High-Volume Hemodiafiltration Versus High-Flux Hemodialysis: A Narrative Review for the Clinician
Abstract
:1. Introduction: Hemodiafiltration as a Kidney Replacement Therapy Option
2. Evidence-Based Medicine and Real-World Evidence Applied to Hemodiafiltration: A Clinician Perspective
- Time Period of Assessment Issue: Before 2010, randomized interventional studies on HDF and other convective therapies were limited by outdated technology, including inadequate allocation concealment, issues with blinding, failure to use intention to treat analysis, insufficient focus on HDF alone, convective dose delivery, and small sample size. These studies typically also had inadequate statistical power to assess hard clinical endpoints. Meta-analyses attempt to aggregate data from the existing trials often included trials on various forms of convective-based therapies, post-dilution and pre-dilution HDF, acetate-free biofiltration, hemofiltration, and paired hemofiltration, and were not able to standardize the convective dose delivered [15,16]. These findings have now been updated by the generation of new and more timely evidence.
- Threshold Convective Dose Issue: The importance of the convective dose was further emphasized by an individual patient data meta-analysis conducted in 2016, which demonstrated that the total convective dose delivered plays a critical role in patient outcomes [17,18]. This study highlighted a dose-dependent survival advantage for HDF versus HD, with improvements beginning at 23 L and extending up to 30 L of substitution volume per session. Building on this knowledge, the comparison of high-dose hemodiafiltration with high-flux hemodialysis (CONVINCE) study definitively established that the clinical benefits of HDF are directly linked to the convective dose delivered during each session [19]. For the standard European patient as included in the CONVINCE trial, a minimum threshold of 23 L of substitution volume per session was used to achieve the significant clinical benefits shown. Studies should account for this threshold.
- Patient-Reported Outcome (PRO) Issue: Previous studies evaluating patient-reported outcomes (PROs) and health-related quality of life (HRQoL) in HDF were limited by several factors including a limited number of patients recruited, low sensitivity of assessment tools (for example, short form 36 (SF-36) and EuroQol 5 Dimension (EQ-5D) questionnaires), infrequent assessment points, and failure to achieve the optimal targeted convective dose [20,21,22]. This highlighted the need for a more robust, well-designed, and adequately powered study to provide meaningful insights, which was the basis of CONVINCE.
- Cost-Effectiveness and Cost-Utility Issue: Early cost-effectiveness studies failed to account for adequate convective dosing in HDF, akin to assessing the efficacy of a drug at subtherapeutic doses [23,24]. An evaluation of the economic value of HDF also requires studies that perform an assessment with the delivery of a specific convective dose. The CONVINCE study set a new benchmark by incorporating both cost data and quality-of-life assessments. This comprehensive approach provides a more robust evaluation of the healthcare economic value of high-volume HDF compared with conventional high-flux HD, addressing the shortcomings of earlier analyses and offering a more accurate assessment of cost-effectiveness and utility.
- Real-World Evidence Issue: Real-world evidence is increasingly recognized as essential for evaluating new therapies, particularly regarding generalizability and applicability in broader unselected populations [25,26]. This approach is especially relevant in ESKD patients and in communication with clinicians, who often argue that randomized trials preselect patients, do not necessarily reflect the current dialysis population, and apply strict protocols and practices with additional close monitoring that may then introduce serious biases to generalizability [27,28]. This type of evidence will also be of particular relevance when the prospect of designing and conducting new trials of HDF appears to be low, but these may be still required for policy change in geographies or selected populations which have not been previously involved in randomized trials.
3. Transitioning from High-Flux Hemodialysis to High-Efficient or High-Volume Hemodiafiltration
4. Clinical Outcomes: Intermediary and Explanatory Outcomes
4.1. Biochemical Effects of Hemodiafiltration (HDF)
4.2. Clinical Effects of Hemodiafiltration (HDF)
5. Clinical Outcomes: Hard Clinical Endpoints
5.1. Randomized Controlled Trials
5.2. Meta-Analyses and Individual Patient Data Meta-Analyses
5.3. Cohort Studies and Real-World Data Studies
A. | ||||||
Author, Journal Year | Study Design | Population | n Patients | Key Features | Substitution Volume (HDF) | Main Outcomes |
Kerr et al., (KI, 1992) [100] | Retrospective Study (France) | 20 Prevalent patients | HD 20, HDF 20 | 18-month follow up | 15–25 L/session (estimated) | Improved clearance of small and middle molecules with HDF; |
No significant change on mortality | ||||||
Locatelli et al., (KI, 1999) [79] | Observational Cohort Lombardy Registry | 7380 Prevalent patients | HD 6298, HDF 1082 | 29.7-month follow-up | Not specified | 10% non-significant mortality reduction with HDF/HF |
Canaud et al., (KI, 2006) [85] | Prospective Cohort (Euro-DOPPS) | 2165 Prevalent patients | HD 1912 HDF 253 | 3-year follow-up | 15–25 L/session (estimated) | 35% mortality reduction with high-efficiency HDF (adjusted) |
Vilar et al., (CJASN, 2009) [83] | Retrospective Cohort (UK) | 858 Incident patients | HD 626 HDF 232 | over 18 years | 15–25 L/session (estimated) | 34% mortality reduction with HDF/HD |
Canaud et al., (KI, 2015) [102] | Retrospective Cohort (EuClid, Europe) | 2293 Incident patients | HDF 2203 | Examined optimal convection volumes for OL-HDF | 18–25 L/session | Reduced mortality as function of convective volume; |
Reduction in ß2M and CRP levelsas function of convective volume; | ||||||
Valderrama et al., (KD, 2022) [103] | Retrospective Cohort + PSM (Colombia) | 2361 prevelent patients from Colombia | HD 505 HDF 505 | 2-year follow-up | 23 L/session | 45% mortality reduction with HDF/HD; (14.3% mortality in HF-HD vs 5.9% in HV-HDF) |
