Effectiveness of a Simplified Checklist to Overcome the Inertia of Treatment Implementation in ACS Patients with High Comorbidity Burden
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Design and Implementation of the Checklist
2.3. Data Source and Definitions
2.4. Statistical Analysis and Clinical Endpoints
2.5. Ethics
3. Results
3.1. Baseline Characteristics
3.2. Implementation Rates by CCI in Standard and Checklist Care
3.3. Ninety-Day Clinical Outcomes
3.4. Subgroup and Sensitivity Analysis
4. Discussion
Limitations and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Virani, S.S.; Alonso, A.; Aparicio, H.J.; Benjamin, E.J.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Cheng, S.; Delling, F.N.; et al. Heart Disease and Stroke Statistics—2021 Update. Circulation 2021, 143, e254–e743. [Google Scholar] [PubMed]
- Lee, J.M.; Choi, K.H.; Song, Y.B.; Lee, J.-Y.; Lee, S.-J.; Lee, S.Y.; Kim, S.M.; Yun, K.H.; Ch, J.Y.; Kim, C.J.; et al. Intravascular Imaging–Guided or Angiography-Guided Complex PCI. N. Engl. J. Med. 2023, 388, 1668–1679. [Google Scholar] [PubMed]
- Szummer, K.; Wallentin, L.; Lindhagen, L.; Alfredsson, J.; Erlinge, D.; Held, C.; James, S.; Kellerth, T.; Lindahl, B.; Ravn-Fischer, A.; et al. Relations between implementation of new treatments and improved outcomes in patients with non-ST-elevation myocardial infarction during the last 20 years: Experiences from SWEDEHEART registry 1995 to 2014. Eur. Heart J. 2018, 39, 3766–3776. [Google Scholar] [PubMed]
- Bebb, O.; Hall, M.; Fox, K.A.A.; Dondo, T.B.; Timmis, A.; Bueno, H.; Schiele, F.; Gale, C.P. Performance of hospitals according to the ESC ACCA quality indicators and 30-day mortality for acute myocardial infarction: National cohort study using the United Kingdom Myocardial Ischaemia National Audit Project (MINAP) register. Eur. Heart J. 2017, 38, 974–982. [Google Scholar]
- Than, M.P.; Pickering, J.W.; Dryden, J.M.; Lord, S.J.; Aitken, S.A.; Aldous, S.J.; Allan, K.E.; Ardagh, M.W.; Bonning, J.W.; Callender, R.; et al. ICare-ACS (Improving Care Processes for Patients With Suspected Acute Coronary Syndrome). Circulation 2018, 137, 354–363. [Google Scholar]
- Cannon, C.P.; Johnson, E.B.; Cermignani, M.; Scirica, B.M.; Sagarin, M.J.; Walls, R.M. Emergency department thrombolysis critical pathway reduces door-to-drug times in acute myocardial infarction. Clin. Cardiol. 1999, 22, 17–20. [Google Scholar]
- Park, Y.S.; Chung, S.P.; You, J.S.; Kim, M.J.; Chung, H.S.; Hong, J.H.; Lee, H.S.; Wang, J.; Park, I. Effectiveness of a multidisciplinary critical pathway based on a computerised physician order entry system for ST-segment elevation myocardial infarction management in the emergency department: A retrospective observational study. BMJ Open 2016, 6, e011429. [Google Scholar]
- Ariza-Solé, A.; Alegre, O.; Elola, F.J.; Fernández, C.; Formiga, F.; Martínez-Sellés, M.; Bernal, J.L.; Segura, J.V.; Iñíguez, A.; Bertomeu, V.; et al. Management of myocardial infarction in the elderly. Insights from Spanish Minimum Basic Data Set. Eur. Heart J. Acute Cardiovasc. Care 2017, 8, 242–251. [Google Scholar]
