Prevalence and Potential Impact of Gastrointestinal Insufflation During Cardiopulmonary Resuscitation
Abstract
:1. Introduction
2. Materials and Methods
3. Inclusion and Exclusion Criteria
4. Grouping and Study Endpoints
5. Statistical Analysis
6. Results
7. Discussion
8. Limitations
- (1)
- Insufflation probably takes place as part of the pre-hospital resuscitation measures [28,29]. Accordingly, factors such as the duration of ventilation of an unsecured airway, the duration of the resuscitation, the change in the ventilation method, primary rhythm, and time of defibrillation would have been of particular importance. We suspect that prolonged resuscitation or prolonged ventilation of an unsecured airway is preceded by extensive insufflation. Given the time-critical nature of the operation, such documentation is often incomplete and inaccurate. It is therefore unfortunately not possible to analyze the written documentation of the ambulance service.
- (2)
- Further patient characteristics such as height, weight, and body mass index might be of interest for a more in-depth interpretation of the data. We suspect that the potential consequences of insufflation increase the larger the volume and the smaller the person. Due to the retrospective study design, it was not possible for us to include these data. For an optimized statistical analysis, patient characteristics such as weight, height, and BMI should be included in further studies.
- (3)
- As has been shown in animal experiments, the insufflation of gas leads to an increase in abdominal and thoracic pressure with associated adverse effects [8,9,10]. Whether these observations can be transferred to humans is unclear. A change in intra-abdominal pressure could not be demonstrated by our study design, even if the comparable pathomechanism in the context of surgical capnoperitoneum [25,26] seems conceivable.
- (4)
- In accordance with the retrospective design of this study, a selection bias could not be completely ruled out. This study only included OHCA patients who were transported to the hospital under ongoing resuscitation or after ROSC was achieved. Patients who were pronounced dead at the scene could therefore not be included in this study. It is unclear how this possible bias affects the volumetry results.
- (5)
- Based on this study, it is not possible to prove a causal chain between insufflated air, intra-abdominal pressure, and outcome. The poorer outcome in patients with increased gas volumes could also be explained by insufficient oxygenation because of insufficient ventilation or prolonged resuscitation attempts. In this case, the increased gas in the MDT would merely be a confounder.
- (6)
- The gas volume was determined using a threshold function. The measurement range was defined as −500 to −1024 HU. By definition, air has an HU value of −1000 HU. As the air is humidified and voxels are sometimes a mix of solids and gas in the MDT, the measuring range for the volumetry must be adjusted accordingly. If the measuring range is larger, a larger volume is calculated. After reviewing various studies on this topic, we ultimately decided in favor of a threshold range from −500 to −1024 HU [22,30,31]. Whether this optimally represents the actual volume is unclear. Furthermore, to the best of our knowledge, there is no method that includes the expected compression of the gas due to the intra-abdominal pressure increase in the calculation.
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lawes, E.G.; Baskett, P.J. Pulmonary aspiration during unsuccessful cardiopulmonary resuscitation. Intensive Care Med. 1987, 13, 379–382. [Google Scholar] [CrossRef] [PubMed]
