Clinical Significance of Blood Cell-Derived Inflammation Markers in Assessing Potential Early and Late Postoperative Complications in Patients with Colorectal Cancer: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion and Exclusion Processes
2.3. Data Extraction and Quality Assessment of the Obtained Information
2.4. Statistical Analysis
3. Results
3.1. General Characteristics of the Reviewed Publications
3.2. Clinical Characteristics of the Study Groups
3.3. The Significance of NLR in Predicting Postoperative Outcomes
The Predictive Value of Postoperative NLR for Postoperative Outcomes
3.4. The Significance of PLR in Predicting Postoperative Outcomes
3.5. The Predictive Value of SII in the Reviewed Studies
3.6. The Predictive Value of LMR in the Reviewed Studies
4. Discussions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
NLR | Neutrophil-to-Lymphocyte Ratio |
PLR | Platelet-to-Lymphocyte Ratio |
SII | Systemic Immune–Inflammation Index |
LMR | Lymphocyte-to-Monocyte Ratio |
OS | overall survival |
DFS | disease-free survival |
AL | anastomotic leaks |
IAI | intra-abdominal infection |
GPS | Glasgow Prognostic Score |
CRP | C-reactive protein |
NPS | Naples Prognostic Score, |
CAR | C-reactive protein/albumin ratio |
PNI | Prognostic Nutritional Index |
CONUT | Controlling Nutritional Status Index |
References
- Santucci, C.; Carioli, G.; Malvezzi, M.; Boffetta, P.; Collatuzzo, G.; Levi, F.; La Vecchia, C.; Negri, E. European cancer mortality predictions for the year 2024 with focus on colorectal cancer. Ann. Oncol. 2024, 35, 308–316. [Google Scholar] [PubMed]
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer statistics, 2024. CA Cancer J. Clin. 2024, 74, 12–49. [Google Scholar] [CrossRef] [PubMed]
- Morgan, E.; Arnold, M.; Gini, A.; Lorenzoni, V.; Cabasag, C.J.; Laversanne, M.; Vignat, J.; Ferlay, J.; Murphy, N.; Bray, F. Global burden of colorectal cancer in 2020 and 2040: Incidence and mortality estimates from GLOBOCAN. Gut 2023, 72, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.G.; Karlitz, J.J.; Yen, T.; Lieu, C.H.; Boland, C.R. The rising tide of early-onset colorectal cancer: A comprehensive review of epidemiology, clinical features, biology, risk factors, prevention, and early detection. Lancet Gastroenterol. Hepatol. 2022, 7, 262–274. [Google Scholar] [CrossRef]
- Kim, B.J.; Hanna, M.H. Colorectal cancer in young adults. J. Surg. Oncol. 2023, 127, 1247–1251. [Google Scholar] [CrossRef]
- Mauri, G.; Sartore-Bianchi, A.; Russo, A.G.; Marsoni, S.; Bardelli, A.; Siena, S. Early-onset colorectal cancer in young individuals. Mol. Oncol. 2019, 13, 109–131. [Google Scholar] [CrossRef]
- Ionescu, E.M.; Tieranu, C.G.; Maftei, D.; Grivei, A.; Olteanu, A.O.; Arbanas, T.; Calu, V.; Musat, S.; Mihaescu-Pintia, C.; Cucu, I.C. Colorectal Cancer Trends of 2018 in Romania—An Important Geographical Variation Between Northern and Southern Lands and High Mortality Versus European Averages. J. Gastrointest. Cancer 2021, 52, 222–228. [Google Scholar] [CrossRef]
- Weitz, J.; Koch, M.; Debus, J.; Höhler, T.; Galle, P.R.; Büchler, M.W. Colorectal cancer. Lancet 2005, 365, 153–165. [Google Scholar] [CrossRef]
- Zhou, E.; Rifkin, S. Colorectal Cancer and Diet: Risk Versus Prevention, Is Diet an Intervention? Gastroenterol. Clin. N. Am. 2021, 50, 101–111. [Google Scholar] [CrossRef]
- Murphy, C.C.; Zaki, T.A. Changing epidemiology of colorectal cancer—Birth cohort effects and emerging risk factors. Nat. Rev. Gastroenterol. Hepatol. 2024, 21, 25–34. [Google Scholar] [CrossRef]
- Gonzalez-Gutierrez, L.; Motiño, O.; Barriuso, D.; de la Puente-Aldea, J.; Alvarez-Frutos, L.; Kroemer, G.; Palacios-Ramirez, R.; Senovilla, L. Obesity-Associated Colorectal Cancer. Int. J. Mol. Sci. 2024, 25, 8836. [Google Scholar] [CrossRef] [PubMed]
- Armaghany, T.; Wilson, J.D.; Chu, Q.; Mills, G. Genetic alterations in colorectal cancer. Gastrointest. Cancer Res. 2012, 5, 19–27. [Google Scholar] [PubMed]
- Rosty, C.; Young, J.P.; Walsh, M.D.; Clendenning, M.; Walters, R.J.; Pearson, S.; Pavluk, E.; Nagler, B.; Pakenas, D.; Jass, J.R.; et al. Colorectal carcinomas with KRAS mutation are associated with distinctive morphological and molecular features. Mod. Pathol. 2013, 26, 825–834. [Google Scholar] [CrossRef]
- Li, Q.; Kawakami, K.; Ruszkiewicz, A.; Bennett, G.; Moore, J.; Iacopetta, B. BRAF mutations are associated with distinctive clinical, pathological and molecular features of colorectal cancer independently of microsatellite instability status. Mol. Cancer 2006, 5, 2. [Google Scholar] [CrossRef]
- Korniluk, A.; Koper, O.; Kemona, H.; Dymicka-Piekarska, V. From inflammation to cancer. Ir. J. Med. Sci. 2017, 186, 57–62. [Google Scholar] [CrossRef]
- Disis, M.L. Immune regulation of cancer. J. Clin. Oncol. 2010, 28, 4531–4538. [Google Scholar] [CrossRef]
- Pandya, P.H.; Murray, M.E.; Pollok, K.E.; Renbarger, J.L. The Immune System in Cancer Pathogenesis: Potential Therapeutic Approaches. J. Immunol. Res. 2016, 2016, 4273943. [Google Scholar] [CrossRef]