- Roe, M.T.; Peterson, E.D.; Newby, L.K.; Chen, A.Y.; Pollack, C.V.; Brindis, R.G., Jr.; Harrington, R.A.; Christenson, R.H.; Smith, S.C.; Califf, R.M.; et al. The influence of risk status on guideline adherence for patients with non-ST-segment elevation acute coronary syndromes. Am. Heart J. 2006, 151, 1205–1213. [Google Scholar]
- Amann, U.; Kirchberger, I.; Heier, M.; Thilo, C.; Kuch, B.; Peters, A.; Meisinger, C. Predictors of non-invasive therapy and 28-day-case fatality in elderly compared to younger patients with acute myocardial infarction: An observational study from the MONICA/KORA Myocardial Infarction Registry. BMC Cardiovasc. Disord. 2016, 16, 151. [Google Scholar]
- Ranasinghe, I.; Rong, Y.; Du, X.; Wang, Y.; Gao, R.; Patel, A.; Wu, Y.; Iedema, R.; Hao, Z.; Hu, D.; et al. System Barriers to the Evidence-Based Care of Acute Coronary Syndrome Patients in China. Circ. Cardiovasc. Qual. Outcomes 2014, 7, 209–216. [Google Scholar]
- Jollis, J.G.; DeLong, E.R.; Peterson, E.D.; Muhlbaier, L.H.; Fortin, D.F.; Califf, R.M.; Mark, D.B. Outcome of Acute Myocardial Infarction According to the Specialty of the Admitting Physician. N. Engl. J. Med. 1996, 335, 1880–1887. [Google Scholar] [PubMed]
- Fox, K.A.A.; Dabbous, O.H.; Goldberg, R.J.; Pieper, K.S.; Eagle, K.A.; Van de Werf, F.; Avezum, Á.; Goodman, S.G.; Flather, M.D.; Anderson, F.A.; et al. Prediction of risk of death and myocardial infarction in the six months after presentation with acute coronary syndrome: Prospective multinational observational study (GRACE). BMJ (Clin. Res. Ed) 2006, 333, 1091. [Google Scholar]
- Fox, K.A.A.; Steg, P.G.; Eagle, K.A.; Goodman, S.G.; Anderson, F.A.; Granger, C.B.; Flather, M.D.; Budaj, A.; Quill, A.; Gore, J.M.; et al. Decline in Rates of Death and Heart Failure in Acute Coronary Syndromes, 1999–2006. JAMA 2007, 297, 1892. [Google Scholar] [CrossRef] [PubMed]
- Killip, T.; Kimball, J.T. Treatment of myocardial infarction in a coronary care unit. Am. J. Cardiol. 1967, 20, 457–464. [Google Scholar] [CrossRef]
- Charlson, M.E.; Charlson, R.E.; Peterson, J.C.; Marinopoulos, S.S.; Briggs, W.M.; Hollenberg, J.P. The Charlson comorbidity index is adapted to predict costs of chronic disease in primary care patients. J. Clin. Epidemiol. 2008, 61, 1234–1240. [Google Scholar]
- Beska, B.; Mills, G.B.; Ratcovich, H.; Wilkinson, C.; Damluji, A.A.; Kunadian, V. Impact of multimorbidity on long-term outcomes in older adults with non-ST elevation acute coronary syndrome in the North East of England: A multi-centre cohort study of patients undergoing invasive care. BMJ Open 2022, 12, e061830. [Google Scholar]
- Bagnall, A.J.; Goodman, S.G.; Fox, K.A.A.; Yan, R.T.; Gore, J.M.; Cheema, A.N.; Huynh, T.; Chauret, D.; Fitchett, D.H.; Langer, A.; et al. Influence of Age on Use of Cardiac Cathe-terization and Associated Outcomes in Patients With Non-ST-Elevation Acute Coronary Syndromes. Am. J. Cardiol. 2009, 103, 1530–1536. [Google Scholar] [CrossRef]