Reduction of CV mortality in patients < 60 years. | ||||||
Da Rocha et al., (JCM, 2024) [104] | Retrospective Cohort + PSM (Brazil) | 149,372 prevalent patients | HD 170 HDF 85 | 12-month Follow-Up | 23 L/session | 29% mortality reduction with HDF/HD; (92.1% survival in HDF vs 79.9% in HD (1 year)) |
Zhang et al., ASN 2023 [105] | Real-world observational study | 78,608 | HD 36012 HDF42596 | HDF vs HD effectiveness assessment during the COVID-19 pandemic | ≥23 L/session | 22% mortality reduction (all-cause) vs HD particularly during COVIC pandemic |
prevalent patients EMEA 23 countries (EuClid) | 17% hospitalization admission with HDF/HD | |||||
B. | ||||||
Author, Journal Year | Design | Population | Number of Patients | Key Features | Substitution Volume (HDF) | Main Outcomes |
Kikuchi et al. (KI 2018) [109] | Observational, propensity-matched cohort study | Predilution HDF and HD patients in Japan | 10,784 HDF, 227,972 HD | Predilution HDF with high and low substitution volumes; 1-year follow-up | Low Substitution Volume 25.1 ± 9.4 L/session High Substitution Volume 50.3 ± 10.2 L/session | Predilution HDF associated with lower all-cause mortality (HR 0.83) and cardiovascular mortality with high-volume HDF. Optimal substitution volume: 50.5 L/session. |
Mercadal et al. (AJKD 2015) [107] | Observational study using the French REIN Registry | Incident dialysis patients in France | 5526 HDF, 22,881 HD | Analyzed HDF use at patient and facility level; median HDF use 1.2 years | Not Reported | HDF associated with better survival: all-cause mortality (HR 0.84), cardiovascular mortality (HR 0.73). |
Facility-level HDF use improves outcomes. | ||||||
See et al. (NDT 2018) [108] | Cohort study using the ANZDATA Registry (2000–2014) | Dialysis patients in Australia and New Zealand | 4110 HDF, 22,851 HD | Binational (Australia/New Zealand); multivariable Cox regression; median follow-up 5.3 years | Not Reported | HDF associated with lower all-cause mortality (HR 0.79 Australia; HR 0.88 New Zealand). |
Reduced cardiovascular mortality in Australian cohort (HR 0.78). |
Author, Journal Year | Design | Population | n of HD Patients | n of HDF Patients | Aim and Key Features | Primary Outcome | Secondary Outcome | Main Outcomes Results |
---|---|---|---|---|---|---|---|---|
Agbas et al.; (PLOSO 2018) [48] | Prospective observational study | ESKD Children on HD and HDF | 22 | 22 | Compare inflammation and oxidative stress in HD vs HDF | Inflammation, oxidative stress biomarkers | Endothelial function, antioxidant capacity | Reduced inflammation and oxidative stress in HDF group |
Fischer et al., (KIR 2021) [110] | Multicenter longitudinal study | ESKD Children on HD and HDF | 61 | 42 | Compare bone metabolism and inflammation markers in HD vs HDF | Bone-specific alkaline phosphatase levels and inflammatory markers | Fibroblast growth factor-23/klotho ratio, bone disease progression | Higher bone formation markers, lower inflammation in HDF group |
Shroff et al., (JASN 2018) [56] | Multicenter observational cohort study | ESKD Children on HD and HDF | 78 | 55 | Assess cardiovascular markers and height improvement in HD vs HDF | Carotid intima-media thickness (cIMT) and height SD score | Blood pressure, intradialytic symptoms, patient-reported outcomes | Reduced cIMT progression, increased height, better BP control in HDF |
6. Patient Reported Outcomes
7. Cost-Effectiveness and Cost-Utility
8. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jha, V.; Al-Ghamdi, S.M.G.; Li, G.; Wu, M.S.; Stafylas, P.; Retat, L.; Card-Gowers, J.; Barone, S.; Cabrera, C.; Garcia Sanchez, J.J. Global Economic Burden Associated with Chronic Kidney Disease: A Pragmatic Review of Medical Costs for the Inside CKD Research Programme. Adv. Ther. 2023, 40, 4405–4420. [Google Scholar] [CrossRef] [PubMed]
- Chadban, S.; Arıcı, M.; Power, A.; Wu, M.S.; Mennini, F.S.; Arango Álvarez, J.J.; Garcia Sanchez, J.J.; Barone, S.; Card-Gowers, J.; Martin, A.; et al. Projecting the economic burden of chronic kidney disease at the patient level (Inside CKD): A microsimulation modelling study. EClinicalMedicine 2024, 72, 102615. [Google Scholar] [CrossRef] [PubMed]
- Tangri, N.; Svensson, M.K.; Bodegard, J.; Adamsson Eryd, S.; Thuresson, M.; Gustafsson, S.; Sofue, T. Mortality, Health Care Burden, and Treatment of CKD: A Multinational, Observational Study (OPTIMISE-CKD). Kidney360 2024, 5, 352–362. [Google Scholar] [CrossRef] [PubMed]
- Francis, A.; Harhay, M.N.; Ong, A.C.M.; Tummalapalli, S.L.; Ortiz, A.; Fogo, A.B.; Fliser, D.; Roy-Chaudhury, P.; Fontana, M.; Nangaku, M.; et al. Chronic kidney disease and the global public health agenda: An international consensus. Nat. Rev. Nephrol. 2024, 20, 473–485. [Google Scholar] [CrossRef]
- Luyckx, V.A.; Tuttle, K.R.; Abdellatif, D.; Correa-Rotter, R.; Fung, W.W.S.; Haris, A.; Hsiao, L.L.; Khalife, M.; Kumaraswami, L.A.; Loud, F.; et al. Mind the gap in kidney care: Translating what we know into what we do. Kidney Int. 2024, 105, 406–417. [Google Scholar] [CrossRef]
- Heaf, J.; Heiro, M.; Petersons, A.; Vernere, B.; Povlsen, J.V.; Sorensen, A.B.; Clyne, N.; Bumblyte, I.; Zilinskiene, A.; Randers, E.; et al. Choice of dialysis modality among patients initiating dialysis: Results of the Peridialysis study. Clin. Kidney J. 2021, 14, 2064–2074. [Google Scholar] [CrossRef]
- Lee, A.; Gudex, C.; Povlsen, J.V.; Bonnevie, B.; Nielsen, C.P. Patients’ views regarding choice of dialysis modality. Nephrol. Dial. Transpl. 2008, 23, 3953–3959. [Google Scholar] [CrossRef]
- Vernooij, R.W.M.; Hockham, C.; Strippoli, G.; Green, S.; Hegbrant, J.; Davenport, A.; Barth, C.; Canaud, B.; Woodward, M.; Blankestijn, P.J.; et al. Haemodiafiltration versus haemodialysis for kidney failure: An individual patient data meta-analysis of randomised controlled trials. Lancet 2024, 404, 1742–1749. [Google Scholar] [CrossRef]
- Strippoli, G.F.M.; Green, S.C. Actioning the findings of hard endpoint clinical trials as they emerge in the realm of chronic kidney disease care: A review and a call to action. Clin. Kidney J. 2024, 17, sfae035. [Google Scholar] [CrossRef]
- Maduell, F.; Varas, J.; Ramos, R.; Martin-Malo, A.; Pérez-Garcia, R.; Berdud, I.; Moreso, F.; Canaud, B.; Stuard, S.; Gauly, A.; et al. Hemodiafiltration Reduces All-Cause and Cardiovascular Mortality in Incident Hemodialysis Patients: A Propensity-Matched Cohort Study. Am. J. Nephrol. 2017, 46, 288–297. [Google Scholar] [CrossRef]