- Krzystek-Korpacka, M.; Diakowska, D.; Kapturkiewicz, B.; Bębenek, M.; Gamian, A. Profiles of circulating inflammatory cytokines in colorectal cancer (CRC), high cancer risk conditions, and health are distinct. Cancer Lett. 2013, 337, 107–114. [Google Scholar] [CrossRef]
- Panaiotti, L.; Lankov, T.; Petrov, A.; Olkina, A.; Karachun, A. Systemic Inflammatory Response Markers Pattern after Colorectal Resections for Colorectal Cancer. Eur. J. Surg. Oncol. 2020, 46, e92. [Google Scholar] [CrossRef]
- Bae, J.H.; Lee, C.S.; Han, S.R.; Park, S.M.; Lee, Y.S.; Lee, I.K. Differences in the prognostic impact of post-operative systemic inflammation and infection in colorectal cancer patients. Surg. Oncol. 2020, 35, 374–381. [Google Scholar] [CrossRef]
- Feng, S.; Li, Z.; Liu, M.; Ye, Q.; Xue, T.; Yan, B. Postoperative serum interleukin-6 levels correlate with survival in stage I–III colorectal cancer. BMC Gastroenterol. 2023, 23, 156. [Google Scholar] [CrossRef] [PubMed]
- Straatman, J.; Cuesta, M.A.; Tuynman, J.B.; Veenhof, A.A.F.A.; Bemelman, W.A.; van der Peet, D.L. C-reactive protein in predicting major postoperative complications—Are there differences in open and minimally invasive colorectal surgery? Surg. Endosc. 2018, 32, 2877–2885. [Google Scholar] [CrossRef] [PubMed]
- Kampman, S.L.; Smalbroek, B.P.; Dijksman, L.M.; Smits, A.B. Postoperative inflammatory response in colorectal cancer surgery: A meta-analysis. Int. J. Color. Dis. 2023, 38, 233. [Google Scholar] [CrossRef] [PubMed]
- Cook, E.J.; Walsh, S.R.; Farooq, N.; Alberts, J.C.; Justin, T.A.; Keeling, N.J. Post-operative neutrophil–lymphocyte ratio predicts complications following colorectal surgery. Int. J. Surg. 2007, 5, 27–30. [Google Scholar] [CrossRef]
- Shelygin, Y.A.; Sukhina, M.A.; Nabiev, E.N.; Ponomarenko, A.A.; Nagudov, M.A.; Moskalev, A.I.; Sushkov, O.I.; Achkasov, S.I. Neutrophil-to-Lymphocyte Ratio as an Infectious Complications Biomarker in Colorectal Surgery (Own Data, Systematic Review and Meta-Analysis). Koloproktologia 2020, 19, 71–92. [Google Scholar] [CrossRef]
- Park, S.H.; Woo, H.S.; Hong, I.K.; Park, E.J. Impact of Postoperative Naples Prognostic Score to Predict Survival in Patients with Stage II–III Colorectal Cancer. Cancers 2023, 15, 5098. [Google Scholar] [CrossRef]
- Galizia, G.; Lieto, E.; Auricchio, A.; Cardella, F.; Mabilia, A.; Podzemny, V.; Castellano, P.; Orditura, M.; Napolitano, V. Naples Prognostic Score, Based on Nutritional and Inflammatory Status, Is an Independent Predictor of Long-Term Outcome in Patients Undergoing Surgery for Colorectal Cancer. Dis. Colon Rectum 2017, 60, 1273–1284. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Frandsen, T.F.; Eriksen, M.B.; Hammer, D.M.G.; Christensen, J.B.; Lauridsen, M.C.; Hjørland, B. Using the Full PICO Model as a Search Tool for Systematic Reviews Resulted in Lower Recall for Some PICO Elements. J. Clin. Epidemiol. 2020, 127, 69–75. [Google Scholar] [CrossRef]
- Cochrane Library. What Is PICO? Available online: https://www.cochranelibrary.com/about-pico (accessed on 28 January 2025).
- Cuschieri, S. The STROBE Guidelines. Saudi J. Anaesth. 2019, 13 (Suppl. 1), S31–S34. [Google Scholar] [CrossRef]
- STROBE Statement. Strengthening the Reporting of Observational Studies in Epidemiology. Available online: https://www.strobe-statement.org/ (accessed on 28 January 2025).
- Vandenbroucke, J.P.; von Elm, E.; Altman, D.G.; Gøtzsche, P.C.; Mulrow, C.D.; Pocock, S.J.; Poole, C.; Schlesselman, J.J.; Egger, M. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): Explanation and Elaboration. PLoS Med. 2007, 4, e297. [Google Scholar] [CrossRef]
- Whiting, P.F.; Rutjes, A.W.S.; Westwood, M.E.; Mallett, S.; Deeks, J.J.; Reitsma, J.B.; Leeflang, M.M.G.; Sterne, J.A.C.; Bossuyt, P.M.M. QUADAS-2: A Revised Tool for the Quality Assessment of Diagnostic Accuracy Studies. Ann. Intern. Med. 2011, 155, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Caputo, D.; Caricato, M.; Coppola, A.; La Vaccara, V.; Fiore, M.; Coppola, R. Neutrophil to Lymphocyte Ratio (NLR) and Derived Neutrophil to Lymphocyte Ratio (d-NLR) Predict Non-Responders and Postoperative Complications in Patients Undergoing Radical Surgery After Neo-Adjuvant Radio-Chemotherapy for Rectal Adenocarcinoma. Cancer Investig. 2016, 34, 440–451. [Google Scholar] [CrossRef]
- Miyakita, H.; Sadahiro, S.; Saito, G.; Okada, K.; Tanaka, A.; Suzuki, T. Risk Scores as Useful Predictors of Perioperative Complications in Patients with Rectal Cancer Who Received Radical Surgery. Int. J. Clin. Oncol. 2017, 22, 324–331. [Google Scholar] [CrossRef]
- Josse, J.M.; Cleghorn, M.C.; Ramji, K.M.; Jiang, H.; Elnahas, A.; Jackson, T.D.; Okrainec, A.; Quereshy, F.A. The neutrophil-to-lymphocyte ratio predicts major perioperative complications in patients undergoing colorectal surgery. Color. Dis. 2016, 18, O236–O242. [Google Scholar] [CrossRef] [PubMed]
- Jones, H.G.; Qasem, E.; Dilaver, N.; Egan, R.; Bodger, O.; Kokelaar, R.; Evans, M.D.; Davies, M.; Beynon, J.; Harris, D. Inflammatory Cell Ratios Predict Major Septic Complications Following Rectal Cancer Surgery. Int. J. Color. Dis. 2018, 33, 857–862. [Google Scholar] [CrossRef]