- Avezum, A.; Makdisse, M.; Spencer, F.; Gore, J.M.; Fox, K.A.A.; Montalescot, G.; Eagle, K.A.; White, K.; Mehta, R.H.; Knobel, E.; et al. Impact of age on management and outcome of acute coronary syndrome: Observations from the global registry of acute coronary events (GRACE). Am. Heart J. 2005, 149, 67–73. [Google Scholar] [CrossRef]
- Fox, K.A.; Anderson, F.A.; Dabbous, O.H., Jr.; Steg, P.G.; López-Sendón, J.; Van de Werf, F.; Budaj, A.; Gurfinkel, E.P.; Goodman, S.G.; Brieger, D. Intervention in acute coronary syndromes: Do patients undergo intervention on the basis of their risk characteristics? The Global Registry of Acute Coronary Events (GRACE). Heart 2007, 93, 177–182. [Google Scholar]
- Byrne, R.A.; Rossello, X.; Coughlan, J.J.; Barbato, E.; Berry, C.; Chieffo, A.; Claeys, M.J.; Dan, G.-A.; Dweck, M.R.; Galbraith, M.; et al. 2023 ESC Guidelines for the management of acute coronary syndromes. Eur. Heart J. 2023, 44, 3720–3826. [Google Scholar] [CrossRef]
- Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Chaitman, B.R.; Bax, J.J.; Morrow, D.A.; White, H.D. Fourth Universal Definition of Myocardial Infarction (2018). Circulation 2018, 138, e618–e651. [Google Scholar] [CrossRef]
Baseline | IPTW | SMD (Baseline) | SMD (IPTW) | ||||
---|---|---|---|---|---|---|---|
Overall (N = 2005) | Standard (N = 1499) | Checklist (N = 506) | Standard (N = 1994.48) | Checklist (N = 2071.37) | |||
Baseline Characteristics | Mean (SD) | Mean (SD) | Mean (SD) | Mean | Mean | ||
Age (years) | 74.53 (14.3) | 74.71 (14.55) | 74.02 (13.59) | 74.56 | 74.00 | −0.05 | −0.04 |
Male sex | 59.3% | 57.5% | 64.6% | 59.2% | 61.0% | 0.15 | 0.04 |
Underlying malignancy | 11.2% | 11.4% | 10.7% | 11.2% | 11.6% | −0.02 | 0.01 |
Metastatic cancer | 9.0% | 9.2% | 8.5% | 9.1% | 9.3% | −0.02 | 0.01 |
Diabetes | 35.2% | 34.1% | 38.3% | 35.5% | 36.0% | 0.09 | 0.01 |
Diabetic microvascular ds | 19.7% | 19.7% | 19.8% | 19.8% | 18.1% | 0.00 | −0.04 |
Familial hyperlipidemia | 0.8% | 0.9% | 0.8% | 0.8% | 0.7% | −0.01 | −0.01 |
Dementia | 9.0% | 10.4% | 5.1% | 9.0% | 6.6% | −0.20 | −0.09 |
Hypertension | 53.9% | 54.4% | 52.4% | 54.4% | 57.1% | −0.04 | 0.05 |
Prior ACS | 20.4% | 21.9% | 16.0% | 20.4% | 16.1% | −0.15 | −0.11 |
Prior CAD | 3.1% | 3.1% | 3.2% | 3.0% | 2.0% | 0.00 | −0.06 |
Atrial fibrillation | 11.3% | 11.6% | 10.3% | 11.3% | 11.3% | −0.04 | 0.00 |
Heart failure | 17.5% | 18.6% | 14.4% | 17.7% | 14.0% | −0.11 | −0.10 |
Stroke | 16.2% | 17.0% | 14.0% | 16.0% | 14.4% | −0.08 | −0.04 |
Peripheral artery disease | 6.3% | 6.0% | 7.3% | 6.4% | 6.6% | 0.05 | 0.01 |
Prior GI bleeding | 8.6% | 9.0% | 7.5% | 8.7% | 8.3% | −0.06 | −0.01 |
CKD stage | |||||||
1 or none | 15.9% | 15.7% | 16.6% | 15.8% | 15.0% | 0.02 | −0.02 |
2 | 30.9% | 29.9% | 33.8% | 30.6% | 30.9% | 0.08 | 0.01 |
3 | 29.6% | 29.3% | 30.4% | 29.9% | 33.7% | 0.02 | 0.08 |
4 | 12.1% | 13.0% | 9.7% | 12.1% | 10.2% | −0.10 | −0.06 |
