanders, J.; Lagast, H.; Clarke, B.L. Understanding the burden of illness associated with hypoparathyroidism reported among patients in the PARADOX study. Endocr. Pract. 2014, 20, 671–679. [Google Scholar] [CrossRef]
- Mitchell, D.M.; Regan, S.; Cooley, M.R.; Lauter, K.B.; Vrla, M.C.; Becker, C.B.; Burnett-Bowie, S.A.; Mannstadt, M. Long-term follow-up of patients with hypoparathyroidism. J. Clin. Endocrinol. Metab. 2012, 97, 4507–4514. [Google Scholar] [CrossRef]
- Downs, J.; Wilson, K.; Made, F.; Malherbe, F.; Panieri, E.; Cairncross, L. Post-operative Transient Hypoparathyroidism: Incidence and Risk Factors. Ann. Afr. Surg. 2017, 14, 76–81. [Google Scholar] [CrossRef]
- Coimbra, C.; Monteiro, F.; Oliveira, P.; Ribeiro, L.; de Almeida, M.G.; Condé, A. Hypoparathyroidism following thyroidectomy: Predictive factors. Acta Otorrinolaringol. Esp. 2017, 68, 106–111. [Google Scholar] [CrossRef]
- Cho, J.N.; Park, W.S.; Min, S.Y. Predictors and risk factors of hypoparathyroidism after total thyroidectomy. Int. J. Surg. 2016, 34, 47–52. [Google Scholar] [CrossRef]
- Carr, A.A.; Yen, T.W.; Fareau, G.G.; Cayo, A.K.; Misustin, S.M.; Evans, D.B.; Wang, T.S. A single parathyroid hormone level obtained 4 hours after total thyroidectomy predicts the need for postoperative calcium supplementation. J. Am. Coll. Surg. 2014, 219, 757–764. [Google Scholar] [CrossRef]
- Zhou, R.; Wang, M.; Wang, M.; Chen, Q.; Yuan, J. Analysis of Risk Factors for Hypoparathyroidism After Total Thyroidectomy. Front. Surg. 2021, 8, 668498. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vanderlei, F.A.; Vieira, J.G.; Hojaij, F.C.; Cervantes, O.; Kunii, I.S.; Ohe, M.N.; Santos, R.O.; Abrahão, M. Parathyroid hormone: An early predictor of symptomatic hypocalcemia after total thyroidectomy. Arq. Bras. Endocrinol. Metabol. 2012, 56, 168–172. [Google Scholar] [CrossRef] [PubMed]
- Lončar, I.; Dulfer, R.R.; Massolt, E.T.; Timman, R.; de Rijke, Y.B.; Franssen, G.J.H.; Burger, P.J.W.A.; Smit, C.; van der Horst, F.A.L.; Peeters, R.P.; et al. Postoperative parathyroid hormone levels as a predictor for persistent hypoparathyroidism. Eur. J. Endocrinol. 2020, 183, 149–159. [Google Scholar] [CrossRef] [PubMed]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid Off. J. Am. Thyroid Assoc. 2016, 26, 1–133. [Google Scholar] [CrossRef] [PubMed]
- Brandi, M.L.; Bilezikian, J.P.; Shoback, D.; Bouillon, R.; Clarke, B.L.; Thakker, R.V.; Khan, A.A.; Potts, J.T., Jr. Management of Hypoparathyroidism: Summary Statement and Guidelines. J. Clin. Endocrinol. Metab. 2016, 101, 2273–2283. [Google Scholar] [CrossRef]
- Algethami, R.F.; Algarni, F.; Fallatah, S.; Almehmadi, R.A.; Aljuaid, H.; Alsalem, A.S.; Mahfouz, M.E.M.; Alosaimi, M. Prevalence and Risk Factors for Hypoparathyroidism Following Total Thyroidectomy in Taif City. Cureus 2022, 14, e32460. [Google Scholar] [CrossRef]
- Puzziello, A.; Rosato, L.; Innaro, N.; Orlando, G.; Avenia, N.; Perigli, G.; Calò, P.G.; De Palma, M. Hypocalcemia following thyroid surgery: Incidence and risk factors. A longitudinal multicenter study comprising 2,631 patients. Endocrine 2014, 47, 537–542. [Google Scholar] [CrossRef]