- Mik, M.; Dziki, L.; Berut, M.; Trzcinski, R.; Dziki, A. Neutrophil to Lymphocyte Ratio and C-Reactive Protein as Two Predictive Tools of Anastomotic Leak in Colorectal Cancer Open Surgery. Dig. Surg. 2018, 35, 77–84. [Google Scholar] [CrossRef]
- Xia, L.J.; Li, W.; Zhai, J.C.; Yan, C.W.; Chen, J.B.; Yang, H. Significance of Neutrophil-to-Lymphocyte Ratio, Platelet-to-Lymphocyte Ratio, Lymphocyte-to-Monocyte Ratio and Prognostic Nutritional Index for Predicting Clinical Outcomes in T1-2 Rectal Cancer. BMC Cancer 2020, 20, 208. [Google Scholar] [CrossRef]
- Paliogiannis, P.; Deidda, S.; Maslyankov, S.; Paycheva, T.; Farag, A.; Mashhour, A.; Misiakos, E.; Papakonstantinou, D.; Mik, M.; Losinska, J.; et al. Blood Cell Count Indexes as Predictors of Anastomotic Leakage in Elective Colorectal Surgery: A Multicenter Study on 1432 Patients. World J. Surg. Oncol. 2020, 18, 89. [Google Scholar] [CrossRef]
- Escobar-Munguía, I.; Berea-Baltierra, R.; Morales-González, Á.; Madrigal-Santillán, E.; Anguiano-Robledo, L.; Morales-González, J.A. Prognostic Impact of the Preoperatory Neutrophil/Lymphocyte Index on Early Surgical Complications of Patients with Colorectal Cancer. Am. J. Cancer Res. 2022, 12, 3294–3302. [Google Scholar]
- Fuss, J.; Voloboyeva, A.; Polovyj, V.; Yaremkevych, R. Neutrophil to Lymphocyte Ratio in Predicting Postoperative Complications and Prognosis in Patients with Colorectal Cancer. Pol. Prz. Chir. 2022, 94, 33–37. [Google Scholar] [CrossRef]
- Dai, Y.; Sun, G.; Hu, H.; Wang, C.; Wang, H.; Zha, Y.; Sheng, Y.; Hou, J.; Bian, J.; Bo, L. Risk Factors for Postoperative Pulmonary Complications in Elderly Patients Receiving Elective Colorectal Surgery: A Retrospective Study. Front. Oncol. 2022, 12, 1002025. [Google Scholar] [CrossRef]
- Patrascu, S.; Cotofana-Graure, G.M.; Surlin, V.; Mitroi, G.; Serbanescu, M.S.; Geormaneanu, C.; Rotaru, I.; Patrascu, A.M.; Ionascu, C.M.; Cazacu, S.; et al. Preoperative Immunocite-Derived Ratios Predict Surgical Complications Better when Artificial Neural Networks Are Used for Analysis—A Pilot Comparative Study. J. Pers. Med. 2023, 13, 101. [Google Scholar] [CrossRef]
- Sugimoto, A.; Fukuoka, T.; Shibutani, M.; Kasashima, H.; Kitayama, K.; Ohira, M.; Maeda, K. Prognostic Significance of the Naples Prognostic Score in Colorectal Cancer Patients Undergoing Curative Resection: A Propensity Score Matching Analysis. BMC Gastroenterol. 2023, 23, 88. [Google Scholar] [CrossRef]
- Shevchenko, I.; Grigorescu, C.C.; Serban, D.; Cristea, B.M.; Simion, L.; Gherghiceanu, F.; Costea, A.C.; Dumitrescu, D.; Alius, C.; Tudor, C.; et al. The Value of Systemic Inflammatory Indices for Predicting Early Postoperative Complications in Colorectal Cancer. Medicina 2024, 60, 1481. [Google Scholar] [CrossRef]
- Liu, C.Q.; Yu, Z.B.; Gan, J.X.; Mei, T.M. Preoperative Blood Markers and Intra-Abdominal Infection After Colorectal Cancer Resection. World J. Gastrointest. Surg. 2024, 16, 451–462. [Google Scholar] [CrossRef]
- Ioannidis, A.; Tzikos, G.; Smprini, A.; Menni, A.E.; Shrewsbury, A.; Stavrou, G.; Paramythiotis, D.; Michalopoulos, A.; Kotzampassi, K. Negative and Positive Predictors of Anastomotic Leakage in Colorectal Cancer Patients—The Case of Neutrophil-to-Lymphocyte Ratio. Diagnostics 2024, 14, 1806. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhong, G.; Fan, K.; He, J.; Sun, Y.; Li, L. Preoperative C-Reactive Protein and Other Inflammatory Biomarkers as Predictors of Postoperative Complications in Colorectal Tumor Patients. Altern. Ther. Health Med. 2024, 30, 152–157. [Google Scholar] [PubMed]
- Sridhar, P.R.; Raghunath, R.; Jesudason, M.R.; Mittal, R. A Three-Year Retrospective Analysis: Do Nutritional and Immunological Indices Predict Postoperative Complications After Rectal Resection? Cureus 2024, 16, e55700. [Google Scholar] [CrossRef]
- Orafaie, A.; Shahabi, F.; Mehri, A.; Ansari, M.; Kasraeifar, S.; Ghiyasi, M.; Saberi-Karimian, M.; Abdollahi, A.; Tabatabaei, S.M. The Association of Preoperative Hematologic Parameters with Short-Term Clinical Outcomes in Rectal Cancer: A Feature Importance Analysis. Cancer Med. 2024, 13, e7225. [Google Scholar] [CrossRef]
- Xu, N.; Zhang, J.X.; Zhang, J.J.; Huang, Z.; Mao, L.C.; Zhang, Z.Y.; Jin, W.D. The Prognostic Value of the Neutrophil-to-Lymphocyte Ratio (NLR) and Platelet-to-Lymphocyte Ratio (PLR) in Colorectal Cancer and Colorectal Anastomotic Leakage Patients: A Retrospective Study. BMC Surg. 2025, 25, 57. [Google Scholar] [CrossRef]
- Feng, L.; Xu, R.; Lin, L.; Liao, X. Effect of the Systemic Immune-Inflammation Index on Postoperative Complications and the Long-Term Prognosis of Patients with Colorectal Cancer: A Retrospective Cohort Study. J. Gastrointest. Oncol. 2022, 13, 2333–2339. [Google Scholar] [CrossRef]
- Savlovschi, C.; Serban, D.; Trotea, T.; Borcan, R.; Dumitrescu, D. Post-surgery morbidity and mortality in colorectal cancer in elderly subjects. Chirurgia 2013, 108, 177–179. [Google Scholar]