5 | 11.4% | 12.1% | 9.5% | 11.7% | 10.2% | −0.08 | −0.05 |
Connective tissue disease | 2.0% | 1.8% | 2.8% | 2.0% | 2.1% | 0.06 | 0.01 |
Syncope | 0.7% | 0.8% | 0.6% | 0.7% | 0.4% | −0.03 | −0.04 |
COPD | 5.5% | 5.2% | 6.5% | 5.5% | 5.9% | 0.06 | 0.02 |
Prior PCI | 0.9% | 0.5% | 2.0% | 0.7% | 0.7% | 0.13 | 0.01 |
Prior CABG | 1.4% | 1.5% | 1.0% | 1.4% | 1.0% | −0.05 | −0.04 |
ACS type | |||||||
NSTEMI | 47.4% | 40.7% | 67.0% | 47.1% | 41.1% | 0.55 | −0.12 |
NSTEMI as a secondary diagnosis | 24.7% | 27.5% | 16.6% | 24.8% | 25.7% | −0.26 | 0.02 |
Unstable angina | 14.0% | 15.7% | 9.1% | 14.1% | 18.8% | −0.20 | 0.13 |
Delayed presentation of STEMI | 13.9% | 16.1% | 7.3% | 14.0% | 14.4% | −0.28 | 0.01 |
Admission year | |||||||
2016 | 26.4% | 32.2% | 9.1% | 26.5% | 27.1% | −0.60 | 0.01 |
2017 | 31.8% | 29.2% | 39.7% | 31.7% | 30.7% | 0.22 | −0.02 |
2018 | 28.0% | 24.9% | 37.0% | 28.2% | 28.6% | 0.26 | 0.01 |
2019 | 13.8% | 13.6% | 14.2% | 13.6% | 13.7% | 0.02 | 0.00 |
Admission unit | |||||||
female ward 1 | 11.3% | 11.4% | 11.1% | 11.2% | 11.4% | −0.01 | 0.01 |
female ward 2 | 11.9% | 12.0% | 11.9% | 12.2% | 11.2% | 0.00 | −0.03 |
female ward 3 | 10.3% | 10.8% | 8.9% | 10.3% | 8.6% | −0.06 | −0.06 |
male ward 1 | 14.7% | 12.8% | 20.4% | 14.4% | 14.7% | 0.20 | 0.01 |
male ward 2 | 15.1% | 14.0% | 18.6% | 15.5% | 15.3% | 0.12 | −0.01 |
male ward 3 | 13.2% | 12.0% | 16.8% | 12.9% | 12.5% | 0.14 | −0.01 |
specialty wards | 13.7% | 16.7% | 4.7% | 13.8% | 17.3% | −0.39 | 0.10 |
surgical wards | 9.7% | 10.4% | 7.7% | 9.7% | 9.0% | −0.09 | −0.02 |
CCI | 5.47 (3.61) | 5.54 (3.61) | 5.24 (3.59) | 5.48 | 5.27 | −0.08 | −0.06 |
Killip class | |||||||
1 | 56.2% | 54.4% | 61.7% | 56.2% | 56.0% | 0.15 | 0.00 |
2 | 8.6% | 8.2% | 9.7% | 8.7% | 7.4% | 0.05 | −0.05 |
3 | 20.2% | 20.1% | 20.4% | 19.8% | 19.7% | 0.01 | 0.00 |
4 | 15.0% | 17.3% | 8.3% | 15.2% | 16.8% | −0.27 | 0.04 |
Laboratory result | |||||||
Creatinine (μmol/L) | 180.64 (210.16) | 184.64 (214.01) | 168.82 (192.07) | 183.01 | 182.13 | −0.08 | 0.00 |
Hemoglobin (g/L) | 11.83 (2.47) | 11.65(2.48) | 12.36(2.38) | 11.82 | 12.05 | 0.29 | 0.09 |
Platelet (1000/µL) | 233.67 (95.57) | 233.60(96.70) | 233.89 (92.24) | 233.39 | 234.83 | 0.00 | 0.02 |
RDW (%) | 14.31 (1.91) | 14.42 (2.00) | 13.96 (1.55) | 14.31 | 14.32 | −0.26 | 0.00 |
High sensitivity troponin T (ng/L) | 2156.22 (7086.72) | 2347.12 (8036.76) | 1576.82 (2693.75) | 2117.57 | 1823.48 | −0.13 | −0.05 |
Bilirubin (μmol/L) | 10.44 (9.06) | 10.68 (9.70) | 9.73 (6.81) | 10.47 | 10.63 | −0.11 | 0.02 |
eGFR (mL/min/1.73 m2) | 57.50 (32.89) | 56.72 (33.15) | 60.04 (32.02) | 57.27 | 56.81 | 0.10 | −0.01 |
Neutrophil-lymphocyte ratio | 7.60 (9.74) | 8.02 (10.57) | 6.34 (6.56) | 7.62 | 7.74 | −0.19 | 0.01 |
Checklist | Standard | p Value | |
---|---|---|---|
Treatment | |||
Aspirin | 93.5% | 80.4% | <0.0001 |
P2y12 inhibitor | 88.1% | 65.8% | <0.0001 |
P2y12 inhibitor type | |||
clopidogrel | 68.7% | 54.9% | 0.0013 |
ticagrelor | 19.4% | 11.0% | 0.003 |