- Wang, X.; Wang, S.L.; Cao, Y.; Li, C.Q.; He, W.; Guo, Z.M. Postoperative hypoparathyroidism after thyroid operation and exploration of permanent hypoparathyroidism evaluation. Front. Endocrinol. 2023, 14, 1182062. [Google Scholar] [CrossRef]
- Ritter, K.; Elfenbein, D.; Schneider, D.F.; Chen, H.; Sippel, R.S. Hypoparathyroidism after total thyroidectomy: Incidence and resolution. J. Surg. Res. 2015, 197, 348–353. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Manzini, G.; Malhofer, F.; Weber, T. Can preoperative vitamin D deficiency predict postoperative hypoparathyroidism following thyroid surgery? Langenbecks Arch. Surg. 2019, 404, 55–61. [Google Scholar] [CrossRef]
- Cherian, A.J.; Ponraj, S.; Gowri, S.M.; Ramakant, P.; Paul, T.V.; Abraham, D.T.; Paul, M.J. The role of vitamin D in post-thyroidectomy hypocalcemia: Still an enigma. Surgery 2016, 159, 532–538. [Google Scholar] [CrossRef]
- Al-Khatib, T.; Althubaiti, A.M.; Althubaiti, A.; Mosli, H.H.; Alwasiah, R.O.; Badawood, L.M. Severe vitamin D deficiency: A significant predictor of early hypocalcemia after total thyroidectomy. Otolaryngol. Head Neck Surg. 2015, 152, 424–431. [Google Scholar] [CrossRef] [PubMed]
- Tabanera, J.A.V.; Gómez, J.; Brabyn, P.; Puerta, A.; Barranquero, A.G.; Cebrián, J.M. Does Vitamin D Deficiency Really Increase the Risk of Post-surgical Hypoparathyroidism? Indian J. Otolaryngol. Head Neck Surg. 2023, 75, 1719–1723. [Google Scholar] [CrossRef] [PubMed]
- Kandil, E.; Krishnan, B.; Noureldine, S.I.; Yao, L.; Tufano, R.P. Hemithyroidectomy: A Meta-Analysis of Postoperative Need for Hormone Replacement and Complications. ORL 2013, 75, 6–17. [Google Scholar] [CrossRef]
- Grodski, S.; Farrell, S. Early postoperative PTH levels as a predictor of hypocalcaemia and facilitating safe early discharge after total thyroidectomy. Asian J. Surg. 2007, 30, 178–182. [Google Scholar] [CrossRef]
- Calvo Espino, P.; Rivera Bautista, J.Á.; Artés Caselles, M.; González, J.S.; Pavía, A.G.; García-Oria, M.J.; Caravaca-Fontán, F.; de la Poza, J.L.L.; Turrión, V.S. Serum levels of intact parathyroid hormone on the first day after total thyroidectomy as predictor of permanent hypoparathyroidism. Uso del valor de la hormona paratiroidea intacta en el primer día postoperatorio tras tiroidectomía total como predictor de hipoparatiroidismo permanente. Endocrinol. Diabetes Nutr. (Engl. Ed.) 2019, 66, 195–201. [Google Scholar] [CrossRef]
- Wang, W.; Meng, C.; Ouyang, Q.; Xie, J.; Li, X. Magnesemia: An independent risk factor of hypocalcemia after thyroidectomy. Cancer Manag. Res. 2019, 11, 8135–8144. [Google Scholar] [CrossRef]
- Carvalho, G.B.; Giraldo, L.R.; Lira, R.B.; Macambira, I.B.M.; Tapia, M.A.; Kohler, H.F.; Novoa, J.A.; Kowalski, L.P. Preoperative vitamin D deficiency is a risk factor for postoperative hypocalcemia in patients undergoing total thyroidectomy: Retrospective cohort study. Sao Paulo Med. J. 2019, 137, 241–247. [Google Scholar] [CrossRef]