- Sackett, D.L.; Rosenberg, W.M.; Gray, J.A.; Haynes, R.B.; Richardson, W.S. Evidence based medicine: What it is and what it isn’t. BMJ 1996, 312, 71–72. [Google Scholar] [CrossRef] [PubMed]
- van Rijn, M.H.C.; Bech, A.; Bouyer, J.; van den Brand, J. Statistical significance versus clinical relevance. Nephrol. Dial. Transpl. 2017, 32 (Suppl. 2), ii6–ii12. [Google Scholar] [CrossRef] [PubMed]
- Argyropoulos, C.; Chang, C.C.; Plantinga, L.; Fink, N.; Powe, N.; Unruh, M. Considerations in the statistical analysis of hemodialysis patient survival. J. Am. Soc. Nephrol. 2009, 20, 2034–2043. [Google Scholar] [CrossRef]
- Blake, P.G. Adequacy of dialysis revisited. Kidney Int. 2003, 63, 1587–1599. [Google Scholar] [CrossRef]
- Rabindranath, K.S.; Strippoli, G.F.; Roderick, P.; Wallace, S.A.; MacLeod, A.M.; Daly, C. Comparison of hemodialysis, hemofiltration, and acetate-free biofiltration for ESRD: Systematic review. Am. J. Kidney Dis. 2005, 45, 437–447. [Google Scholar] [CrossRef]
- Rabindranath, K.S.; Strippoli, G.F.; Daly, C.; Roderick, P.J.; Wallace, S.; MacLeod, A.M. Haemodiafiltration, haemofiltration and haemodialysis for end-stage kidney disease. Cochrane Database Syst. Rev. 2006, 5, Cd006258. [Google Scholar] [CrossRef]
- Davenport, A.; Peters, S.A.; Bots, M.L.; Canaud, B.; Grooteman, M.P.; Asci, G.; Locatelli, F.; Maduell, F.; Morena, M.; Nube, M.J.; et al. Higher convection volume exchange with online hemodiafiltration is associated with survival advantage for dialysis patients: The effect of adjustment for body size. Kidney Int. 2016, 89, 193–199. [Google Scholar] [CrossRef]
- Peters, S.A.; Bots, M.L.; Canaud, B.; Davenport, A.; Grooteman, M.P.; Kircelli, F.; Locatelli, F.; Maduell, F.; Morena, M.; Nube, M.J.; et al. Haemodiafiltration and mortality in end-stage kidney disease patients: A pooled individual participant data analysis from four randomized controlled trials. Nephrol. Dial. Transpl. 2016, 31, 978–984. [Google Scholar] [CrossRef]
- Blankestijn, P.J.; Fischer, K.I.; Barth, C.; Cromm, K.; Canaud, B.; Davenport, A.; Grobbee, D.E.; Hegbrant, J.; Roes, K.C.; Rose, M.; et al. Benefits and harms of high-dose haemodiafiltration versus high-flux haemodialysis: The comparison of high-dose haemodiafiltration with high-flux haemodialysis (CONVINCE) trial protocol. BMJ Open 2020, 10, e033228. [Google Scholar] [CrossRef]
- Smith, J.R.; Zimmer, N.; Bell, E.; Francq, B.G.; McConnachie, A.; Mactier, R. A Randomized, Single-Blind, Crossover Trial of Recovery Time in High-Flux Hemodialysis and Hemodiafiltration. Am. J. Kidney Dis. 2017, 69, 762–770. [Google Scholar] [CrossRef]
- Bossola, M.; Mariani, I.; Antocicco, M.; Pepe, G.; Di Stasio, E. Effect of online hemodiafiltration on quality of life, fatigue and recovery time: A systematic review and meta-analysis. J. Artif. Organs 2024, 28, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Blankestijn, P.J.; Vernooij, R.W.M.; Hockham, C.; Strippoli, G.F.M.; Canaud, B.; Hegbrant, J.; Barth, C.; Covic, A.; Cromm, K.; Cucui, A.; et al. Effect of Hemodiafiltration or Hemodialysis on Mortality in Kidney Failure. N. Engl. J. Med. 2023, 389, 700–709. [Google Scholar] [CrossRef] [PubMed]
- Mazairac, A.H.; Blankestijn, P.J.; Grooteman, M.P.; Penne, E.L.; van der Weerd, N.C.; den Hoedt, C.H.; Buskens, E.; van den Dorpel, M.A.; ter Wee, P.M.; Nubé, M.J.; et al. The cost-utility of haemodiafiltration versus haemodialysis in the Convective Transport Study. Nephrol. Dial. Transpl. 2013, 28, 1865–1873. [Google Scholar] [CrossRef]
- Takura, T.; Kawanishi, H.; Minakuchi, J.; Nagake, Y.; Takahashi, S. Cost-effectiveness analysis of on-line hemodiafiltration in Japan. Blood Purif. 2013, 35 (Suppl. S1), 85–89. [Google Scholar] [CrossRef] [PubMed]
- Ficociello, L.H.; Busink, E.; Sawin, D.A.; Winter, A. Global real-world data on hemodiafiltration: An opportunity to complement clinical trial evidence. Semin. Dial. 2022, 35, 440–445. [Google Scholar] [CrossRef]
- Neri, L.; Gurevich, K.; Zarya, Y.; Plavinskii, S.; Bellocchio, F.; Stuard, S.; Barbieri, C.; Canaud, B. Practice Patterns and Outcomes of Online Hemodiafiltration: A Real-World Evidence Study in a Russian Dialysis Network. Blood Purif. 2021, 50, 309–318. [Google Scholar] [CrossRef]
- Kim, H.S.; Lee, S.; Kim, J.H. Real-world Evidence versus Randomized Controlled Trial: Clinical Research Based on Electronic Medical Records. J. Korean Med. Sci. 2018, 33, e213. [Google Scholar] [CrossRef]
- Sheldrick, R.C. Randomized Trials vs Real-world Evidence: How Can Both Inform Decision-making? JAMA 2023, 329, 1352–1353. [Google Scholar] [CrossRef]
- Canaud, B.; Blankestijn, P.J.; Grooteman, M.P.C.; Davenport, A. Why and how high volume hemodiafiltration may reduce cardiovascular mortality in stage 5 chronic kidney disease dialysis patients? A comprehensive literature review on mechanisms involved. Semin. Dial. 2022, 35, 117–128. [Google Scholar] [CrossRef]
- Lang, T.; Zawada, A.M.; Theis, L.; Braun, J.; Ottillinger, B.; Kopperschmidt, P.; Gagel, A.; Kotanko, P.; Stauss-Grabo, M.; Kennedy, J.P.; et al. Hemodiafiltration: Technical and Medical Insights. Bioengineering 2023, 10, 145. [Google Scholar] [CrossRef]
- Canaud, B.; Davenport, A. Prescription of online hemodiafiltration (ol-HDF). Semin Dial. 2022, 35, 413–419. [Google Scholar] [PubMed]
- Canaud, B.; Gagel, A.; Peters, A.; Maierhofer, A.; Stuard, S. Does online high-volume hemodiafiltration offer greater efficiency and sustainability compared with high-flux hemodialysis? A detailed simulation analysis anchored in real-world data. Clin. Kidney J. 2024, 17, sfae147. [Google Scholar] [PubMed]
- Maduell, F.; Navarro, V.; Cruz, M.C.; Torregrosa, E.; Garcia, D.; Simon, V.; Ferrero, J.A. Osteocalcin and myoglobin removal in on-line hemodiafiltration versus low- and high-flux hemodialysis. Am. J. Kidney Dis. 2002, 40, 582–589. [Google Scholar] [CrossRef] [PubMed]
- Canaud, B.; Bosc, J.Y.; Leblanc, M.; Garred, L.J.; Vo, T.; Mion, C. Evaluation of high-flux hemodiafiltration efficiency using an on-line urea monitor. Am. J. Kidney Dis. 1998, 31, 74–80. [Google Scholar] [CrossRef]