ACEI/ARB/ARNI | 81.4% | 59.2% | <0.0001 |
Beta-blocker | 75.0% | 63.2% | 0.0012 |
Statin | 98.5% | 83.9% | <0.0001 |
Statin intensity | |||
low intensity | 9.5% | 13.2% | 0.1 |
moderate intensity | 69.5% | 52.3% | <0.0001 |
high intensity | 19.5% | 18.3% | 0.68 |
Heparin | 58.9% | 85.0% | <0.0001 |
Early invasive | 51.0% | 20.7% | <0.0001 |
All subsequent revascularization | 42.8% | 28.2% | 0.0001 |
* Estimated 90-day all-cause mortality | 14.6% | 25.1% | 0.0006 |
Lost to FU | 3.7% | 2.0% | 0.27 |
Method | Adjusted Hazard Ratio | (95% CI) | Multivariate Cox Model p-Value | |
---|---|---|---|---|
All-factor multivariate cox regression model | ||||
CCI tertile 1 | 0.83 | 0.53–1.29 | 0.399 | |
CCI tertile 2 | 0.62 | 0.41–0.94 | 0.025 | |
CCI tertile 3 | 0.72 | 0.50–1.03 | 0.068 | |
Overall | 0.68 | 0.55–0.85 | 0.001 | |
IPTW with regression * | Adjusted log-rank test p-value | |||
CCI tertile 1 | 0.70 | 0.41–1.18 | 0.183 | 0.34 |
CCI tertile 2 | 0.58 | 0.37–0.90 | 0.016 | 0.0552 |
CCI tertile 3 | 0.58 | 0.39–0.88 | 0.010 | 0.0074 |
Overall | 0.64 | 0.49–0.84 | 0.001 | 0.0055 |
1:1 Propensity score matching | Log-rank test p-value | |||
CCI tertile 1 | 0.83 | 0.50–1.36 | 0.452 | 0.4501 |
CCI tertile 2 | 0.63 | 0.41–0.99 | 0.044 | 0.0405 |
CCI tertile 3 | 0.75 | 0.50–1.15 | 0.187 | 0.1830 |
Overall | 0.76 | 0.59–0.99 | 0.043 | 0.0416 |
CCI as continuous variable | ||||
Checklist | 0.61 | 0.46–0.81 | 0.001 | |
CCI (per point increase) | 1.08 | 1.05–1.11 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, J.X.; Chan, Y.-H.; Almarzooq, Z.I.; Lam, C.-C.S.; Wong, Y.-T.A.; Tun, H.N.; Yiu, K.-H.; Tse, H.-F.; Chan, H.-W.; Tam, C.-C.F. Effectiveness of a Simplified Checklist to Overcome the Inertia of Treatment Implementation in ACS Patients with High Comorbidity Burden. J. Clin. Med. 2025, 14, 2469. https://doi.org/10.3390/jcm14072469
Fang JX, Chan Y-H, Almarzooq ZI, Lam C-CS, Wong Y-TA, Tun HN, Yiu K-H, Tse H-F, Chan H-W, Tam C-CF. Effectiveness of a Simplified Checklist to Overcome the Inertia of Treatment Implementation in ACS Patients with High Comorbidity Burden. Journal of Clinical Medicine. 2025; 14(7):2469. https://doi.org/10.3390/jcm14072469
Chicago/Turabian StyleFang, Jonathan X., Yap-Hang Chan, Zaid I. Almarzooq, Cheung-Chi Simon Lam, Yiu-Tung Anthony Wong, Han Naung Tun, Kai-Hang Yiu, Hung-Fat Tse, Hon-Wah Chan, and Chor-Cheung Frankie Tam. 2025. "Effectiveness of a Simplified Checklist to Overcome the Inertia of Treatment Implementation in ACS Patients with High Comorbidity Burden" Journal of Clinical Medicine 14, no. 7: 2469. https://doi.org/10.3390/jcm14072469
APA StyleFang, J. X., Chan, Y.-H., Almarzooq, Z. I., Lam, C.-C. S., Wong, Y.-T. A., Tun, H. N., Yiu, K.-H., Tse, H.-F., Chan, H.-W., & Tam, C.-C. F. (2025). Effectiveness of a Simplified Checklist to Overcome the Inertia of Treatment Implementation in ACS Patients with High Comorbidity Burden. Journal of Clinical Medicine, 14(7), 2469. https://doi.org/10.3390/jcm14072469