- Stone, B.J.; Chantler, P.J.; Baskett, P.J. The incidence of regurgitation during cardiopulmonary resuscitation: A comparison between the bag valve mask and laryngeal mask airway. Resuscitation 1998, 38, 3–6. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.Y.; Kim, S.; Han, S.I.; Hwang, S.O.; Jung, W.J.; Roh, Y.I.; Cha, K.C. Gastric Inflation in Prehospital Cardiopulmonary Resuscitation: Aspiration Pneumonia and Resuscitation Outcomes. Rev. Cardiovasc. Med. 2023, 24, 198. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wenzel, V.; Idris, A.H.; Banner, M.J.; Kubilis, P.S.; Williams, J.L., Jr. Influence of tidal volume on the distribution of gas between the lungs and stomach in the nonintubated patient receiving positive-pressure ventilation. Crit. Care Med. 1998, 26, 364–368. [Google Scholar]
- Mc Williams, S.R.; Mc Laughlin, P.D.; O’Connor, O.J.; Desmond, A.N.; Ní Laoíre, A.; Shanahan, F.; Quigley, E.M.; Maher, M.M. Computed tomography assessment of intestinal gas volumes in functional gastrointestinal disorders. J. Neurogastroenterol. Motil. 2012, 18, 419–425. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wenzel, V.; Idris, A.H.; Banner, M.J.; Kubilis, P.S.; Band, R.; Williams, J.L., Jr.; Lindner, K.H. Respiratory system compliance decreases after cardiopulmonary resuscitation and stomach inflation: Impact of large and small tidal volumes on calculated peak airway pressure. Resuscitation 1998, 38, 113–118. [Google Scholar] [CrossRef] [PubMed]
- O’Malley, C.; Cunningham, A.J. Physiologic changes during laparoscopy. Anesthesiol. Clin. N. Am. 2001, 19, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Braun, P.; Putzer, G.; Strapazzon, G.; Wimmer, A.; Schnell, H.; Arnold, H.; Neururer, S.; Brugger, H.; Wenzel, V.; Paal, P. Effects of Stomach Inflation on Cardiopulmonary Function and Survival During Hemorrhagic Shock: A Randomized, Controlled, Porcine Study. Shock 2016, 46, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Paal, P.; Schmid, S.; Herff, H.; von Goedecke, A.; Mitterlechner, T.; Wenzel, V. Excessive stomach inflation causing gut ischaemia. Resuscitation 2009, 80, 142. [Google Scholar] [CrossRef] [PubMed]
- Naito, H.; Hanafusa, H.; Hongo, T.; Yumoto, T.; Yorifuji, T.; Weissman, A.; Rittenberger, J.C.; Guyette, F.X.; Fujishima, M.; Maeyama, H.; et al. Effect of stomach inflation during cardiopulmonary resuscitation on return of spontaneous circulation in out-of-hospital cardiac arrest patients: A retrospective observational study. Resuscitation 2023, 193, 109994. [Google Scholar] [CrossRef] [PubMed]
- do Nascimento, P.R.L.; de Gouvêa, L.V.; Leite, T.R.S.; Teixeira, A.L.S.; da Silva, P.C.A.R.; Filho, J.A.D.F.; Helayel, M.J.S.A.; Júnior, A.N.; da Cunha, I.M.; Mendonça, J.S.; et al. Cardiorespiratory effects of different intraabdominal pressures in sheep: An experimental study. Physiol. Rep. 2022, 10, e15506. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huber-Wagner, S.; Lefering, R.; Qvick, L.M.; Körner, M.; Kay, M.V.; Pfeifer, K.J.; Reiser, M.; Mutschler, W.; Kanz, K.G. Effect of whole-body CT during trauma resuscitation on survival: A retrospective, multicentre study. Lancet 2009, 373, 1455–1461. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Graef, J.; Leidel, B.A.; Bressem, K.K.; Vahldiek, J.L.; Hamm, B.; Niehues, S.M. Computed Tomography Imaging in Simulated Ongoing Cardiopulmonary Resuscitation: No Need to Switch Off the Chest Compression Device during Image Acquisition. Diagnostics 2021, 11, 1122. [Google Scholar] [CrossRef] [PubMed]
- Lott, C.; Truhlář, A.; Alfonzo, A.; Barelli, A.; González-Salvado, V.; Hinkelbein, J.; Nolan, J.P.; Paal, P.; Perkins, G.D.; Thies, K.C.; et al. European Resuscitation Council Guidelines 2021: Cardiac arrest in special circumstances. Resuscitation 2021, 161, 152–219. [Google Scholar]