- Chen, Z.; Zhao, Q.; Du, J.; Wang, Y.; Han, R.; Xu, C.; Chen, X.; Shu, M. Risk factors for postoperative hypocalcaemia after thyroidectomy: A systematic review and meta-analysis. J. Int. Med. Res. 2021, 49, 300060521996911. [Google Scholar] [CrossRef]
- Rosario, P.W.; Mourão, G.F. Noninvasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP): A review for clinicians. Endocr. Relat. Cancer 2019, 26, R259–R266. [Google Scholar] [CrossRef]
- Nawrot, I.; Pragacz, A.; Pragacz, K.; Grzesiuk, W.; Barczyński, M. Total thyroidectomy is associated with increased prevalence of permanent hypoparathyroidism. Med. Sci. Monit. 2014, 20, 1675–1681. [Google Scholar] [CrossRef]
- Xue, S.H.; Li, Z.Y.; Wu, W.Z. Risk factors and prediction of postoperative hypoparathyroidism among patients with papillary thyroid carcinoma. Transl. Cancer Res. 2019, 8, 422–428. [Google Scholar] [CrossRef] [PubMed]
- Papaleontiou, M.; Hughes, D.T.; Guo, C.; Banerjee, M.; Haymart, M.R. Population-Based Assessment of Complications Following Surgery for Thyroid Cancer. J. Clin. Endocrinol. Metab. 2017, 102, 2543–2551. [Google Scholar] [CrossRef] [PubMed]
- Ning, K.; Yu, Y.; Zheng, X.; Luo, Z.; Jiao, Z.; Liu, X.; Wang, Y.; Liang, Y.; Zhang, Z.; Ye, X.; et al. Risk factors of transient and permanent hypoparathyroidism after thyroidectomy: A systematic review and meta-analysis. Int. J. Surg. 2024, 110, 5047–5062. [Google Scholar] [CrossRef] [PubMed]
- Chisholm, E.J.; Kulinskaya, E.; Tolley, N.S. Systematic review and meta-analysis of the adverse effects of thyroidectomy combined with central neck dissection as compared with thyroidectomy alone. Laryngoscope 2009, 119, 1135–1139. [Google Scholar] [CrossRef]
- Zhao, W.J.; Luo, H.; Zhou, Y.M.; Dai, W.Y.; Zhu, J.Q. Evaluating the effectiveness of prophylactic central neck dissection with total thyroidectomy for cN0 papillary thyroid carcinoma: An updated meta-analysis. Eur. J. Surg. Oncol. 2017, 43, 1989–2000. [Google Scholar] [CrossRef]
- Salem, F.A.; Bergenfelz, A.; Nordenström, E.; Almquist, M. Central lymph node dissection and permanent hypoparathyroidism after total thyroidectomy for papillary thyroid cancer: Population-based study. Br. J. Surg. 2021, 108, 684–690. [Google Scholar] [CrossRef]
- Akerström, G.; Malmaeus, J.; Bergström, R. Surgical anatomy of human parathyroid glands. Surgery 1984, 95, 14–21. [Google Scholar]
- Gan, X.; Feng, J.; Deng, X.; Shen, F.; Lu, J.; Liu, Q.; Cai, W.; Chen, Z.; Guo, M.; Xu, B. The significance of Hashimoto’s thyroiditis for postoperative complications of thyroid surgery: A systematic review and meta-analysis. Ann. R. Coll. Surg. Engl. 2021, 103, 223–230. [Google Scholar] [CrossRef]
Frequency | Percentage | ||
---|---|---|---|
Age (years) Median (Q1–Q3) 43 (35–52) | <20 | 12 | 1.8 |
20–40 | 265 | 39.0 | |
41–60 | 332 | 48.9 | |
61–80 | 70 | 10.3 | |
Sex | Male | 122 | 18.0 |
Female | 557 | 82.0 | |
Underlying thyroid hormonal status | Hyperthyroidism | 51 | 7.5 |
Hypothyroidism | 45 | 6.6 | |
Euthyroid | 583 | 85.9 | |
Underlying parathyroid disease | Primary hyperparathyroidism | 17 | 2.5 |