- Potier, J.; Bowry, S.; Canaud, B. Clinical Performance Assessment of CorDiax Filters in Hemodialysis and Hemodiafiltration. Contrib. Nephrol. 2017, 189, 237–245. [Google Scholar] [CrossRef]
- Daugirdas, J.T. Comparison of measured vs kinetic-model predicted phosphate removal during hemodialysis and hemodiafiltration. Nephrol. Dial. Transpl. 2022, 37, 2522–2527. [Google Scholar]
- Roumelioti, M.E.; Trietley, G.; Nolin, T.D.; Ng, Y.H.; Xu, Z.; Alaini, A.; Figueroa, R.; Unruh, M.L.; Argyropoulos, C.P. Beta-2 microglobulin clearance in high-flux dialysis and convective dialysis modalities: A meta-analysis of published studies. Nephrol. Dial. Transpl. 2018, 33, 1025–1039. [Google Scholar]
- Ward, R.A.; Daugirdas, J.T. Kinetics of β-2-Microglobulin with Hemodiafiltration and High-Flux Hemodialysis. Clin. J. Am. Soc. Nephrol. 2024, 19, 869–876. [Google Scholar]
- Pedrini, L.A.; De Cristofaro, V.; Comelli, M.; Casino, F.G.; Prencipe, M.; Baroni, A.; Campolo, G.; Manzoni, C.; Coli, L.; Ruggiero, P.; et al. Long-term effects of high-efficiency on-line haemodiafiltration on uraemic toxicity. A multicentre prospective randomized study. Nephrol. Dial. Transpl. 2011, 26, 2617–2624. [Google Scholar]
- Pedrini, L.A.; Feliciani, A.; Zerbi, S.; Cozzi, G.; Ruggiero, P. Optimization of mid-dilution haemodiafiltration: Technique and performance. Nephrol. Dial. Transpl. 2009, 24, 2816–2824. [Google Scholar]
- Cheung, A.K.; Rocco, M.V.; Yan, G.; Leypoldt, J.K.; Levin, N.W.; Greene, T.; Agodoa, L.; Bailey, J.; Beck, G.J.; Clark, W.; et al. Serum beta-2 microglobulin levels predict mortality in dialysis patients: Results of the HEMO study. J. Am. Soc. Nephrol. 2006, 17, 546–555. [Google Scholar] [CrossRef] [PubMed]
- Kanda, E.; Muenz, D.; Bieber, B.; Cases, A.; Locatelli, F.; Port, F.K.; Pecoits-Filho, R.; Robinson, B.M.; Perl, J. Beta-2 microglobulin and all-cause mortality in the era of high-flux hemodialysis: Results from the Dialysis Outcomes and Practice Patterns Study. Clin. Kidney J. 2021, 14, 1436–1442. [Google Scholar] [CrossRef] [PubMed]
- Leypoldt, J.K.; Storr, M.; Agar, B.U.; Boschetti-de-Fierro, A.; Bernardo, A.A.; Kirsch, A.H.; Rosenkranz, A.R.; Krieter, D.H.; Krause, B. Intradialytic kinetics of middle molecules during hemodialysis and hemodiafiltration. Nephrol. Dial. Transpl. 2019, 34, 870–877. [Google Scholar] [CrossRef] [PubMed]
- Bouma-de Krijger, A.; de Roij van Zuijdewijn, C.L.M.; Nubé, M.J.; Grooteman, M.P.C.; Vervloet, M.G. Change in FGF23 concentration over time and its association with all-cause mortality in patients treated with haemodialysis or haemodiafiltration. Clin. Kidney J. 2021, 14, 891–897. [Google Scholar] [CrossRef]
- Kim, S.; Oh, K.H.; Chin, H.J.; Na, K.Y.; Kim, Y.S.; Chae, D.W.; Ahn, C.; Han, J.S.; Kim, S.; Joo, K.W. Effective removal of leptin via hemodiafiltration with on-line endogenous reinfusion therapy. Clin. Nephrol. 2009, 72, 442–448. [Google Scholar] [CrossRef]
- Mandolfo, S.; Borlandelli, S.; Imbasciati, E. Leptin and beta2-microglobulin kinetics with three different dialysis modalities. Int. J. Artif. Organs 2006, 29, 949–955. [Google Scholar] [CrossRef]
- Kuo, H.L.; Chou, C.Y.; Liu, Y.L.; Yang, Y.F.; Huang, C.C.; Lin, H.H. Reduction of pro-inflammatory cytokines through hemodiafiltration. Ren. Fail. 2008, 30, 796–800. [Google Scholar] [CrossRef]
- Ağbaş, A.; Canpolat, N.; Çalışkan, S.; Yılmaz, A.; Ekmekçi, H.; Mayes, M.; Aitkenhead, H.; Schaefer, F.; Sever, L.; Shroff, R. Hemodiafiltration is associated with reduced inflammation, oxidative stress and improved endothelial risk profile compared to high-flux hemodialysis in children. PLoS ONE 2018, 13, e0198320. [Google Scholar] [CrossRef]
- Takkavatakarn, K.; Wuttiputhanun, T.; Phannajit, J.; Praditpornsilpa, K.; Eiam-Ong, S.; Susantitaphong, P. Effectiveness of fibroblast growth factor 23 lowering modalities in chronic kidney disease: A systematic review and meta-analysis. Int. Urol. Nephrol. 2022, 54, 309–321. [Google Scholar] [CrossRef]
- Thammathiwat, T.; Tiranathanagul, K.; Limjariyakul, M.; Chariyavilaskul, P.; Takkavatakarn, K.; Susantitaphong, P.; Meesangnin, S.; Wittayalertpanya, S.; Praditpornsilpa, K.; Eiam-Ong, S. Super high-flux hemodialysis provides comparable effectiveness with high-volume postdilution online hemodiafiltration in removing protein-bound and middle-molecule uremic toxins: A prospective cross-over randomized controlled trial. Ther. Apher. Dial. 2021, 25, 73–81. [Google Scholar] [CrossRef]
- den Hoedt, C.H.; Mazairac, A.H.A.; van den Dorpel, M.A.; Grooteman, M.P.C.; Blankestijn, P.J. Effect of hemodiafiltration on mortality, inflammation and quality of life. Contrib. Nephrol. 2011, 168, 39–52. [Google Scholar] [CrossRef] [PubMed]
- Leurs, P.; Lindholm, B.; Stenvinkel, P. Effects of hemodiafiltration on uremic inflammation. Blood Purif. 2013, 35 (Suppl. S1), 11–17. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, R.; Carracedo, J.; Merino, A.; Nogueras, S.; Alvarez-Lara, M.A.; Rodríguez, M.; Martin-Malo, A.; Tetta, C.; Aljama, P. Microinflammation induces endothelial damage in hemodialysis patients: The role of convective transport. Kidney Int. 2007, 72, 108–113. [Google Scholar] [CrossRef]
- Ramirez, R.; Martin-Malo, A.; Aljama, P. Inflammation and hemodiafiltration. Contrib. Nephrol. 2007, 158, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Shroff, R.; Smith, C.; Ranchin, B.; Bayazit, A.K.; Stefanidis, C.J.; Askiti, V.; Azukaitis, K.; Canpolat, N.; Ağbaş, A.; Aitkenhead, H.; et al. Effects of Hemodiafiltration versus Conventional Hemodialysis in Children with ESKD: The HDF, Heart and Height Study. J. Am. Soc. Nephrol. 2019, 30, 678–691. [Google Scholar] [CrossRef]
- Shroff, R.; Speer, T.; Colin, S.; Charakida, M.; Zewinger, S.; Staels, B.; Chinetti-Gbaguidi, G.; Hettrich, I.; Rohrer, L.; O’Neill, F.; et al. HDL in children with CKD promotes endothelial dysfunction and an abnormal vascular phenotype. J. Am. Soc. Nephrol. 2014, 25, 2658–2668. [Google Scholar] [CrossRef]
- Locatelli, F.; Altieri, P.; Andrulli, S.; Bolasco, P.; Sau, G.; Pedrini, L.A.; Basile, C.; David, S.; Feriani, M.; Montagna, G.; et al. Hemofiltration and hemodiafiltration reduce intradialytic hypotension in ESRD. J. Am. Soc. Nephrol. 2010, 21, 1798–1807. [Google Scholar] [CrossRef]