- Fadlallah, H.; El Masri, J.; Fakhereddine, H.; Youssef, J.; Chemaly, C.; Doughan, S.; Abou-Kheir, W. Colorectal cancer: Recent advances in management and treatment. World J. Clin. Oncol. 2024, 15, 1136–1156. [Google Scholar] [CrossRef]
- Savlovschi, C.; Serban, D.; Andreescu, C.; Dascalu, A.; Pantu, H. Economic analysis of medical management applied for left colostomy. Chirurgia 2013, 108, 666–669. [Google Scholar]
- Serban, D.; Socea, B.; Badiu, C.D.; Tudor, C.; Balasescu, S.A.; Dumitrescu, D.; Trotea, A.M.; Spataru, R.I.; Vancea, G.; Dascalu, A.M.; et al. Acute surgical abdomen during the COVID-19 pandemic: Clinical and therapeutic challenges. Exp. Ther. Med. 2021, 21, 519. [Google Scholar] [CrossRef]
- Savlovschi, C.; Comandaşu, M.; Serban, D. Particularities of Diagnosis and Treatment in Synchronous Colorectal Cancers (SCC). Chirurgia 2013, 108, 43–45. [Google Scholar]
- Bojesen, R.D.; Grube, C.; Buzquurz, F.; Miedzianogora, R.E.G.; Eriksen, J.R.; Gögenur, I. Effect of modifying high-risk factors and prehabilitation on the outcomes of colorectal cancer surgery: Controlled before and after study. BJS Open 2022, 6, zrac029. [Google Scholar] [CrossRef]
- Serban, D.; Brănescu, C.M.; Smarandache, G.C.; Tudor, C.; Tănăsescu, C.; Tudosie, M.S.; Stana, D.; Costea, D.O.; Dascalu, A.M.; Spătaru, R.I. Safe surgery in day care centers: Focus on preventing medical legal issues. Rom. J. Leg Med. 2021, 29, 60–64. [Google Scholar] [CrossRef]
- Lu, H.J.; Ren, G.C.; Wang, Y.; Wang, C.Q.; Zhang, D.H. Preoperative and Postoperative Neutrophil-Lymphocyte Ratio and Platelet-Lymphocyte Ratio Measured from the Peripheral Blood of Patients with Colorectal Cancer. Cancer Manag. Res. 2025, 17, 527–540. [Google Scholar] [CrossRef]
- Rezazadeh, M.; Kamyabi, A.; Pisheh, R.G.; Noroozie, S.; Amiri, B.S.; Negahi, A.; Radkhah, H. Diagnostic value of peripheral blood inflammatory indices for clinicopathological profile of colorectal cancer: A retrospective observational study. BMC Gastroenterol. 2025, 25, 127. [Google Scholar] [CrossRef]
- Xiong, S.; Dong, L.; Cheng, L. Neutrophils in cancer carcinogenesis and metastasis. J. Hematol. Oncol. 2021, 14, 173. [Google Scholar] [CrossRef]
- Ogino, S.; Nosho, K.; Irahara, N.; Meyerhardt, J.A.; Baba, Y.; Shima, K.; Glickman, J.N.; Ferrone, C.R.; Mino-Kenudson, M.; Tanaka, N.; et al. Lymphocytic reaction to colorectal cancer is associated with longer survival, independent of lymph node count, microsatellite instability, and CpG island methylator phenotype. Clin. Cancer Res. 2009, 15, 6412–6420. [Google Scholar] [CrossRef]
- Mazaki, J.; Katsumata, K.; Kasahara, K.; Tago, T.; Wada, T.; Kuwabara, H.; Enomoto, M.; Ishizaki, T.; Nagakawa, Y.; Tsuchida, A. Neutrophil-to-lymphocyte ratio is a prognostic factor for colon cancer: A propensity score analysis. BMC Cancer 2020, 20, 922. [Google Scholar] [CrossRef]
- Tan, D.; Fu, Y.; Su, Q.; Wang, H. Prognostic role of platelet-lymphocyte ratio in colorectal cancer: A systematic review and meta-analysis. Medicine 2016, 95, e3837. [Google Scholar] [CrossRef]
- Lu, C.; Gao, P.; Yang, Y.; Chen, X.; Wang, L.; Yu, D.; Song, Y.; Xu, Q.; Wang, Z. Prognostic evaluation of platelet to lymphocyte ratio in patients with colorectal cancer. Oncotarget 2017, 8, 86287–86295. [Google Scholar] [CrossRef]
- Misiewicz, A.; Dymicka-Piekarska, V. Fashionable, but What is Their Real Clinical Usefulness? NLR, LMR, and PLR as a Promising Indicator in Colorectal Cancer Prognosis: A Systematic Review. J. Inflamm. Res. 2023, 16, 69–81. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hosseini, S.V.; Maleknejad, A.; Salem, S.A.; Pourahmad, S.; Zabangirfard, Z.; Zamani, M. The pre- and postoperative neutrophil-to-lymphocyte and platelet-to-lymphocyte ratios: The comparison of laparoscopy and laparotomy in colorectal cancer patients. Asian J. Endosc. Surg. 2022, 15, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, Y.; Hiyoshi, Y.; Daitoku, N.; Okadome, K.; Sakamoto, Y.; Yamashita, K.; Kuroda, D.; Sawayama, H.; Iwatsuki, M.; Baba, Y.; et al. Naples Prognostic Score Is a Useful Prognostic Marker in Patients with Metastatic Colorectal Cancer. Dis. Colon Rectum 2019, 62, 1485–1493. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; He, W.; Jiang, C.; Guo, G.; Ke, B.; Dai, Q.; Long, J.; Xia, L. Prognostic value of inflammation-based scores in patients receiving radical resection for colorectal cancer. BMC Cancer 2018, 18, 1102. [Google Scholar] [CrossRef]
- Ju, M.; Aoyama, T.; Fukuda, M.; Ishiguro, T.; Kano, K.; Kazama, K.; Sawazaki, S.; Tamagawa, H.; Yukawa, N.; Rino, Y. Prognostic Value of the Perioperative Systemic Inflammation Score for Patients With Curatively Resected Gastric Cancer. Cancer Diagn. Progn. 2022, 2, 627–633. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Yuan, X.; Guo, F.; Cao, J.; Wang, Y.; Zhao, X.; Dou, J.; Zeng, Q. Correlation Between NLR Combined with PLR Score and Prognosis of Hepatocellular Carcinoma After Liver Transplantation. Int. J. Gen. Med. 2024, 17, 2445–2453. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
PICO Element | Description | Inclusion Criteria | Exclusion Criteria |