Frequency | Percentage | ||
---|---|---|---|
Indication of surgery | Grave’s Disease | 7 | 1.0 |
Bethesda V–VI | 218 | 32.1 | |
Bethesda III–IV | 202 | 29.7 | |
Benign multi-nodular goiter | 252 | 37.1 | |
Type of surgery | Total thyroidectomy | 472 | 69.5 |
Completion thyroidectomy | 9 | 1.3 | |
Lobectomy | 198 | 29.2 | |
Neck dissection | Central lymph node dissection | 99 | 14.6 |
Lateral lymph node dissection | 79 | 11.6 | |
Pathology | Malignant | 368 | 54.2 |
Benign | 297 | 43.7 | |
Premalignant (NIFTP) | 14 | 2.1 | |
* Type of malignancy | Papillary thyroid cancer | 345 | 93.8 |
Follicular thyroid cancer | 14 | 3.8 | |
Medullary thyroid cancer | 2 | 0.5 | |
Anaplastic thyroid cancer | 1 | 0.3 | |
Poorly differentiated thyroid carcinoma | 4 | 1.1 | |
Lymphoma | 2 | 0.5 | |
† ATA risk classification of DTC (PTC and FTC) cases | Low | 229 | 63.8 |
Intermediate | 103 | 28.7 | |
High | 27 | 7.5 |
Frequency | Percentage | |
---|---|---|
* Hypoparathyroidism | ||
Cases with hypoparathyroidism | 228 | 35.3 |
Cases without hypoparathyroidism | 418 | 64.7 |
† Recovery of hypoparathyroidism | ||
Transient hypoparathyroidism | 115 | 81.0 |
Permanent hypoparathyroidism | 27 | 19.0 |
Time of recovery of transient hypoparathyroidism | ||
<2 months | 64 | 55.7 |
2–3 months | 30 | 26.1 |
3–6 months | 21 | 18.3 |
Total Median (Q1–Q3) | Hypoparathyroidism Median (Q1–Q3) | No Hypoparathyroidism Median (Q1–Q3) | p-Value | |
---|---|---|---|---|
Preoperative vitamin D level (nmol/L) | 59.4 (42.2–79.7) | 56 (42–75) | 60 (42–81) | 0.3 |
Immediate preoperaive corrected calcium level (mmol/L) | 2.3 (2.23–2.4) | 2.28 (2.2–2.35) | 2.35 (2.27–2.42) | 0.001 |
Immediate postoperaive corrected calcium level (mmol/L) | 2.2 (2.05–2.3) | 1.97 (1.8–2.1) | 2.25 (2.2–2.32) | 0.001 |
Immediate postoperative PTH level (pmol/L) | 4.14 (2–7.2) | 2.9 (0.9–5.5) | 4.8 (2.3–8) | 0.001 |
Factor | Hypoparathyroidism | p-Value | |
---|---|---|---|
Yes Frequency (Percentage) | No Frequency (Percentage) | ||
Age: Median (Q1–Q3) (Years) | 42 (35–50) | 44 (35–53) | 0.17 |
Sex | |||
Male | 38 (16.7%) | 81 (19.4%) | 0.381 |
Female | 190 (83.3%) | 335 (80.1%) | |
Underlying comorbidities | |||
Hyperthyroidism | 16 (7%) | 33 (7.9%) | 0.68 |
Hypothyroidism | 18 (7.9%) | 25 (6%) | 0.35 |
Euthyroid | 194 (85.1%) | 358 (86.1%) | 0.72 |
Underlying parathyroid disease | 5 (2.2%) | 12 (2.9%) | 0.6 |
Indication of surgery | |||
Grave’s disease | 2 (0.9%) | 5 (1.2%) | 0.8 |
Bethesda V–VI | 82 (36%) | 129 (31%) | 0.14 |
Bethesda III–IV | 58 (25.4%) | 131 (31.3%) | 0.07 |
Multi-nodular goiter | 86 (37.7%) | 151 (36.1%) | 0.7 |
Type of surgery | |||
Total thyroidectomy | 185 (81.1%) | 278 (66.5%) | <0.001 |
Completion thyroidectomy | 6 (2.6%) | 2 (0.5%) | 0.04 |
Lobectomy | 37 (16.2%) | 136 (32.5%) | <0.001 |
Central lymph node dissection | |||
Yes | 40 (17.5%) | 56 (13.4%) | 0.146 |
No | 188 (82.5%) | 360 (86.1%) | |
Lateral lymph node dissection | |||
Yes | 25 (11%) | 53 (12.7%) | 0.51 |
No | 203 (89%) | 363 (86.8%) | |
Pathology | |||
