Minimizing Endothelial Cell Loss in Hard Nucleus Cataract Surgery: Efficacy of the Eight-Chop Technique
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Considerations
2.2. Study Population
2.3. Preoperative Assessment
2.4. Surgical Technique
2.5. Measures
2.6. Data Collection
2.7. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Changes in CECD
3.3. Changes in CCT, CV, and PHC
3.4. Changes in IOP
3.5. Changes in CDVA over Time
3.6. Correlation Between Loss of CECD and Surgical Parameters and IOP and Surgical Parameters
3.7. Complications
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CECD | Corneal endothelial cell density |
CDE | Cumulative dissipated energy |
IOP | Intraocular pressure |
IOL | Intraocular lens |
CDVA | Corrected distance visual acuity |
CCT | Central corneal thickness |
PHC | Percentage of hexagonal cells |
CV | Variation in the size of the endothelial cells |
SD | Standard deviation |
References
- Foster, G.J.L.; Allen, Q.B.; Ayres, B.D.; Devgan, U.; Hoffman, R.S.; Khandelwal, S.S.; Snyder, M.E.; Vasavada, A.R.; Yeoh, R.; ASCRS Cataract Clinical Committee, Challenging and Complex Cataract Surgery Subcommittee. Phacoemulsification of the rock-hard dense nuclear cataract: Options and recommendations. J. Cataract. Refract. Surg. 2018, 44, 905–916. [Google Scholar] [CrossRef] [PubMed]
- Koch, P.S.; Katzen, L.E. Stop and chop phacoemulsification. J. Cataract. Refract. Surg. 1994, 20, 566–570. [Google Scholar] [CrossRef] [PubMed]
- Vasavada, A.R.; Desai, J.P. Stop, chop, chop, and stuff. J. Cataract. Refract. Surg. 1996, 22, 526–529. [Google Scholar] [CrossRef] [PubMed]
- Aslan, B.S.; Müftüoglu, O.; Gayretli, D. Crater-and-split technique for phacoemulsification: Modification of the crater-and-chop technique. J. Cataract. Refract. Surg. 2012, 38, 1526–1530. [Google Scholar] [CrossRef]
- Singh, R.; Sharma, A.K.; Katiyar, V.; Kumar, G.; Gupta, S.K. Corneal endothelial changes following cataract surgery in hard nuclear cataract: Randomized trial comparing phacoemulsification to manual small-incision cataract surgery. Indian J. Ophthalmol. 2022, 70, 3904–3909. [Google Scholar] [CrossRef]
- Abdelmotaal, H.; Abdel-Radi, M.; Rateb, M.F.; Eldaly, Z.H.; Abdelazeem, K. Comparison of the phaco chop and drill-and-crack techniques for phacoemulsification of hard cataracts: A fellow eye study. Acta Ophthalmol. 2021, 99, e378–e386. [Google Scholar] [CrossRef]
- He, Y.; Wang, C.; Zhou, X.; Peng, J.; Zhang, X.; Wang, Y.; Rui, Y.; Zhang, C.; Zhang, W.; Feng, L.; et al. Comparison of clinical outcomes between cystotome-assisted prechop phacoemulsification surgery and femtosecond laser-assisted cataract surgery for hard nucleus cataracts. Eye 2023, 37, 235–241. [Google Scholar] [CrossRef]
- Chen, X.; Yu, Y.; Song, X.; Zhu, Y.; Wang, W.; Yao, K. Clinical outcomes of femtosecond laser-assisted cataract surgery versus conventional phacoemulsification surgery for hard nuclear cataracts. J. Cataract. Refract. Surg. 2017, 43, 486–491. [Google Scholar] [CrossRef]
- Sato, T. Efficacy and safety of the eight-chop technique in phacoemulsification for patients with cataract. J. Cataract. Refract. Surg. 2023, 49, 479–484. [Google Scholar] [CrossRef]
- Sato, T. Eight-chop technique in phacoemulsification using iris hooks for patients with cataracts and small pupils. J. Clin. Med. 2024, 13, 7298. [Google Scholar] [CrossRef]