---|---|---|---|
Population (P) | Patients with colorectal cancer undergoing surgical treatment | Adults (≥18 years), histologically confirmed colorectal cancer, elective/emergency surgeries | Other cancer types, pediatric patients, concurrent non-cancer-related conditions |
Intervention (I) | Assessment of systemic inflammatory markers before and/or after surgery | NLR, PLR, and SII inflammatory indices | Studies not measuring inflammatory indices or lacking relevant biomarkers |
Comparison (C) | Patients without significant postoperative complications | Comparisons between those with and without early postoperative complications | Studies lacking clear comparison groups |
Outcomes (O) | Postoperative outcomes related to inflammatory status | Early complications (≤30 days), reoperation, mortality, survival | Non-reported complications or insufficiently described outcome measures |
Stusy Design | Type of research and reporting quality | RCTs, cohort studies, observational studies, full-text articles, detailed statistical methods | Case reports, sample size < 100, conference abstracts, reviews, editorials |
Study | Clearly Stated Aim | Inclusion of Consecutive Patients | Prospective Data Collection | Endpoints Appropriate to Aim | Unbiased Assessment of Endpoint | Follow-Up Period Adequate | Loss to Follow-Up <5% | Prospective Calculation of Study Size | Total Score (Max 16) |
---|---|---|---|---|---|---|---|---|---|
Caputo D, 2016 [35] | 2 | 2 | 0 | 2 | 2 | 1 | 2 | 0 | 11 |
Miyakita S., 2016 [36] | 2 | 2 | 0 | 2 | 1 | 2 | 2 | 0 | 11 |
Josse JM, 2016 [37] | 2 | 2 | 0 | 2 | 2 | 2 | 2 | 0 | 12 |
Jones HG, 2018 [38] | 2 | 2 | 0 | 2 | 2 | 1 | 1 | 0 | 10 |
Mik M, 2018 [39] | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 15 |
Xia LJ, 2020 [40] | 2 | 2 | 0 | 2 | 1 | 1 | 2 | 0 | 10 |
Paliogiannis P, 2020 [41] | 2 | 2 | 0 | 2 | 2 | 2 | 2 | 0 | 12 |
Escobar-Munguía I, 2022 [42] | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 14 |
Fuss J, 2022 [43] | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 0 | 12 |
Dai Y, 2022 [44] | 2 | 2 | 0 | 2 | 1 | 1 | 2 | 0 | 10 |
Patrascu S, 2023 [45] | 2 | 2 | 0 | 2 | 1 | 1 | 2 | 0 | 10 |
Sugimoto A, 2023 [46] | 2 | 2 | 0 | 2 | 2 | 2 | 1 | 0 | 11 |
Shevchenko I, 2024 [47] | 2 | 2 | 0 | 2 | 2 | 2 | 1 | 0 | 11 |
Liu CQ, 2024 [48] | 2 | 2 | 0 | 2 | 1 | 1 | 2 | 0 | 10 |
Ioannidis A, 2024 [49] | 2 | 2 | 0 | 2 | 2 | 1 | 1 | 0 | 10 |
Zhang Y, 2024 [50] | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 14 |
Sridhar RP, 2024 [51] | 2 | 2 | 0 | 2 | 1 | 1 | 2 | 0 | 10 |
Orafaie A, 2024 [52] | 2 | 2 | 0 | 2 | 2 | 1 | 1 | 0 | 10 |
Xu N, 2025 [53] | 2 | 2 | 0 | 2 | 1 | 1 | 2 | 0 | 10 |
Study, Year | No. of Patients | Design | Biomarkers | Blood Samples | Tumor Location and Stage | Previous Treatment | Age (Mean, Years) | Women (%) | Early Postoperative Complications (30 Days) Analyzed | Delays and Other Outcomes |
---|---|---|---|---|---|---|---|---|---|---|
Caputo D, 2016 [35] | 87 | Retrospective | NLR PLR dNLR | Before and after neoadjuvant RCT | CRC, stages II–III | CRC stage II, neoadjuvant RCT | 67 (38–83) | 29 (33%) | All CD ≥ 3 | TRG downgrading after nRCT |
Miyakita S, 2016 [36] | 260 (56; 204) | Retrospective | NLR PNI E-PASS CRS CR-POSSUM SAS | Preoperative (pre CHT) | CRC, stages I–III | Preop RCT for stages II-III | 70 ± 28 | 70 (28%) | All; subtypes: infectious/intestinal obstruction. CD ≥ 3a; AL of CD ≥3b | - |
Josse JM, 2016 [37] | 583 | Retrospective | NLR | Pre- and postoperative D1 | CRC, stages I–III | None | 65 ± 12.5 | 243 (42%) | Major (CD ≥ 3) | - |
Jones H.G., 2018 [38] | 314 (69; 245) | Retrospective | NLR PLR | preoperative/ postoperative (the highest value) | RC, stages I–IV | CHT + RT | 67 (34–90)—controls 69 (29–88)—septic complication group | 113 (35,9%) | Subtype: septic | OS at 80 days |
Mik M, 2018 [39] | 724 (33; 691) | Prospective | NLR CRP | Postoperative, day 4 | CRC, stages I–III | None | 62.4 ± 12 | 361(49.8%) | AL; death (CD = 5) | - |
Xia LJ, 2020 [40] | 154 | Retrospective | NLR PLR LMR PNI | Preoperative | CRC, stages I–II | None | 63.7 (32–90) | 64 (41.6%) | All | 3-year OS and DFS |
Paliogiannis P., 2020 [41] | 1432 (106; 1326) | Retrospective | NLR dNLR LMR PLR | Preoperative; postoperative (days 1 and 4) | CRC, stages I–III | NA | 65.8 ± 13.7 | 615 (42.95%) | AL | - |
Escobar-Munguía I., 2022 [42] | 158 (77; 81) | Prospective | NLR PLR | Preoperative | CRC, stages II–IVA | NA | 60.6 ± 13.6 (complications) 59.9 ± 12.5 (control) | 83 (52,5%) | All | - |
Fuss J., 2022 [43] | 234 (59; 175) | Prospective | NLR PLR | Preoperative | CRC, stages I–IV | NA | 72.8 | 109 (46.6%) | Septic complications | - |
Dai Y., 2022 [44] | 638 (38; 600) | Retrospective | NLR PLR RDW SII | Preoperative; postoperative | CRC, no info | NA | 68.5 ± 6.0 | 220 (34.5%) | Pulmonary complications within 7 days | - |
Patrascu S, 2023 [45] | 281 (24; 257) | Retrospective | NLR PLR SII LMR | Preoperative | CRC, stages I–III | None | 68.70 ± 10.55 | 121 (43%) | All; subtype: AL | - |