- Morena, M.; Jaussent, A.; Chalabi, L.; Leray-Moragues, H.; Chenine, L.; Debure, A.; Thibaudin, D.; Azzouz, L.; Patrier, L.; Maurice, F.; et al. Treatment tolerance and patient-reported outcomes favor online hemodiafiltration compared to high-flux hemodialysis in the elderly. Kidney Int. 2017, 91, 1495–1509. [Google Scholar] [CrossRef]
- Rootjes, P.A.; Chaara, S.; de Roij van Zuijdewijn, C.L.M.; Nubé, M.J.; Wijngaarden, G.; Grooteman, M.P.C. High-Volume Hemodiafiltration and Cool Hemodialysis Have a Beneficial Effect on Intradialytic Hemodynamics: A Randomized Cross-Over Trial of Four Intermittent Dialysis Strategies. Kidney Int. Rep. 2022, 9, 1980–1990. [Google Scholar] [CrossRef]
- Daugirdas, J.T. Lower cardiovascular mortality with high-volume hemodiafiltration: A cool effect? Nephrol. Dial. Transpl. 2016, 31, 853–856. [Google Scholar] [CrossRef]
- Buchanan, C.; Mohammed, A.; Cox, E.; Köhler, K.; Canaud, B.; Taal, M.W.; Selby, N.M.; Francis, S.; McIntyre, C.W. Intradialytic Cardiac Magnetic Resonance Imaging to Assess Cardiovascular Responses in a Short-Term Trial of Hemodiafiltration and Hemodialysis. J. Am. Soc. Nephrol. 2017, 28, 1269–1277. [Google Scholar] [CrossRef] [PubMed]
- Canaud, B.; Stephens, M.P.; Nikam, M.; Etter, M.; Collins, A. Multitargeted interventions to reduce dialysis-induced systemic stress. Clin. Kidney J. 2021, 14 (Suppl. S4), i72–i84. [Google Scholar] [CrossRef] [PubMed]
- Canaud, B.; Kooman, J.P.; Selby, N.M.; Taal, M.W.; Francis, S.; Maierhofer, A.; Kopperschmidt, P.; Collins, A.; Kotanko, P. Dialysis-Induced Cardiovascular and Multiorgan Morbidity. Kidney Int. Rep. 2020, 5, 1856–1869. [Google Scholar] [CrossRef] [PubMed]
- Aichi, M.; Kuragano, T.; Iwasaki, T.; Ookawa, S.; Masumoto, M.; Mizusaki, K.; Yahiro, M.; Kida, A.; Nanami, M. Hemodiafiltration Improves Low Levels of Health-Related Quality Of Life (Qol) and Nutritional Conditions of Hemodialysis Patients. Asaio J. 2022, 68, 297–302. [Google Scholar] [CrossRef]
- Mazairac, A.H.; de Wit, G.A.; Grooteman, M.P.; Penne, E.L.; van der Weerd, N.C.; den Hoedt, C.H.; Levesque, R.; van den Dorpel, M.A.; Nube, M.J.; ter Wee, P.M.; et al. Effect of hemodiafiltration on quality of life over time. Clin. J. Am. Soc. Nephrol. 2013, 8, 82–89. [Google Scholar] [CrossRef]
- Suwabe, T.; Barrera-Flores, F.J.; Rodriguez-Gutierrez, R.; Ubara, Y.; Takaichi, K. Effect of online hemodiafiltration compared with hemodialysis on quality of life in patients with ESRD: A systematic review and meta-analysis of randomized trials. PLoS ONE 2018, 13, e0205037. [Google Scholar] [CrossRef]
- Rose, M.; Fischer, F.H.; Liegl, G.; Strippoli, G.F.M.; Hockham, C.; Vernooij, R.W.M.; Barth, C.; Canaud, B.; Covic, A.; Cromm, K.; et al. The CONVINCE randomized trial found positive effects on quality of life for patients with chronic kidney disease treated with hemodiafiltration. Kidney Int. 2024, 106, 961–971. [Google Scholar] [CrossRef]
- Panichi, V. Online Hemodiafiltration and Erythropoietin Resistance in Hemodialytic Patients: Role of Hepcidin. Preliminary Results from Redert Study. Available online: https://www.postersessiononline.eu/pr/index.asp (accessed on 4 April 2025).
- Panichi, V.; Rosati, A.; Bigazzi, R.; Paoletti, S.; Mantuano, E.; Beati, S.; Marchetti, V.; Bernabini, G.; Grazi, G.; Rizza, G.M.; et al. Anaemia and resistance to erythropoiesis-stimulating agents as prognostic factors in haemodialysis patients: Results from the RISCAVID study. Nephrol. Dial. Transpl. 2011, 26, 2641–2648. [Google Scholar] [CrossRef]
- Panichi, V.; Scatena, A.; Rosati, A.; Giusti, R.; Ferro, G.; Malagnino, E.; Capitanini, A.; Piluso, A.; Conti, P.; Bernabini, G.; et al. High-volume online haemodiafiltration improves erythropoiesis-stimulating agent (ESA) resistance in comparison with low-flux bicarbonate dialysis: Results of the REDERT study. Nephrol. Dial. Transpl. 2015, 30, 682–689. [Google Scholar] [CrossRef]
- Lin, C.L.; Huang, C.C.; Yu, C.C.; Wu, C.H.; Chang, C.T.; Hsu, H.H.; Hsu, P.Y.; Yang, C.W. Improved iron utilization and reduced erythropoietin resistance by on-line hemodiafiltration. Blood Purif. 2002, 20, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Hua, R.X.; Wu, Y.; Zou, L.X. Effect of different hemodialysis modalities on hepcidin clearance in patients undergoing maintenance hemodialysis. Semin. Dial. 2022, 36, 240–246. [Google Scholar] [CrossRef]
- Niwa, T. Removal of protein-bound uraemic toxins by haemodialysis. Blood Purif. 2013, 35 (Suppl. S2), 20–25. [Google Scholar] [CrossRef] [PubMed]
- Molina, P.; Vizcaíno, B.; Molina, M.D.; Beltrán, S.; González-Moya, M.; Mora, A.; Castro-Alonso, C.; Kanter, J.; Ávila, A.I.; Górriz, J.L.; et al. The effect of high-volume online haemodiafiltration on nutritional status and body composition: The ProtEin Stores prEservaTion (PESET) study. Nephrol. Dial. Transpl. 2018, 33, 1223–1235. [Google Scholar] [CrossRef]
- Paglialonga, F.; Monzani, A.; Prodam, F.; Smith, C.; De Zan, F.; Canpolat, N.; Agbas, A.; Bayazit, A.; Anarat, A.; Bakkaloglu, S.A.; et al. Nutritional and Anthropometric Indices in Children Receiving Haemodiafiltration vs Conventional Haemodialysis—The HDF, Heart and Height (3H) Study. J. Ren. Nutr. 2023, 33, 17–28. [Google Scholar] [CrossRef] [PubMed]
- Macías, N.; Vega, A.; Abad, S.; Santos, A.; Cedeño, S.; Linares, T.; García-Prieto, A.M.; Aragoncillo, I.; Yuste, C.; López-Gómez, J.M. Is High-Volume Online Hemodiafiltration Associated With Malnutrition? Ther. Apher. Dial. 2017, 21, 361–369. [Google Scholar] [CrossRef]
- Murtas, S.; Aquilani, R.; Iadarola, P.; Deiana, M.L.; Secci, R.; Cadeddu, M.; Bolasco, P. Differences and Effects of Metabolic Fate of Individual Amino Acid Loss in High-Efficiency Hemodialysis and Hemodiafiltration. J. Ren. Nutr. 2020, 30, 440–451. [Google Scholar] [CrossRef]
- Bévier, A.; Novel-Catin, E.; Blond, E.; Pelletier, S.; Parant, F.; Koppe, L.; Fouque, D. Water-Soluble Vitamins and Trace Elements Losses during On-Line Hemodiafiltration. Nutrients 2022, 14, 3454. [Google Scholar] [CrossRef]
- Locatelli, F.; Marcelli, D.; Conte, F.; Limido, A.; Malberti, F.; Spotti, D. Comparison of mortality in ESRD patients on convective and diffusive extracorporeal treatments. The Registro Lombardo Dialisi E Trapianto. Kidney Int. 1999, 55, 286–293. [Google Scholar] [CrossRef]
- Schiffl, H.; Lang, S.; Fischer, R. Ultrapure dialysis fluid slows loss of residual renal function in new dialysis patients. Nephrol. Dial. Transplant. 2002, 17, 1814–1818. [Google Scholar] [CrossRef]