Benign | 95 (41.7%) | 177 (42.3%) | 0.83 |
Malignant | 131 (57.5%) | 227 (54.3%) | 0.34 |
Premalignant (NIFTP) | 1 (0.4%) | 13 (3.1%) | 0.03 |
Type of malignancy | |||
Papillary thyroid cancer | 123 (53.9%) | 213 (51%) | 0.56 |
Follicular thyroid cancer | 4 (1.8%) | 9 (2.2%) | 0.66 |
Medullary thyroid cancer | 0 (0%) | 2 (0.5%) | 0.30 |
Anaplastic thyroid cancer | 0 (0%) | 1 (0.24%) | 0.45 |
Poorly differentiated thyroid carcinoma | 2 (0.9%) | 2 (0.5%) | 0.54 |
Lymphoma | 2 (0.9%) | 0 (0%) | 0.05 |
ATA risk classification of differentiated thyroid cancer cases | |||
Low risk | 65 (51.2%) | 156 (70.3%) | <0.001 |
Intermediate risk | 50 (39.4%) | 52 (23.4%) | 0.002 |
High risk | 12 (9.4%) | 14 (6.3%) | 0.29 |
Preoperative vitamin D level | |||
Normal | 41 (18%) | 86 (20.6%) | 0.10 |
Low | 98 (43%) | 158 (38%) | |
Preoperative corrected calcium level | |||
Normal | 167 (73.2%) | 329 (78.7%) | 0.107 |
Low | 4 (1.8%) | 3 (0.7%) | |
Immediate postoperative PTH level | |||
Normal | 81 (35.5%) | 187 (45%) | <0.001 |
Low | 44 (19.3%) | 33 (7.9%) | |
Immediate postoperative corrected calcium level | |||
Normal | 0 | 418 (100%) | NA |
Low | 228 (100%) | 0 |
Factor | Hypoparathyroidism | |
---|---|---|
OR (95% CI) | p-Value | |
Age | 0.99 (0.98–1) | 0.161 |
Underlying thyroid hormonal status | ||
Hyperthyroidism | 0.89 (0.5–1.6) | 0.7 |
Hypothyroidism | 1.3 (0.7–2.4) | 0.377 |
Type of surgery | ||
Total thyroidectomy | 2.7 (1.8–4.1) | 0.005 |
Completion thyroidectomy | 8.4 (2–35) | 0.004 |
Lobectomy | 0.4 (0.2–0.5) | <0.0001 |
Neck dissection | ||
Central lymph node dissection | 1.4 (0.9–2.2) | 0.13 |
Lateral lymph node dissection | 0.9 (0.5–1.5) | 0.7 |
Pathology | ||
Benign | 7.2 (0.98–59) | 0.057 |
Malignant | 6.2 (0.89–54) | 0.061 |
Premalignant (NIFTP) | 0.14 (0.02–1.1) | 0.06 |
ATA risk classification of differentiated thyroid cancer cases | ||
Low risk | 0.5 (0.2–1.1) | 0.08 |
Intermediate risk | 1.2 (0.5–2.8) | 0.84 |
High risk | 1.5 (0.7–3.4) | 0.3 |
Low immediate postoperative PTH level | 3.1 (1.9–5.3) | <0.001 |
Factor | Hypoparathyroidism | ||
---|---|---|---|
Transient Frequency (Percentage) | Permanent Frequency (Percentage) | p-Value | |
Age: Median (Q1–Q3) (Years) | 42 (33–49) | 45 (36–53) | 0.378 |
Sex | |||
Female | 20 (17.4%) | 4 (14.8%) | 0.748 |
Male | 95 (82.6%) | 23 (85.2%) | |
Underlying comorbidities | |||
Hyperthyroidism | 6 (5.2%) | 2 (7.4%) | 0.65 |
Hypothyroidism | 5 (4.3%) | 4 (14.8%) | 0.044 |
Euthyroid | 104 (90.4%) | 21 (77.8%) | 0.07 |
Underlying parathyroid disease | 4 (3.5%) | 1 (3.7%) | 0.9 |
Indication of surgery | |||
Grave’s Disease | 1 (0.9%) | 0 (0%) | 0.62 |
Bethesda V–VI | 40 (34.8%) | 12 (44.1%) | 0.45 |
Bethesda III–IV | 34 (29.6%) | 4 (14.8%) | 0.21 |
Multi-nodular goiter | 40 (34.8%) | 11 (40.7%) | 0.78 |
Type of surgery | |||
Total thyroidectomy | 96 (83.5%) | 24 (88.9%) | 0.31 |
Completion thyroidectomy | 3 (2.6%) | 2 (7.4%) | 0.201 |
Lobectomy | 16 (13.9%) | 1 (3.7%) | 0.16 |
Central lymph node dissection | |||
Yes | 15 (13%) | 10 (37%) | 0.03 |
No | 100 (87%) | 17 (63%) | |