Sugimoto A., 2023 [46] | 235 (64; 171) | Retrospective | NLR LMR PLR CAR GPS PNI CONUT NPS | Preoperative | RC, stages I–III | CHT + RT | 69 (62−75) | 78 (33.1) | All | - |
Shevchenko I., 2024 [47] | 200 (67; 133) | Retrospective | NLR PLR MLR SII | Preoperative; postoperative (days 1, 4, and 6) | CRC, stages I–IV | CHT-RT | 68 ± 10.1 | 102 (51%) | All; subtype: sepsis | - |
Liu CQ, 2024 [48] | 80 (15; 65) | Retrospective | NLR PLR SII CEA | Preoperative | CRC, stages I–III | None | 59.2 ± 12.9 | 34 (42.5%) | IAI at 30 days | - |
Ioannidis A, 2024 [49] | 245 (28; 217) | Retrospective | NLR | Preoperative; postoperative (day 0 to day 7–8 measurements) | CRC, stages I–III | NA | 74.6 ± 12.0 (L group) 74.7 ± 12.4 (non-L group) | 94 (38.3%) | AL | AL at 3 months |
Zhang Y, 2024 [50] | 109 (31; 78) | Prospective | NLR PLR CRP | Pre- and postoperative (day 2) | CRC, stages I–III | None | 62.52 ± 5.68 (complicated) vs. 61.94 ± 6.32 (non-complicated) | 44 (40.3%) | Significant, including AL, SSI, intestinal obstruction, abdominal distension, diarrhea, pulmonary infection, urinary tract infection, intra-abdominal infection, and atelectasis | - |
Sridhar RP, 2024 [51] | 199 (99; 100) | Retrospective | NLR PLR PNI | Preoperative | RC, no info | NA | 47.3 years | 57 (28.6%) | All | - |
Orafaie A, 2024 [52] | 200 | Retrospective | NLR PLR | Preoperative | RC, grades I–III | Preoperative RCT in all cases | 54.2 ± 13.8 | 84(42%) | All | 3-year OS and DFS |
Xu N, 2025 [53] | 890 (102; 788) | Retrospective | NLR PLR | Preoperative | CRC, stages I–IV | NA | 68.66 ± 12.66 | 358 (40.2%) | AL | OS at 5 yrs |
Author, Year | Mean Pre-Op NLR in Complications Group | Mean Pre-Op NLR in Controls | Odds Ratio | Pre-Op NLR “Cutoff” Value | AUC ROC | Sensitivity | Specificity | PPV | NPV | Main Findings |
---|---|---|---|---|---|---|---|---|---|---|
Caputo D, 2016 [35] | NA | NA | NA | All postoperative complications: ≥2.8 (pre-nCHT) ≥3.8 (post-nCHT) | Pre-nRCT: 0.476 (p = 072) Post-nRCT: 0.693(p = 0.006) | Pre-nRCT: NS Post-nRCT: 75% | Pre-nRCT: NS Post-nRCT: 80% | NA | NA | Pre-nRCT: NS Post-nRCT ≥ 3.8 correlated with all complications (p = 0.3) and complications with CD ≥ 3 (p = 0.049); TRG ≥ 4 (p = 0.033). |
Miyakita S, 2016 [36] | NA | NA | 2.5 (all complications) 3.65 (infectious complications) 4.51 (AL) | ≥2.21 (for AL) | NA | 83.3% (for AL) | 47.4% (for AL) | 16.1% (for AL) | 95.9% (for AL) | Pre-NLR: Significantly related to incidences of all complications (p = 0.003), infectious complications (p = 0.013), and AL (0.032) Pre-NLR: The only preoperative independent risk factor for AL. |
Josse JM, 2016 [37] | NA | NA | Major complications CD ≥ 3: 2.52 (p = 0.02) AL: 2.96 (p = 0.053, NS) | ≥2.3 | NA | NA | NA | NA | NA | Preop NLR ≥ 2.3 increases risk for major complications CD ≥ 3 (p = 0.02), but not to a specific subtype. |
Jones HG, 2018 [38] | 4.82 ± 0.43 | 3.35 ± 0.11 | 2.38 (for septic complications, p = 0.003) 1.96 (for OS, p= 0.006) | 4 (for septic complications) | NA | 33.33% (for septic complications) | 83.70% (for septic complications) | 46.38% (for septic complications) | 74.80% (for septic complications) | Preop NLR ≥ 4 predicts postop septic complications and poor OS. |
Xia LJ, 2020 [40] | NA | NA | NA | ≥2.8 (all complications, 3 yr OS, DFS) | 0.711 (3 yr OS) | 53% (3 yr OS) | 71% (3 yr OS) | NA | NA | Preop NLR ≥ 2.8 is an independent risk factor for complications (p < 0.001) and lower 3 yr OS and DFS (p < 0.001). |
Paliogiannis P., 2020 [41] | 3.30 (2.28–4.13) | 2.90 (2.10–3.90) | NS | NS | NS | NA | NA | NA | NA | Preop NLR does not predict AL. |
Escobar-Munguía I., 2022 [42] | NA | NA | 2.24 (for all complications | ≥2.6 | 0.66 (for all complications) | 66.2% (for all complications) | 50.6% (for all complications) | NA | NA | Preop NLR ≥ 2.6 increases risk of postoperative complications (p = 0.016) and is an independent risk factor. |
Fuss J., 2022 [43] | NA | NA | 9.827 (for septic complications) | ≥3 (for septic complications) | NA | NA | NA | NA | NA | Preop NLR ≥ 3 is an independent risk factor for septic complications (p = 0.016). |
Dai Y., 2022 [44] | 2.5 (1.7, 3.7) | 2.1 (1.6, 2.8) | 1.193 | NA | NA | NA | NA | NA | NA | Higher preop NLR is associated with a risk of postop pulmonary complications, but its value is lower than that of preop SII. |
Patrascu S, 2023 [45] | 6.73 ± 5.54 (AL) 7.57 ± 4.62 (CD 1,2) 7.66 ± 6.55 (CD 3,4) 6.69 ± 6.90 (CD 5) | 3.17 ± 1.7 (NAL) 3.15 ± 1.58 (no complications) | 3.159 (AL) 1.104 (overall complications) | ≥2.998 (AL) ≥ 3.26 (overall complications) | 0.711 (AL) 0.774 (overall complications) | 68.2% (AL) 73.6% (overall complications) | 56.1% (AL) 62.4% (overall complications) | NA | NA | Higher preop NLR correlates with a higher incidence of AL (p = 0.009) and overall complications (0.001). |
Sugimoto A., 2023 [46] | 2.22 (1.73−3.20) | 2.12 (1.60−2.99) | NA | ≥2.81 | 0.542 | 40.6% | 71.4% | NA | NA | Preop NLR is not significantly associated with overall complications (p = 0.155). |
Shevchenko I., 2024 [47] | NA | NA | NS | NA | NA | NA | NA | NA | NA | Preop NLR does not correlate with severe complications. |