- Movilli, E.; Camerini, C.; Gaggia, P.; Poiatti, P.; Pola, A.; Viola, B.F.; Zubani, R.; Jeannin, G.; Cancarini, G. Effect of post-dilutional on-line haemodiafiltration on serum calcium, phosphate and parathyroid hormone concentrations in uraemic patients. Nephrol. Dial. Transpl. 2011, 26, 4032–4037. [Google Scholar] [CrossRef]
- Patrier, L.; Dupuy, A.M.; Granger Vallée, A.; Chalabi, L.; Morena, M.; Canaud, B.; Cristol, J.P. FGF-23 removal is improved by on-line high-efficiency hemodiafiltration compared to conventional high flux hemodialysis. J. Nephrol. 2013, 26, 342–349. [Google Scholar] [CrossRef]
- Vilar, E.; Fry, A.C.; Wellsted, D.; Tattersall, J.E.; Greenwood, R.N.; Farrington, K. Long-term outcomes in online hemodiafiltration and high-flux hemodialysis: A comparative analysis. Clin. J. Am. Soc. Nephrol. 2009, 4, 1944–1953. [Google Scholar] [CrossRef] [PubMed]
- Farrington, K.; Davenport, A. The ESHOL study: Hemodiafiltration improves survival-but how? Kidney Int. 2013, 83, 979–981. [Google Scholar] [CrossRef] [PubMed]
- Canaud, B.; Bragg-Gresham, J.L.; Marshall, M.R.; Desmeules, S.; Gillespie, B.W.; Depner, T.; Klassen, P.; Port, F.K. Mortality risk for patients receiving hemodiafiltration versus hemodialysis: European results from the DOPPS. Kidney Int. 2006, 69, 2087–2093. [Google Scholar] [CrossRef] [PubMed]
- Jirka, T.; Cesare, S.; Di Benedetto, A.; Perera Chang, M.; Ponce, P.; Richards, N.; Tetta, C.; Vaslaky, L. Mortality risk for patients receiving hemodiafiltration versus hemodialysis. Kidney Int. 2006, 70, 1524, author reply 1524–1525. [Google Scholar] [CrossRef]
- Grooteman, M.P.; van den Dorpel, M.A.; Bots, M.L.; Penne, E.L.; van der Weerd, N.C.; Mazairac, A.H.; den Hoedt, C.H.; van der Tweel, I.; Levesque, R.; Nube, M.J.; et al. Effect of online hemodiafiltration on all-cause mortality and cardiovascular outcomes. J. Am. Soc. Nephrol. 2012, 23, 1087–1096. [Google Scholar] [CrossRef]
- Blankestijn, P.J. Is hemodiafiltration medically superior to hemodialysis? Semin. Dial. 2014, 27, 248–249. [Google Scholar] [CrossRef]
- Ok, E.; Asci, G.; Toz, H.; Ok, E.S.; Kircelli, F.; Yilmaz, M.; Hur, E.; Demirci, M.S.; Demirci, C.; Duman, S.; et al. Mortality and cardiovascular events in online haemodiafiltration (OL-HDF) compared with high-flux dialysis: Results from the Turkish OL-HDF Study. Nephrol. Dial. Transpl. 2013, 28, 192–202. [Google Scholar] [CrossRef]
- Maduell, F.; Moreso, F.; Pons, M.; Ramos, R.; Mora-Macia, J.; Carreras, J.; Soler, J.; Torres, F.; Campistol, J.M.; Martinez-Castelao, A. High-efficiency postdilution online hemodiafiltration reduces all-cause mortality in hemodialysis patients. J. Am. Soc. Nephrol. 2013, 24, 487–497. [Google Scholar] [CrossRef]
- Caskey, F.J.; Procter, S.; MacNeill, S.J.; Wade, J.; Taylor, J.; Rooshenas, L.; Liu, Y.; Annaw, A.; Alloway, K.; Davenport, A.; et al. The high-volume haemodiafiltration vs high-flux haemodialysis registry trial (H4RT): A multi-centre, unblinded, randomised, parallel-group, superiority study to compare the effectiveness and cost-effectiveness of high-volume haemodiafiltration and high-flux haemodialysis in people with kidney failure on maintenance dialysis using linkage to routine healthcare databases for outcomes. Trials. 2022, 23, 532. [Google Scholar] [PubMed]
- Susantitaphong, P.; Siribamrungwong, M.; Jaber, B.L. Convective therapies versus low-flux hemodialysis for chronic kidney failure: A meta-analysis of randomized controlled trials. Nephrol. Dial. Transplant. 2013, 28, 2859–2874. [Google Scholar] [CrossRef] [PubMed]
- Nistor, I.; Palmer, S.C.; Craig, J.C.; Saglimbene, V.; Vecchio, M.; Covic, A.; Strippoli, G.F. Convective versus diffusive dialysis therapies for chronic kidney failure: An updated systematic review of randomized controlled trials. Am. J. Kidney Dis. 2014, 63, 954–967. [Google Scholar] [CrossRef]
- Bignardi, P.R.; Delfino, V.D.A. Is hemodiafiltration superior to high-flow hemodialysis in reducing all-cause and cardiovascular mortality in kidney failure patients? A meta-analysis of randomized controlled trials. Hemodial. Int. 2024, 28, 139–147. [Google Scholar] [CrossRef]
- Guimarães, M.G.M.; Tapioca, F.P.M.; Dos Santos, N.R.; Tourinho Ferreira, F.P.D.C.; Santana Passos, L.C.; Rocha, P.N. Hemodiafiltration versus Hemodialysis in End-Stage Kidney Disease: A Systematic Review and Meta-Analysis. Kidney Med. 2024, 6, 100829, Erratum in: Kidney Med. 2024, 6, 100869. [Google Scholar] [CrossRef]
- Wang, A.Y.; Ninomiya, T.; Al-Kahwa, A.; Perkovic, V.; Gallagher, M.P.; Hawley, C.; Jardine, M.J. Effect of hemodiafiltration or hemofiltration compared with hemodialysis on mortality and cardiovascular disease in chronic kidney failure: A systematic review and meta-analysis of randomized trials. Am. J. Kidney Dis. 2014, 63, 968–978. [Google Scholar] [CrossRef]
- Silvinato, A.; Floriano, I.; Bernardo, W.M. Online hemodiafiltration vs. high-flux hemodialysis in end-stage renal disease: A meta-analysis. Rev. Assoc. Med. Bras. 2024, 70, e2024D709. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, J.; Lu, H.; Shi, Z.; Wang, X. Effect of hemodiafiltration and hemodialysis on mortality of patients with end-stage kidney disease: A meta-analysis. BMC Nephrol. 2024, 25, 372. [Google Scholar] [CrossRef]
- Mostovaya, I.M.; Blankestijn, P.J.; Bots, M.L.; Covic, A.; Davenport, A.; Grooteman, M.P.; Hegbrant, J.; Locatelli, F.; Vanholder, R.; Nube, M.J. Clinical evidence on hemodiafiltration: A systematic review and a meta-analysis. Semin. Dial. 2014, 27, 119–127. [Google Scholar] [CrossRef]
- Kerr, P.B.; Argilés, A.; Flavier, J.L.; Canaud, B.; Mion, C.M. Comparison of hemodialysis and hemodiafiltration: A long-term longitudinal study. Kidney Int. 1992, 41, 1035–1040. [Google Scholar] [CrossRef]
- Ward, R.A.; Schmidt, B.; Hullin, J.; Hillebrand, G.F.; Samtleben, W. A comparison of on-line hemodiafiltration and high-flux hemodialysis: A prospective clinical study. J. Am. Soc. Nephrol. 2000, 11, 2344–2350. [Google Scholar] [CrossRef] [PubMed]
- Canaud, B.; Barbieri, C.; Marcelli, D.; Bellocchio, F.; Bowry, S.; Mari, F.; Amato, C.; Gatti, E. Optimal convection volume for improving patient outcomes in an international incident dialysis cohort treated with online hemodiafiltration. Kidney Int. 2015, 88, 1108–1116. [Google Scholar] [CrossRef] [PubMed]