- Paal, P.; Neurauter, A.; Loedl, M.; Brandner, J.; Herff, H.; Knotzer, H.; Mitterlechner, T.; von Goedecke, A.; Bale, R.; Lindner, K.H.; et al. Effects of stomach inflation on haemodynamic and pulmonary function during spontaneous circulation in pigs. Resuscitation 2009, 80, 470–477. [Google Scholar] [CrossRef] [PubMed]
- Kikinis, R.; Pieper, S.D.; Vosburgh, K. 3D Slicer: A platform for subject-specific image analysis, visualization, and clinical support. In Intraoperative Imaging Image-Guided Therapy; Jolesz, F.A., Ed.; Springer: Berlin/Heidelberg, Germany, 2014; Volume 3, pp. 277–289. ISBN 978-1-4614-7656-6/978-1-4614-7657-3. [Google Scholar]
- Davies, J.D.; Costa, B.K.; Asciutto, A.J. Approaches to manual ventilation. Respir Care. 2014, 59, 810–822, discussion 822–824. [Google Scholar] [CrossRef] [PubMed]
- Bendezú, R.A.; Barba, E.; Burri, E.; Cisternas, D.; Malagelada, C.; Segui, S.; Accarino, A.; Quiroga, S.; Monclus, E.; Navazo, I.; et al. Intestinal gas content and distribution in health and in patients with functional gut symptoms. Neurogastroenterol. Motil. 2015, 27, 1249–1257. [Google Scholar] [CrossRef] [PubMed]
- Fitz-Clarke, J.R. Fast or Slow Rescue Ventilations: A Predictive Model of Gastric Inflation. Respir. Care 2018, 63, 502–509. [Google Scholar] [CrossRef] [PubMed]
- Caspary, W.F.; Lembcke, B. Intestinale Gasbildung—Meteorismus und Flatulenz. In Darmkrankheiten; Caspary, W.F., Stein, J., Eds.; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar] [CrossRef]
- Hershey, M.D.; Hannenberg, A.A. Gastric Distention and Rupture from Oxygen Insufflation during Fiberoptic Intubation. Anesthesiology 1996, 85, 1479–1480. [Google Scholar]
- Perez, F.; Accarino, A.; Azpiroz, F.; Quiroga, S.; Malagelada, J.R. Gas distribution within the human gut: Effect of meals. Am. J. Gastroenterol. 2007, 102, 842–849. [Google Scholar] [CrossRef] [PubMed]
- Jalali, S.M.; Emami-Razavi, H.; Mansouri, A. Gastric perforation after cardiopulmonary resuscitation. Am. J. Emerg. Med. 2012, 30, 2091.e1–2091.e2. [Google Scholar] [CrossRef] [PubMed]
- Virkkunen, I.; Kujala, S.; Ryynänen, S.; Vuori, A.; Pettilä, V.; Yli-Hankala, A.; Silfvast, T. Bystander mouth-to-mouth ventilation and regurgitation during cardiopulmonary resuscitation. J. Intern. Med. 2006, 260, 39–42, Erratum in J. Intern. Med. 2008, 264, 509. [Google Scholar] [CrossRef] [PubMed]
- Kauczor, H.U.; Heussel, C.P.; Fischer, B.; Klamm, R.; Mildenberger, P.; Thelen, M. Assessment of lung volumes using helical CT at inspiration and expiration: Comparison with pulmonary function tests. AJR Am. J. Roentgenol. 1998, 171, 1091–1095. [Google Scholar] [CrossRef] [PubMed]
- McWilliams, S.R.; O’Connor, O.J.; McGarrigle, A.M.; O’Neill, S.B.; Quigley, E.M.; Shanahan, F.; Maher, M.M. CT-based estimation of intracavitary gas volumes using threshold-based segmentation: In vitro study to determine the optimal threshold range. J. Med. Imaging Radiat. Oncol. 2012, 56, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Ruetzler, K.; Leung, S.; Chmiela, M.; Rivas, E.; Szarpak, L.; Khanna, S.; Mao, G.; Drake, R.L.; Sessler, D.I.; Turan, A. Regurgitation and pulmonary aspiration during cardio-pulmonary resuscitation (CPR) with a laryngeal tube: A pilot crossover human cadaver study. PLoS ONE 2019, 14, e0212704. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Johnson, S.; McCracken, J.; Baidoun, F. Tension pneumoperitoneum after bystander cardiopulmonary resuscitation: A case report. Int. J. Surg. Case Rep. 2018, 42, 227–232. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nagelkerke, N.J.D. A note on a general definition of the coefficient of determination. Biometrika 1991, 78, 691–692. [Google Scholar] [CrossRef]