Liu CQ, 2024 [48] | 3.43 ± 0.65 | 2.08 ± 0.84 | 1.199 | ≥2.67 | 0.890 | 86.7% | 80% | NA | NA | Preop NLR ≥ 2.67 is a good predictor of IAI (p = 0.001). |
Ioannidis A, 2024 [49] | 4.81 (2.96) | 4.88 (4.72) | NS | NA | NA | NA | NA | NA | NA | Preop NLR is not correlated with AL (p = 0.19). |
Zhang Y, 2024 [50] | 3.41 ± 0.89 | 2.12 ± 0.75 | 7.448 | ≥2.485 | 0.868 | 90.3% | 66.7% | NA | NA | Preop NLR ≥ 2.485 has a predictive value for postoperative complications. |
Sridhar RP, 2024 [51] | 4.7 ± 3.8 | 3.8 ± 2.7 | NA | ≥2.8 | <0.500 (NS) | NA | NA | NA | NA | Preop NLR is not associated with complications (p = 0.056). |
Orafaie A, 2024 [52] | NA | NA | NA | ≥2.69 (mortality) NS for surgical infections | 0.604 (mortality) | 80.5% (mortality) | 42.8% (mortality) | NA | NA | Preop NLR ≥ 2.69 correlates with mortality (at 24-month follow-up) but not with surgical infectious complications. |
Xu N, 2025 [53] | 3.65 ± 3.19 | 2.98 ± 2.83 | 1.790 (AL) 1.676 (OS) | ≥ 2.29 (AL) ≥2.61 (OS and DFS) | 0.581 (AL) 0.582 (OS and DFS) | 63% (AL) 50% (OS and DFS) | 55% (AL) 66% (OS and DFS) | NA | NA | Higher preop NLRs are correlated with the risk of AL (0.037) and poor OS and DFS, but the predictive value is low. |
Author, Year | Mean NLR in Complications Group | Mean NLR in Controls | Odds Ratio | Cutoff Value | AUC | Sensitivity | Specificity | PPV | NPV | Main Findings |
---|---|---|---|---|---|---|---|---|---|---|
Josse JM, 2016 [37] | NA | NA | NS | POD1 NLR ≥3.9 | NS | NA | NA | NA | NA | POD1 NLR is not associated with a risk of complications. |
Jones HG, 2018 [38] | POD1 6.89 ± 1.64 | POD1 12.92 ± 0.57 | NA | NA | NA | NA | NA | NA | NA | Higher PO NLR is associated with septic complications (p = 0.025) and better predictive values than pre-PLR. |
Mik M, 2018 [39] | 9.03 ± 4.13 (AL) 10.71 ± 2.08 (death) | 4.45 ± 2.25 (no AL) 8.65 ± 4.67 (survived) | NA | 6.5 | NA | 69% | 78% | 49% | 88% | Higher postop NLR values are predictors of AL and mortality (p = 0.001). |
Paliogiannis P., 2020 [41] | POD1: 9.80 (7.12–12.30) POD4: 9.60 (6.55–10.98) | POD1: 8.35 (6.00–11.80) POD4: 5.30 (3.60–7.40) | ≥7.1 | 0.744 (POD4 NLR for AL) | 72.73% (POD4 NLR for AL) | 73.44% (POD4 NLR for AL) | NA | NA | Higher postop NLR correlates with AL; POD4 NLR ≥ 7.1 predicts higher risk of AL (p < 0.001) better than pre-NLR, POD1 NLR, and PLR. | |
Dai Y., 2022 [44] | 10.1 (7.4,15.9) | 8.9 (6.1,13.4) | NS | NA | NA | NA | NA | NA | NA | Postop NLR is not associated with pulmonary complications. |
Shevchenko I., 2024 [47] | NA | NA | NS | NA | NA | NA | NA | NA | NA | POD1 and POD4 NLR correlate with length of stay (p < 0.001). No correlations with severe complications. |
Ioannidis A, 2024 [49] | POD1: 9.37 (2.98) POD4: 8.08 (6.02) | POD1: 5.50 (1.54) POD4: 10.89 (5.16) | NA | ≥7.4 (POD1 for AL) ≥6.5 (POD4 for AL) | 0.881 (POD1 for AL) 0.698 (POD4 for AL) | 68.7% (POD1 for AL) 82.1% (POD4 for AL) | 96.4% (POD1 for AL) 51.6% (POD4 for AL) | 28.4% (POD1 for AL) 17.6 (POD4 for AL) | 99.3 (POD1 for AL) 96.5 (POD4 for AL) | Higher POD1 and POD4–7 values for NLR are predictive of AL (p = 0.001). |
Author, Year | Mean PLR in Complications Group | Mean PLR in Controls | Odds Ratio | Cutoff Value | AUC | Sensitivity | Specificity | Main Findings |
---|---|---|---|---|---|---|---|---|
Caputo D, 2016 [35] | Before nRCT: 149 (63–382) After nRCT: 246 (81–1430) | NS | Pre-nRCT ≥ 143 Post-nRCT ≥ 189 | Pre-nRCT: 0.405 Post-nRCT: 0.495 | NS | NS | Preop PLR is not associated with complications. | |
Jones J., 2018 [38] | Preop: 284.86 ± 30.4 PO: 296.63 ± 11.82 | Preop: 193.00± 6.00 PO: 398.80 ± 39.89 | NA | NA | NA | NA | NA | Higher pre- and post-PLR values are associated with postoperative septic complications (p = 0.004; p = 0.016). |
Xia LJ, 2020 [40] | NA | NA | NA | ≥140 (for 3 yr OS and DFS) | 0.639 (for 3 yr OS and DFS) | 80% (for 3 yr OS and DFS) | 58% (for 3 yr OS and DFS) | Preop PLR ≥ 140 correlates with higher incidence of complications (p = 0.025) and lower 3 yr OS and DFS (p = 0.012). |
Paliogiannis P., 2020 [41] | Preop: 200 (141–276) POD1: 270 (190–374) POD4: 254 (212–338) | Preop: 178 (129–253) POD1: 230 (158–317) POD4: 218 (154–288) | NA | ≥217 (POD4 for AL) | 0.632 (POD4 PLR for AL) | 74.49% (POD4 PLR for AL) | 49.87 (POD4 PLR for AL) | Higher pre- and postop PLR values correlate with the risk of AL (p = 0.038; p = 0.0009; p < 0.0001), but the predictive value is low under ROC analysis. |
Escobar-Munguía I., 2022 [42] | NA | NA | NS | ≥216.2 (for all complications) | 0.64 | 63.6% | 50.6% | Preop PLR is not associated with postoperative outcomes (p = 0.07). |
Shevchenko I., 2024 [47] | NA | NA | NA | NA | NA | NA | NA | Higher preop and POD1 PLR are associated with severe postoperative complications (p = 0.01; p = 0.002) and a higher rate of reintervention (p = 0.02; p = 0.002). |
Liu CQ, 2024 [48] | 253.87 ± 40.95 | 177.65 ± 62.28 | 1.978 | ≥213.18 | 0.842 | 0.933 | 0.723 | Preop PLR ≥ 213.18 has a good predictive value for IAI (p < 0.001). |