- Valderrama, L.A.; Barrera, L.; Cantor, E.J.; Muñoz, J.; Arango, J.; Tobon, C.; Canaud, B. Mortality in High-Flux Hemodialysis vs. High-Volume Hemodiafiltration in Colombian Clinical Practice: A Propensity Score Matching Study. Kidney Dial. 2022, 2, 209–220. [Google Scholar] [CrossRef]
- da Rocha, E.P.; Kojima, C.A.; Modelli de Andrade, L.G.; Costa, D.M.; Magalhaes, A.O.; Rocha, W.F.; de Vasconcelos Junior, L.N.; Rosa, M.G.; Wagner Martins, C.S. Comparing Survival Outcomes between Hemodialysis and Hemodiafiltration Using Real-World Data from Brazil. J. Clin. Med. 2024, 13, 594. [Google Scholar] [CrossRef]
- Zhang, Y.; Winter, A.; Ferreras, B.A.; Carioni, P.; Arkossy, O.; Anger, M.; Kossmann, R.; Usvyat, L.A.; Stuard, S.; Maddux, F.W. Real-world effectiveness of hemodialysis modalities: A retrospective cohort study. BMC Nephrol. 2025, 26, 9. [Google Scholar] [CrossRef]
- Locatelli, F.; Karaboyas, A.; Pisoni, R.L.; Robinson, B.M.; Fort, J.; Vanholder, R.; Rayner, H.C.; Kleophas, W.; Jacobson, S.H.; Combe, C.; et al. Mortality risk in patients on hemodiafiltration versus hemodialysis: A ‘real-world’ comparison from the DOPPS. Nephrol. Dial. Transpl. 2018, 33, 683–689. [Google Scholar] [CrossRef]
- Mercadal, L.; Franck, J.E.; Metzger, M.; Urena Torres, P.; de Cornelissen, F.; Edet, S.; Bechade, C.; Vigneau, C.; Drueke, T.; Jacquelinet, C.; et al. Hemodiafiltration Versus Hemodialysis and Survival in Patients With ESRD: The French Renal Epidemiology and Information Network (REIN) Registry. Am. J. Kidney Dis. 2016, 68, 247–255. [Google Scholar] [CrossRef]
- See, E.J.; Hedley, J.; Agar, J.W.M.; Hawley, C.M.; Johnson, D.W.; Kelly, P.J.; Lee, V.W.; Mac, K.; Polkinghorne, K.R.; Rabindranath, K.S.; et al. Patient survival on haemodiafiltration and haemodialysis: A cohort study using the Australia and New Zealand Dialysis and Transplant Registry. Nephrol. Dial. Transpl. 2019, 34, 326–338. [Google Scholar] [CrossRef]
- Kikuchi, K.; Hamano, T.; Wada, A.; Nakai, S.; Masakane, I. Predilution online hemodiafiltration is associated with improved survival compared with hemodialysis. Kidney Int. 2019, 95, 929–938. [Google Scholar] [CrossRef]
- Fischer, D.C.; Smith, C.; De Zan, F.; Bacchetta, J.; Bakkaloglu, S.A.; Agbas, A.; Anarat, A.; Aoun, B.; Askiti, V.; Azukaitis, K.; et al. Hemodiafiltration Is Associated With Reduced Inflammation and Increased Bone Formation Compared With Conventional Hemodialysis in Children: The HDF, Hearts and Heights (3H) Study. Kidney Int. Rep. 2021, 6, 2358–2370. [Google Scholar] [CrossRef]
- Lévesque, R.; Marcelli, D.; Cardinal, H.; Caron, M.L.; Grooteman, M.P.; Bots, M.L.; Blankestijn, P.J.; Nubé, M.J.; Grassmann, A.; Canaud, B.; et al. Cost-Effectiveness Analysis of High-Efficiency Hemodiafiltration Versus Low-Flux Hemodialysis Based on the Canadian Arm of the CONTRAST Study. Appl. Health Econ. Health Policy 2015, 13, 647–659. [Google Scholar] [CrossRef] [PubMed]
- Schouten, A.E.M.; Fischer, F.; Blankestijn, P.J.; Vernooij, R.W.M.; Hockham, C.; Strippoli, G.F.M.; Canaud, B.; Hegbrant, J.; Barth, C.; Cromm, K.; et al. A health economic evaluation of the multinational, randomized controlled CONVINCE trial—Cost-utility of high-dose online hemodiafiltration compared to high-flux hemodialysis. Kidney Int. 2025, 107, 728–739. [Google Scholar] [CrossRef] [PubMed]
Author, Journal Year | Design | Population | n of Patients | Mean Sub/Conv Vol. (L/session) | Aim and Key Features | Primary Outcome | Secondary Outcome | Main Outcomes Results |
---|---|---|---|---|---|---|---|---|
Locatelli et al., (JASN 2010) [57] | Italian Multicenter RCT | Prevalent End Stage Kidney Disease Patients | 146 (70 HD, 36 HF, 40 HDF) | Sub. 30-40 predilution mode | Comparison of predilution HDF and HF vs. HD on intradialytic hypotension and vascular stability | Frequency of symptomatic intradialytic hypotension (IDH) | Changes in pre-dialysis systolic BP, dropout rates, treatment survival, and adverse effects | IDH decreased by 50.9% with HDF, 18.4% with HF, and slightly increased with HD |
Grooteman et al., J(ASN 2012) [86] | Dutch, Canadian Multicenterl RCT | Prevalent End Stage Kidney Disease Patients | 714 (HD 356, HDF 358) | Sub. 19.8 [15,16,17,18,19,20,21,22,23,24,25,26,27,28] | Comparison pf online postdilution HDF vs. low-flux HD | All-cause mortality | Cardiovascular events, renal transplants | No significant difference in all-cause mortality (HR 0.95, 95% CI 0.75–1.20) |
Maduell et al., (JASN 2013) [89] | Spanish Multicenter RCT | Prevalent End Stage Kidney Disease Patients | 906 (450 HD, 456 HDF) | Sub. 21.8 Conv. 23.9 | Comparison of high-volume postdilution OL-HDF vs. high-flux hemodialysis | All-cause mortality | Cardiovascular and infection-related mortality, hospitalizations | 30% lower all-cause mortality in HDF group (HR 0.70, 95% CI 0.53–0.92) |
Ok et al., (NDT 2013) [87] | Turkish Multicenter RCT | Prevalent End Stage Kidney Disease Patients | 782 (391 HD, 391 HDF) | Sub 17.2 ± 1.3 Conv 19.5 ± 1.5 | Comparison of postdilution online HDF vs. high-flux hemodialysis in young ESKD patients | Composite of all-cause mortality and nonfatal cardiovascular events | Cardiovascular mortality, hospitalization rates | No difference in primary outcome Better survival in high-efficiency OL-HDF subgroup (HR 0.54, 95% CI 0.31–0.93) |
Morena et al., (KI 2017) [58] | French Multicenter RCT | Elderly Prevalent End Stage Kidney Disease Patients | 381 (191 HD, 190 HDF) | Sub 20 ± 1.5 Conv 21 ± 1.8 L/ses | Comparison of postdilution online HDF vs. high-flux HD in elderly ESKD patients | Intradialytic tolerance | Quality of life, cardiovascular risk biomarkers | Fewer intradialytic symptoms in HDF vs HD. No significant difference in mortality or quality of life, |
Blankestijn et al., (NEJM 2023) [22] | Multinational RCT | Prevalent End Stage Kidney Disease Patients | 1360 (677 HD, 683 HDF) | Sub 23 ± 1 Conv. 25.5 ± 2 L/ses | Comparison of high-dose postdilution HDF vs. conventional high-flux HD | Death from any cause | Cause-specific mortality, cardiovascular events, hospitalizations | HDF reduced all-cause mortality by 23% vs. HD (17.3% vs. 21.9%) |
Author, Journal Year | Design | Population | n Patients | Aim and Key Features | Main Outcomes |