- O’Brien, P.D.; Fitzpatrick, P.; Kilmartin, D.J.; Beatty, S. Risk factors for endothelial cell loss after phacoemulsification surgery by a junior resident. J. Cataract. Refract. Surg. 2004, 30, 839–843. [Google Scholar] [CrossRef] [PubMed]
- Storr-Paulsen, A.; Norregaard, J.C.; Ahmed, S.; Storr-Paulsen, T.; Pedersen, T.H. Endothelial cell damage after cataract surgery: Divide-and-conquer versus phaco-chop technique. J. Cataract. Refract. Surg. 2008, 34, 996–1000. [Google Scholar] [CrossRef] [PubMed]
- Walkow, T.; Anders, N.; Klebe, S. Endothelial cell loss after phacoemulsification: Relation to preoperative and intraoperative parameters. J. Cataract. Refract. Surg. 2000, 26, 727–732. [Google Scholar] [CrossRef]
- Dewan, T.; Malik, P.K.; Tomar, P. Comparison of effective phacoemulsification time and corneal endothelial cell loss using three different ultrasound frequencies: A randomized controlled trial. Indian J. Ophthalmol. 2022, 70, 1180–1185. [Google Scholar] [CrossRef]
- Om Parkash, T.; Om Parkash, R.; Mahajan, S.; Vajpayee, R. “Chopper Shield” technique to protect corneal endothelium during phacoemulsification surgery for rock hard cataracts. Clin. Ophthalmol. 2021, 15, 2161–2165. [Google Scholar] [CrossRef]
- Emery, J.M.; Little, J.H. (Eds.) Patient selection. In Phacoemulsification and Aspiration of Cataracts; Surgical Techniques, Complications, and Results; CV Mosby: St. Louis, MO, USA, 1979; pp. 45–48. [Google Scholar]
- Miyata, K.; Nagamoto, T.; Maruoka, S.; Tanabe, T.; Nakahara, M.; Amano, S. Efficacy and safety of the soft-shell technique in cases with a hard lens nucleus. J. Cataract. Refract. Surg. 2002, 28, 1546–1550. [Google Scholar] [CrossRef]
- Kim, H.K. Decrease and conquer: Phacoemulsification technique for hard nucleus cataracts. J. Cataract. Refract. Surg. 2009, 35, 1665–1670. [Google Scholar] [CrossRef]
- Hwang, H.S.; Kim, E.C.; Kim, M.S. Drill-and-crack technique for nuclear disassembly of hard nucleus. J. Cataract. Refract. Surg. 2010, 36, 1627–1630. [Google Scholar] [CrossRef]
- Kamoi, K.; Mochizuki, M. Phaco forward-chop technique for managing posterior nuclear plate of hard cataract. J. Cataract. Refract. Surg. 2010, 36, 9–12. [Google Scholar] [CrossRef]
- Falabella, P.; Yogi, M.S.; Teixeira, A.; Jopetibe, F.; Sartori, J.; Schor, P. Retrochop technique for rock-hard cataracts. J. Cataract. Refract. Surg. 2013, 39, 826–829. [Google Scholar] [CrossRef]
- Fernández-Muñoz, E.; Chávez-Romero, Y.; Rivero-Gómez, R.; Aridjis, R.; Gonzalez-Salinas, R. Cumulative dissipated energy (CDE) in three phaco-fragmentation techniques for dense cataract removal. Clin. Ophthalmol. 2023, 17, 2405–2412. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.J.; Wang, X.H.; Zhao, F.; Mei, Z.M.; Li, S.; Xiang, Y. Torsional and burst mode phacoemulsification for patients with hard nuclear cataract: A randomized control study. Medicine 2019, 98, e15870. [Google Scholar] [CrossRef] [PubMed]
- Waring, G.O., 3rd; Bourne, W.M.; Edelhauser, H.F.; Kenyon, K.R. The corneal endothelium. Normal and pathologic structure and function. Ophthalmology 1982, 89, 531–590. [Google Scholar] [CrossRef] [PubMed]
- Shimazaki, J.; Amano, S.; Uno, T.; Maeda, N.; Yokoi, N. National survey on bullous keratopathy in Japan. Cornea 2007, 26, 274–278. [Google Scholar] [CrossRef]
- Gimbel, H.V. Divide and conquer nucleofractis phacoemulsification: Development and variations. J. Cataract. Refract. Surg. 1991, 17, 281–291. [Google Scholar] [CrossRef]