Zhang Y, 2024 [50] | 168.75 ± 36.82 | 131.06 ± 32.49 | 1.023 | ≥142.79 | 0.758 | 74.2% | 67.9% | Preop PLR ≥ 142.79 is a predictor of postoperative complications (p < 0.001). |
Sridhar RP, 2024 [51] | 256.3 ± 178.9 | 203.4 ± 98.8 | NA | ≥140 | <0.500 | NA | NA | Higher preop PLR values are associated with complications (p = 0.011), but the predictive value is not significant. |
Orafaie A, 2024 [52] | NA | NA | NA | ≥136 (recurrence) NS for surgical infections | 0.634 (recurrence) | 75% (recurrence) | 59.7% (recurrence) | Higher preop PLR is correlated with recurrence but not with surgical infectious complications. |
Xu N, 2025 [53] | NA | NA | 1.803 (AL) 2.081 (OS) 1.202 (DFS) | ≥ 133.24 (AL) ≥204.04 (OS and DFS) | 0.598 (AL) 0.553 (OS and DFS) | 67% (AL) 28% (OS and DFS) | 51% (AL) 83% (OS and DFS) | Higher preop NLR values are correlated with the risk of AL (0.037) and poor OS and DFS, but the predictive value is low. |
Author, Year | Mean SII in Complications Group | Mean SII in Controls | Odds Ratio | Cutoff Value | AUC | Sensitivity | Specificity | Main Findings |
---|---|---|---|---|---|---|---|---|
Liu CQ, 2024 [48] | 1226.48 ± 245.55 | 611.52 ± 285.96 | 1.010 | ≥826.24 | 0.937 | 0.215 | 0.785 | Preop SII ≥ 826.24 has a good predictive value for IAI. |
Dai Y., 2022 [44] | Preop SII: 602.5 (347.4, 932.0) Postop SII: 2023.9 (1457.4, 3522.2) | Preop SII: 420.4 (316.8, 645.0) Preop SII: 1734.1 (1099.4, 2717.7) | 1.001 | ≥556.1 (preop SII for pulmonary complications) | 0.629 (preop SII for pulmonary complications) | 57.9% (preop SII for pulmonary complications) | 67.2% (preop SII for pulmonary complications) | Preop SII is an independent predictor for pulmonary complications (0.007); no correlations with postop SII. |
Patrascu S, 2023 [45] | 1913.19 ± 2368 (AL) 2331.28 ± 2064.51 (mild) 2224.32 ± 2427.79 (moderate) 1936.72 ± 2224.67 (severe) | 993.35 ± 878.94 (no AL) 897.99 ± 571.60 (no complications) | 0.998 | ≥793 (AL) ≥933 (overall complications) | 0.622 (AL) 0.702 (overall complications) | 63% (AL) 66.7% (overall complications) | 53% (AL) 61.3% (overall complications) | Higher preop SII correlated with higher incidence of AL (p = 0.001) and overall complications (p = 0.001). |
Shevchenko I, 2024 [47] | NA | NA | NA | NA | NA | NA | NA | POD1 SII correlates well with severe complications (p = 0.01). |
Author, Year | Mean LMR in Complications Group | Mean LMR in Controls | Odds Ratio | Cutoff Value | AUC | Sensitivity | Specificity | Main Findings |
---|---|---|---|---|---|---|---|---|
Xia LJ, 2020 [40] | NA | NA | NA | ≤3.9 (for 3 yr OS and DFS) | 0.679 (for 3 yr OS and DFS) | 73% | 65% | Preop LMR ≤ 3.9 correlates with CD 3,4 complications (p = 0.04), lower OS, and DFS at 3 yrs (p = 0.002). |
Patrascu S., 2023 [45] | 2.50 ± 1.65 (AL) 2.09 ± 1.15 (mild) 2.61 ± 1.59 (moderate) 2.70 ± 1.84 (severe) | 4.04 ± 3.48 (no AL) 4.50 ± 9.71 (no complications) | NS | NA | NA | NA | NA | No correlations with AL (p = 0.06) or overall complications (p = 0.1). |
Sugimoto, 2023 [46] | 4.67 (3.02 − 5.91) | 5.26 (4.04 − 6.69) | NA | ≤3.48 | 0.596 | 37.5% | 82.5% | Preop LMR ≤ 3.48 is associated with severe complications (p = 0.023), but the predictive value is low. |
Shevchenko I, 2024 [47] | NA | NA | NA | NA | NA | NA | NA | Lower preoperative LMR is associated with reintervention (p = 0.02). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shevchenko, I.; Serban, D.; Simion, L.; Motofei, I.; Cristea, B.M.; Dumitrescu, D.; Tudor, C.; Dascalu, A.M.; Serboiu, C.; Tribus, L.C.; et al. Clinical Significance of Blood Cell-Derived Inflammation Markers in Assessing Potential Early and Late Postoperative Complications in Patients with Colorectal Cancer: A Systematic Review. J. Clin. Med. 2025, 14, 2529. https://doi.org/10.3390/jcm14072529
Shevchenko I, Serban D, Simion L, Motofei I, Cristea BM, Dumitrescu D, Tudor C, Dascalu AM, Serboiu C, Tribus LC, et al. Clinical Significance of Blood Cell-Derived Inflammation Markers in Assessing Potential Early and Late Postoperative Complications in Patients with Colorectal Cancer: A Systematic Review. Journal of Clinical Medicine. 2025; 14(7):2529. https://doi.org/10.3390/jcm14072529
Chicago/Turabian StyleShevchenko, Irina, Dragos Serban, Laurentiu Simion, Ion Motofei, Bogdan Mihai Cristea, Dan Dumitrescu, Corneliu Tudor, Ana Maria Dascalu, Crenguta Serboiu, Laura Carina Tribus, and et al. 2025. "Clinical Significance of Blood Cell-Derived Inflammation Markers in Assessing Potential Early and Late Postoperative Complications in Patients with Colorectal Cancer: A Systematic Review" Journal of Clinical Medicine 14, no. 7: 2529. https://doi.org/10.3390/jcm14072529
APA StyleShevchenko, I., Serban, D., Simion, L., Motofei, I., Cristea, B. M., Dumitrescu, D., Tudor, C., Dascalu, A. M., Serboiu, C., Tribus, L. C., Marin, A., Silaghi, A. M., & Costea, D. O. (2025). Clinical Significance of Blood Cell-Derived Inflammation Markers in Assessing Potential Early and Late Postoperative Complications in Patients with Colorectal Cancer: A Systematic Review. Journal of Clinical Medicine, 14(7), 2529. https://doi.org/10.3390/jcm14072529