---|---|---|---|---|---|
Rabindranath et al., (AJKD 2005) [15] | Systematic review of RCTs | Adult ESKD patients on maintenance dialysis | 18 trials, total 588 (HD 262, HDF 326) | Comparison of convective therapies (HF, AFB, PHF, HDF) versus HD focusing on mortality and CV outcomes | No clear mortality benefit. Differences in dialysis adequacy and solute clearances |
Susantitaphong et al., (NDT 2013) [92] | Systematic review and meta-analysis of RCTs | Adult ESKD patients on maintenance dialysis | 65 RCTs, total 12,182 HD 3987, HDF 2629, HF 191, AFB 505 | Comparison of convective therapies (HF, AFB, PHF, HDF) versus HD focusing on mortality and CV outcomes | Reduced CV mortality, Intradialytic hypotension, and better solute clearance in HDF/HD |
Nistor et al., (AJKD 2014) [93] | Systematic review and meta-analysis of RCTs | Adult ESKD patients on maintenance dialysis | 35 trials, total 4039 | Comparison of convective therapies (HF, AFB, PHF, HDF) vs HD focusing on mortality and CV outcomes | No mortality benefit but possible reduction in CV mortality and hypotension events in HDF/HD |
Mostovaya et al., (SDI 2014) [99] | Systematic review and meta-analysis | Adult ESKD patients on maintenance dialysis | 6 RCTs, total 2972 HD 1654 HDF 1318 | Comparison of HDF versus HD focusing on mortality and CV outcomes related to convection volume | Reduced mortality linked to higher convection volumes in HDF/HD |
Bignardi et al., (HDI 2024) [94] | Systematic review and meta-analysis of RCTs | Adult ESKD patients on maintenance dialysis | 5 RCTs, total 4143 (HD 1747, HDF 1758) | Comparison of HDF versus HF-HD focusing on mortality and CV outcomes | Reduced all-cause and CV mortality in HDF/HD |
Guimaraes et al., (KM 2024) [95] | Systematic review and meta-analysis of RCTs | Adult ESKD patients on maintenance dialysis | 5 RCTs, total 4143 (HD 2065, HDF 2078) | Comparison of HDF versus HD focusing on mortality and CV outcomes | Reduced all-cause, CV, and infection-related mortality with HDF/HD |
Vernooij et al., (Lanc 2024) [7] | Individual patient data meta-analysis of RCTs | Adult ESKD patients on maintenance dialysis | 5 RCTs, total 4153 HD 2046; HDF 2050 | Comparison of HDF versus HD focusing on mortality and CV outcomes and convective dose-response relationships. | Reduced all-cause mortality and CV mortality. Dose-response effect with convection volume. |
Wang et al., (AJKD 2014) [96] | Systematic review and meta-analysis of RCTs | Adult ESKD patients on maintenance dialysis | 16 RCTs, total 4820 HD 1520, HF 1230, AFB 980, HDF 1090 | Comparison of convective therapies (HF, AFB, PHF, HDF) versus HD focusing on mortality, CV outcomes and dialysis adequacy | No clear mortality benefit. Reduced intradialytic hypotension. Improved solute clearance with HDF/HD |
Silvinato et al., (2024) [97] | Systematic review and meta-analysis of RCTs | Adult ESKD patients on maintenance dialysis | 6 RCTs, total 3629 HD 1808, HDF 1821 | Comparison of HDF versus HD focusing on mortality and CV outcomes | Reduced all-cause and CV mortality, no effect on infection-related mortality with HDF/HD |
Zhu et al., (BMCN 2024) [98] | Meta-analysis of RCTs | Adult ESKD patients on maintenance dialysis | 10 RCTs, total 5120 HD 2560 HDF 2560 | Comparison of HDF vs HD, with convection volume analysis | Reduced all-cause and CV mortality with high volume HDF/HD |
(A) | |||||
Cause | HD Events | HD Events/100 PY | HDF Events | HDF Events/100 PY | HR (95% CI) for HDF vs. HD |
n 2793: HD 1369 HDF 1367 | |||||
All-causes | 410 | 12.1 | 359 | 10.45 | 0.86 |
(0.75; 0.99) | |||||
Cardiovascular Disease | 164 | 4.84 | 128 | 3.73 | 0.77 |
(0.61; 0.97) | |||||
Infections | 77 | 2.27 | 73 | 2.13 | 0.94 |
(0.68; 1.30) | |||||
Sudden death | 56 | 1.65 | 56 | 1.63 | 0.99 |
(0.68; 1.43) | |||||
(B) | |||||
Cause | Adjusted HR (95% CI) | ||||
n 2793: HD 1369 HDF 1367 | |||||
BSA-Adjusted Convection Volume (L/session) | <19 | 19–23 | >23 | ||
All-causes | 0.83 | 0.93 | 0.78 | ||
(0.66; 1.03) | (0.75; 1.16) | (0.62; 0.98) | |||
Cardiovascular | 0.92 | 0.71 | 0.69 | ||
(0.65; 1.30) | (0.49; 1.03) | (0.47; 1.00) | |||
Infections | 1.5 | 0.97 | 0.62 | ||
(0.92; 2.46) | (0.54; 1.74) | (0.32; 1.19) | |||
Sudden death | 1.09 | 1.04 | 0.69 | ||
(0.69; 1.74) | (0.63; 1.70) | (0.39; 1.20) |
Outcome | HD (n) | HD Events | HD Events per 100 PY | HDF (n) | HDF Events | HDF Events per 100 PY | Hazard Ratio (95% CI) |
---|---|---|---|---|---|---|---|
Number of patients included: n 4096: HD 2046; HDF 2050 | |||||||
All-cause mortality (primary outcome) | 2046 | 559 | 11.18 | 2050 | 477 | 9.37 | 0.84 (0.74–0.95) |
Cardiovascular mortality | 1979 | 202 | 4.04 | 1972 | 160 | 3.14 | 0.78 (0.64–0.96) |
Cardiac causes | 1979 | 117 | 2.34 | 1972 | 80 | 1.57 | 0.67 (0.50–0.89) |
Non-cardiac causes | 1979 | 32 | 0.64 | 1972 | 39 | 0.77 | 1.20 (0.75–1.91) |
Unclassified | 1979 | 53 | 1.06 | 1972 | 41 | 0.83 | 0.78 (0.52–1.17) |
Infection-related mortality, including COVID-19 | 1677 | 118 | 2.36 | 1691 | 96 | 1.89 | 0.80 (0.61–1.04) |
Infection-related mortality, excluding COVID-19 | 1677 | 97 | 1.94 | 1691 | 81 | 1.59 | 0.82 (0.61–1.10) |
Sudden death | 1979 | 98 | 1.96 | 1972 | 84 | 1.65 | 0.84 (0.63–1.12) |
Transplantation | 2070 | 162 | 2.8 | 2083 | 193 | 2.98 | 1.14 (0.92–1.41) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Canaud, B.; Strippoli, G.; Davenport, A. High-Volume Hemodiafiltration Versus High-Flux Hemodialysis: A Narrative Review for the Clinician. J. Clin. Med. 2025, 14, 2614. https://doi.org/10.3390/jcm14082614
Canaud B, Strippoli G, Davenport A. High-Volume Hemodiafiltration Versus High-Flux Hemodialysis: A Narrative Review for the Clinician. Journal of Clinical Medicine. 2025; 14(8):2614. https://doi.org/10.3390/jcm14082614
Chicago/Turabian StyleCanaud, Bernard, Giovanni Strippoli, and Andrew Davenport. 2025. "High-Volume Hemodiafiltration Versus High-Flux Hemodialysis: A Narrative Review for the Clinician" Journal of Clinical Medicine 14, no. 8: 2614. https://doi.org/10.3390/jcm14082614
APA StyleCanaud, B., Strippoli, G., & Davenport, A. (2025). High-Volume Hemodiafiltration Versus High-Flux Hemodialysis: A Narrative Review for the Clinician. Journal of Clinical Medicine, 14(8), 2614. https://doi.org/10.3390/jcm14082614