- Chang, D.F. (Ed.) Why learn chopping? In Phaco Chop and Advanced Phaco Techniques, 2nd ed.; SLACK Incorporated: Thorofare, NJ, USA, 2013; pp. 3–9. [Google Scholar]
- Akahoshi, T. Phaco Prechop. In Phaco Chop and Advanced Phaco Techniques, 2nd ed.; Chang, D.F., Ed.; SLACK Incorporated: Thorofare, NJ, USA, 2013; pp. 55–76. [Google Scholar]
- Zetterström, C.; Laurell, C.G. Comparison of endothelial cell loss and phacoemulsification energy during endocapsular phacoemulsification surgery. J. Cataract. Refract. Surg. 1995, 21, 55–58. [Google Scholar] [CrossRef]
- Sato, M.; Sakata, C.; Yabe, M.; Oshika, T. Soft-shell technique using Viscoat and Healon 5: A prospective, randomized comparison between a dispersive-viscoadaptive and a dispersive-cohesive soft-shell technique. Acta Ophthalmol. 2008, 86, 65–70. [Google Scholar] [CrossRef]
- Kim, J.Y.; Kim, H.; Jun, I.; Kim, T.I.; Seo, K.Y. Effect and safety of pressure sensor-equipped handpiece in phacoemulsification system. Korean J. Ophthalmol. 2023, 37, 387–394. [Google Scholar] [CrossRef]
- Igarashi, T.; Ohsawa, I.; Kobayashi, M.; Umemoto, Y.; Arima, T.; Suzuki, H.; Igarashi, T.; Otsuka, T.; Takahashi, H. Effects of hydrogen in prevention of corneal endothelial damage during phacoemulsification: A prospective randomized clinical trial. Am. J. Ophthalmol. 2019, 207, 10–17. [Google Scholar] [CrossRef]
- Upadhyay, S.; Sharma, P.; Chouhan, J.K.; Goyal, R. Comparative evaluation of modified crater (endonucleation) chop and conventional crater chop techniques during phacoemulsification of hard nuclear cataracts: A randomized study. Indian J. Ophthalmol. 2022, 70, 794–798. [Google Scholar] [CrossRef]
- Cruz, J.C.G.; Moreno, C.B.; Soares, P.; Moscovici, B.K.; Colombo-Barboza, G.N.; Colombo-Barboza, L.R.; Colombo-Barboza, M.N. Comparison of endothelial cell loss in diabetic patients after conventional phacoemulsification and femtosecond laser-assisted cataract surgery. BMC Ophthalmol. 2023, 23, 181. [Google Scholar] [CrossRef] [PubMed]
- Joo, J.H.; Kim, T.G. Comparison of corneal endothelial cell changes after phacoemulsification between type 2 diabetic and nondiabetic patients. Medicine 2021, 100, e27141. [Google Scholar] [CrossRef] [PubMed]
- Gajraj, M.; Mohan, A. Safety and efficacy of manual small-incision cataract surgery in patients with brunescent and black cataracts and other ocular comorbidities. Indian J. Ophthalmol. 2022, 70, 3898–3903. [Google Scholar] [CrossRef] [PubMed]
Characteristics/Parameters | Grade IV | Grade IV Plus | Grade V | Total | p-Value |
---|---|---|---|---|---|
Number of eyes | 46 | 26 | 9 | 81 | |
Age (years) | 76.2 ± 9.0 | 78.0 ± 11.8 | 74.9 ± 6.9 | 76.6 ± 9.8 | 0.62 a |
Sex: Male | 23 (50%) | 15 (58%) | 6 (66.7%) | 44 (54.3%) | 0.55 b |
Sex: Female | 23 (50%) | 11 (42%) | 3 (33.3%) | 37 (45.7%) | |
Operative time (min) | 9.4 ± 2.2 | 12.3 ± 3.9 | 15.6 ± 3.9 | 10.5 ± 3.4 | <0.01 c |
Phaco time (s) | 30.6 ± 10.9 | 44.2 ± 15.4 | 65.9 ± 22.0 | 38.9 ± 17.7 | <0.01 c |
Aspiration time (s) | 117.2 ± 30.6 | 147.8 ± 38.1 | 194.3 ± 50.7 | 135.6 ± 43.2 | <0.01 c |
CDE | 14.3 ± 4.4 | 22.8 ± 8.0 | 33.8 ± 12.9 | 19.2 ± 9.4 | < 0.01 c |
Volume of fluid used (mL) | 46.5 ± 12.0 | 58.3 ± 17.9 | 70.7 ± 26.3 | 53.0 ± 17.9 | < 0.01 c |
Mean CECD ± SD and % Decrease | |||||
---|---|---|---|---|---|
Time Period | Grade IV (n = 49) | Grade IV Plus (n = 30) | Grade V (n = 10) | Total (n = 89) | p-Value |