Lateral lymph node dissection | |||
Yes | 18 (15.7%) | 2 (7.4%) | 0.268 |
No | 97 (84.3%) | 25 (92.6%) | |
Pathology | |||
Benign | 52 (45.2%) | 9 (33.3%) | 0.37 |
Malignant | 62 (53.9%) | 18 (66.7%) | 0.34 |
Premalignant (NIFTP) | 1 (0.9%) | 0 (0%) | 0.62 |
Type of malignancy | |||
Papillary thyroid cancer | 59 (51.3%) | 18 (66.7%) | 0.205 |
Follicular thyroid cancer | 1 (0.9%) | 0 (0%) | 0.66 |
Poorly differentiated thyroid cancer | 1 (0.9%) | 0 (0%) | 0.38 |
Lymphoma | 1 (0.9%) | 0 (0%) | 0.38 |
ATA risk classification of differentiated thyroid cancer cases | |||
Low risk | 31 (51.7%) | 7 (38.9%) | 0.274 |
Intermediate risk | 26 (43.3%) | 8 (44.4%) | 0.97 |
High risk | 3 (5.0%) | 3 (16.7%) | 0.11 |
Preoperative vitamin D level | |||
Normal | 25 (21.7%) | 8 (29.9%) | 0.50 |
Low | 58 (50.4%) | 13 (48.1%) | |
Preoperative corrected calcium level | |||
Normal | 100 (87%) | 22 (81.5%) | 0.5 |
Low | 2 (1.7%) | 1 (3.7%) | |
Immediate postoperative PTH level | |||
Normal | 52 (69.3%) | 10 (37.0%) | 0.015 |
Low | 23 (30.7%) | 14 (51.9%) | |
Immediate postoperative corrected calcium level | |||
Normal | 0 (0%) | 0 (0%) | NA |
Low | 115 (100%) | 27 (100%) |
Permanent Hypoparathyroidism | ||
---|---|---|
OR (95% CI) | p-Value | |
Central lymph node dissection | 4.03 (1.5–10.5) | 0.004 |
Low immediate postoperative PTH level | 2.56 (1.01–6.5) | 0.049 |
Hyperthyroidism | 1.7 (0.3–8.7) | 0.635 |
Hypothyroidism | 3.96 (1.1–16) | 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Argan, R.J.; Alkhafaji, D.M.; AlQahtani, S.Y.; Al Elq, A.H.; Almajid, F.M.; Alkhaldi, N.K.; Al Ghareeb, Z.A.; Osman, M.F.; Albaker, W.I.; Albisher, H.M.; et al. Prevalence and Predictors of Postoperative Hypoparathyroidism: A Multicenter Observational Study. J. Clin. Med. 2025, 14, 2436. https://doi.org/10.3390/jcm14072436
Al Argan RJ, Alkhafaji DM, AlQahtani SY, Al Elq AH, Almajid FM, Alkhaldi NK, Al Ghareeb ZA, Osman MF, Albaker WI, Albisher HM, et al. Prevalence and Predictors of Postoperative Hypoparathyroidism: A Multicenter Observational Study. Journal of Clinical Medicine. 2025; 14(7):2436. https://doi.org/10.3390/jcm14072436
Chicago/Turabian StyleAl Argan, Reem J., Dania M. Alkhafaji, Shaya Y. AlQahtani, Abdulmohsen H. Al Elq, Feras M. Almajid, Njoud K. Alkhaldi, Zahra A. Al Ghareeb, Moutaz F. Osman, Waleed I. Albaker, Hassan M. Albisher, and et al. 2025. "Prevalence and Predictors of Postoperative Hypoparathyroidism: A Multicenter Observational Study" Journal of Clinical Medicine 14, no. 7: 2436. https://doi.org/10.3390/jcm14072436
APA StyleAl Argan, R. J., Alkhafaji, D. M., AlQahtani, S. Y., Al Elq, A. H., Almajid, F. M., Alkhaldi, N. K., Al Ghareeb, Z. A., Osman, M. F., Albaker, W. I., Albisher, H. M., Elamin, Y. A., Al-Saeed, J. Y., Al Qambar, M. H., Alwosaibei, A., Aljawair, R. O., Ismaeel, F. E., AlSulaiman, R. S., Al Zayer, J. G., Abu Quren, A. M., ... Alnuwaysir, M. J. (2025). Prevalence and Predictors of Postoperative Hypoparathyroidism: A Multicenter Observational Study. Journal of Clinical Medicine, 14(7), 2436. https://doi.org/10.3390/jcm14072436