- Galizia, G.; Prizio, G.; Lieto, E.; Castellano, P.; Pelosio, L.; Imperatore, V.; Ferrara, A.; Pignatelli, C. Hemodynamic and pulmonary changes during open, carbon dioxide pneumoperitoneum and abdominal wall-lifting cholecystectomy: A prospective, randomized study. Surg. Endosc. 2001, 15, 477–483. [Google Scholar] [CrossRef] [PubMed]
- Barnes, T.A.; Ward, J.J. Limiting gastric inflation. Respir. Care 2018, 63, 635–636. [Google Scholar]
Patients | Age in Years | ||||
---|---|---|---|---|---|
n = 361 | Male | Female | Median | Mean Value | Min/Max |
total | 255 | 106 | 67 | 64.2 | 18/99 |
Surviving | 82 | 28 | 64 | 62.6 | 27/99 |
Deceased | 173 | 78 | 69 | 64.9 | 18/97 |
Patients | Age | ||||
---|---|---|---|---|---|
n = 172 | Male | Female | Median | Mean Value | Min/Max |
total | 118 | 54 | 68 | 64.9 | 18/99 |
Surviving | 41 | 13 | 66 | 62.9 | 29/99 |
Deceased | 77 | 41 | 70 | 65.1 | 18/97 |
Survived | Deceased | Total | |
---|---|---|---|
Median Volume GI-Tract | 380.65 | 757.40 | 636.46 |
Average Volume GI-Tract ± SD | 750.53 ± 817.59 | 1178.05 ± 1133.18 | 1043.83 ± 1060.83 |
Max. Volume GI-Tract | 3119.03 | 5549.79 | 5549.79 |
Min. Volume GI-Tract | 86.32 | 96.38 | 86.32 |
Median Volume Stomach | 100.85 | 172.35 | 148.42 |
Average Volume Stomach ± SD | 342.78 ± 490.89 | 451.83 ± 500.04 | 417.59 ± 498.34 |
Max. Volume Stomach | 1995.78 | 2113.31 | 2133.31 |
Min. Volume Stomach | 0.00 | 0.00 | 0.00 |
Median Volume Intestine | 209.76 | 394.68 | 341.25 |
Median Volume Intestine ± SD | 407.74 ± 503.21 | 726.22 ± 838.27 | 626.23 ± 762.40 |
Max. Volume Intestine | 2556.47 | 4724.13 | 4724.13 |
Min Volume Intestine | 45.15 | 71.94 | 45.13 |
95% Confidence Interval | ||||||
---|---|---|---|---|---|---|
Regression Coefficient b | Standard Error | Sig. | OR | Lower Value | Upper Value | |
Age | 0.015 | 0.010 | 0.135 | 1.015 | 0.995 | 1.034 |
Female | 0.499 | 0.382 | 0.191 | 1.647 | 0.779 | 3.481 |
Gas volume intestine | 0.001 | 0.000 | 0.021 | 1.001 | 1.000 | 1.002 |
95% Confidence Interval | |||||
---|---|---|---|---|---|
Area | Standard Error | Sig. | Lower Value | Upper Value | |
Stomach Gas | 0.574 | 0.047 | 0.112 | 0.483 | 0.665 |
Intestinal Gas | 0.671 | 0.045 | 0.000 | 0.583 | 0.760 |
Gastrointestinal gas | 0.650 | 0.046 | 0.001 | 0.560 | 0.740 |
Pulmonal Effects | Cardiac Effects |
---|---|
Reduced tidal and residual volume as well as compliance | Reduced contractility |
Increased atelectasis | Reduced cardiac output |
Increased shunt volume | Reduced diastolic filling |
Increased pulmonary artery pressure | Compression vena cava inferior |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fichtl, M.A.; Henne, S.A.; Bogner-Flatz, V.; Dommasch, M.; Zehnder, P.; Kanz, K.G.; Flatz, W. Prevalence and Potential Impact of Gastrointestinal Insufflation During Cardiopulmonary Resuscitation. J. Clin. Med. 2025, 14, 2511. https://doi.org/10.3390/jcm14072511
Fichtl MA, Henne SA, Bogner-Flatz V, Dommasch M, Zehnder P, Kanz KG, Flatz W. Prevalence and Potential Impact of Gastrointestinal Insufflation During Cardiopulmonary Resuscitation. Journal of Clinical Medicine. 2025; 14(7):2511. https://doi.org/10.3390/jcm14072511
Chicago/Turabian StyleFichtl, Maximilian Andreas, Sophia Anna Henne, Viktoria Bogner-Flatz, Michael Dommasch, Philipp Zehnder, Karl Georg Kanz, and Wilhelm Flatz. 2025. "Prevalence and Potential Impact of Gastrointestinal Insufflation During Cardiopulmonary Resuscitation" Journal of Clinical Medicine 14, no. 7: 2511. https://doi.org/10.3390/jcm14072511
APA StyleFichtl, M. A., Henne, S. A., Bogner-Flatz, V., Dommasch, M., Zehnder, P., Kanz, K. G., & Flatz, W. (2025). Prevalence and Potential Impact of Gastrointestinal Insufflation During Cardiopulmonary Resuscitation. Journal of Clinical Medicine, 14(7), 2511. https://doi.org/10.3390/jcm14072511