Preoperatively | 2530 ± 248 | 2496 ± 241 | 2622 ± 142 | 2529 ± 237 | 0.35 c |
7 weeks postoperatively | 2518 ± 266 a | 2208 ± 562 b | 2318 ± 442 b | 2393 ± 432 b | <0.01 d |
% Decrease | 0.9 ± 13.6 | 22.5 ± 42.1 | 19.7 ± 40.3 | 10.4 ± 31.1 | |
19 weeks postoperatively | 2503 ± 320 a | 2316 ± 458 b | 2361 ± 410 b | 2425 ± 394 b | 0.09 c |
% Decrease | 0.2 ± 12.2 | 6.8 ± 18.2 | 9.6 ± 16.5 | 3.7 ± 15.3 |
CCT, CV, and PHC | |||||
---|---|---|---|---|---|
Time Period | Grade IV (n = 30) | Grade IV Plus (n = 24) | Grade V (n = 9) | Total (n = 63) | p-Value |
CCT | Mean ± SD | ||||
Preoperatively | 536.4 ± 35.7 | 541.0 ± 32.7 | 519.9 ± 44.5 | 535.8 ± 36.0 | 0.33 c |
7 weeks postoperatively | 535.5 ± 31.9 a | 541.2 ± 42.7 a | 524.0 ± 37.2 a | 536.0 ± 36.9 a | 0.50 c |
19 weeks postoperatively | 529.9 ± 30.0 b | 536.7 ± 31.3 b | 524.1 ± 45.9 a | 529.9 ± 30.0 b | 0.55 c |
CV | Mean ± SD | ||||
Preoperatively | 40.5 ± 5.5 | 44.9 ± 7.2 | 38.6 ± 4.2 | 41.9 ± 6.4 | <0.01 d |
7 weeks postoperatively | 39.2 ± 4.1 a | 43.4 ± 6.6 a | 38.1 ± 5.6 a | 40.6 ± 5.7 a | <0.01 d |
19 weeks postoperatively | 37.8 ± 4.9 b | 40.2 ± 5.1 b | 35.8 ± 5.6 b | 38.4 ± 5.2 b | 0.06 c |
PHC | Mean ± SD | ||||
Preoperatively | 43.5 ± 5.5 | 39.5 ± 6.5 | 47.1 ± 8.9 | 42.5 ± 6.9 | <0.01 d |
7 weeks postoperatively | 43.0 ± 6.1 a | 39.3 ± 6.0 a | 44.9 ± 8.6 a | 41.9 ± 6.7 a | 0.04 d |
19 weeks postoperatively | 43.8 ± 5.3 a | 41.5 ± 7.4 a | 46.7 ± 8.4 a | 43.3 ± 6.7 a | 0.13 c |
Mean IOP ± SD (% Decrease ± SD) | |||||
---|---|---|---|---|---|
Time Period | Grade IV (n = 46) | Grade IV Plus (n = 29) | Grade V (n = 9) | Total (n = 84) | p-Value |
Preoperatively | 14.1 ± 2.8 | 13.6 ± 2.9 | 13.3 ± 2.2 | 13.8 ± 2.8 | 0.84 c |
7 weeks postoperatively | 11.7 ± 2.2 a | 11.7 ± 2.4 a | 11.1 ± 0.9 a | 11.6 ± 2.2 a | 0.78 c |
% Decrease | 16.4 ± 11.9 | 13.3 ± 12.4 | 14.6 ± 15.0 | 15.1 ± 12.4 | |
19 weeks postoperatively | 11.9 ± 1.9 a | 11.6 ± 2.3 a | 11.9 ± 2.0 b | 11.8 ± 2.0 a | 0.79 c |
% Decrease | 13.9 ± 12.0 | 13.1 ± 15.7 | 8.5 ± 22.7 | 13.1 ± 14.6 |
Corrected Distance Visual Acuity | |||||
---|---|---|---|---|---|
Time Period | Grade IV (n = 43) | Grade IV Plus (n = 21) | Grade V (n = 8) | Total (n = 72) | p-Value |
Preoperatively | 0.50 ± 0.59 | 0.88 ± 0.83 | 0.89 ± 0.66 | 0.65 ± 0.69 | 0.07 b |
7 weeks postoperatively | −0.020 ± 0.17 a | −0.011 ± 0.058 a | 0.0079 ± 0.050 a | −0.014 ± 0.13 a | 0.86 b |
19 weeks postoperatively | −0.028 ± 0.17 a | −0.035 ± 0.050 a | −0.014 ± 0.043 a | −0.029 ± 0.13 a | 0.93 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sato, T. Minimizing Endothelial Cell Loss in Hard Nucleus Cataract Surgery: Efficacy of the Eight-Chop Technique. J. Clin. Med. 2025, 14, 2576. https://doi.org/10.3390/jcm14082576
Sato T. Minimizing Endothelial Cell Loss in Hard Nucleus Cataract Surgery: Efficacy of the Eight-Chop Technique. Journal of Clinical Medicine. 2025; 14(8):2576. https://doi.org/10.3390/jcm14082576
Chicago/Turabian StyleSato, Tsuyoshi. 2025. "Minimizing Endothelial Cell Loss in Hard Nucleus Cataract Surgery: Efficacy of the Eight-Chop Technique" Journal of Clinical Medicine 14, no. 8: 2576. https://doi.org/10.3390/jcm14082576
APA StyleSato, T. (2025). Minimizing Endothelial Cell Loss in Hard Nucleus Cataract Surgery: Efficacy of the Eight-Chop Technique. Journal of Clinical Medicine, 14(8), 2576. https://doi.org/10.3390/jcm14082576