Comparative Evaluation of Selected Methods for Assessing Gingival Phenotype
Abstract
:1. Introduction
2. Materials and Methods
2.1. Phenotype Evaluation
2.2. Statistical Analysis
- –
- To detect a moderate Spearman’s correlation (r = 0.3) between gingival assessment methods (e.g., VA vs. PTM) with α = 0.05 and power (1 − β) = 0.8, a minimum of 85 participants were required (correlation analysis),
- –
- For Fleiss’ kappa, detecting substantial agreement (kappa = 0.7) between two raters across two or three categories (e.g., thin/thick or thin/medium/thick) requires approximately 50–60 participants for 80% power at α = 0.05 (inter-rater agreement),
- –
- The Wilcoxon signed-rank test, used to compare gingival parameters between right and left incisors, requires approximately 34 pairs for a medium effect size (d = 0.5, α = 0.05, 1 − β = 0.8) (paired comparison).
3. Results
3.1. Visual Assessment of Gingival Phenotype
3.2. Assessment of Gingival Phenotype with Probe Transparency Method
3.3. Assessment of the Thickness of Free and Keratinized Gingiva
3.4. Correlation Assessment of Methods for Assessing Gingival Phenotype
4. Discussion
- –
- The sample was drawn from a single department, which may introduce bias.
- –
- Central incisors cannot represent all teeth.
- –
- We did not consider tooth position, its relation to the alveolar process, overjet, or overbite, all of which influence gingival phenotype.
- –
- We did not account for gingival pigmentation, which may affect the outcome of the probe transparency technique.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cunha, J.; Fernandes, G.V.O.; Fernandes, J.C.H.; Lopes, P.C.; Rio, R. The Interference of Age and Gender on Smile Characterization Analyzed on Six Parameters: A Clinical-Photographic Pilot Study. Medicina 2023, 59, 595. [Google Scholar] [CrossRef] [PubMed]
- da Silva, D.M.; Castro, F.; Martins, B.; Fraile, J.F.; Fernandes, J.C.H.; Fernandes, G.V.O. The influence of the gingival phenotype on implant survival rate and clinical parameters: A systematic review. Evid. Based Dent 2025. ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.K.; Nagate, R.R.; Chaturvedi, S.; Al-Ahmari, M.M.M.; Al-Qarni, M.A.; Gokhale, S.T.; Ahmed, A.R.; Bariqi, A.A.; Cicciù, M.; Minervini, G. Importance of periodontal phenotype in periodontics and restorative dentistry: A systematic review. BMC Oral Health 2024, 24, 41. [Google Scholar]
- Shah, R.; Sowmya, N.K.; Thomas, R.; Mehta, D.S. Periodontal biotype: Basics and clincal considerations. J. Inter. Dent. 2016, 6, 44–49. [Google Scholar] [CrossRef]
- Kus-Bartoszek, A.; Lipski, M.; Jarząbek, A.; Manowiec, J.; Marek, E.; Droździk, A. Evaluation of gingival phenotype in the early transitional dentition phase in children-comparison of three non-invasive methods. J. Clin. Med. 2023, 12, 5897. [Google Scholar] [CrossRef]
- Jepsen, S.; Caton, J.G.; Albandar, J.M.; Bissada, N.F.; Bouchard, P.; Cortellini, P.; Demirel, K.; de Sanctis, M.; Ercoli, C.; Fan, J.; et al. Periodontal manifestations of systemic diseases and developmental and acquired conditions: Consensus report of workgroup 3 of the 2017 world workshop on the classification of periodontal and peri-implant diseases and conditions. J. Periodontol. 2018, 89, 237–248. [Google Scholar] [CrossRef]
- Cortellini, P.; Bissada, N.F. Mucogingival conditions in the natural dentition: Narrative review, case definitions, and diagnostic considerations. J. Periodontol. 2018, 89, 204–213. [Google Scholar] [CrossRef]
- Kao, R.T.; Curtis, D.A.; Kim, D.M.; Lin, G.H.; Wang, C.W.; Cobb, C.M.; Hsu, Y.T.; Kan, J.; Velasquez, D.; Avila-Ortiz, G.; et al. American Academy of Periodontology best evidence consensus statement on modifying periodontal phenotype in preparation for orthodontic and restorative treatment. J. Periodontol. 2020, 91, 289–298. [Google Scholar] [CrossRef]
- Litonja, L.A.; Andreana, S.; Bush, P.J.; Tobias, T.S.; Cohen, R.E. Wedged cervical lesions produced by toothbrushing. Am. J. Dent. 2004, 17, 237–240. [Google Scholar]
- Kao, R.T.; Pasquinelli, K. Thick vs. thin gingival tissue: A key determinant in tissue response to disease and restorative treatment. J. Calif. Dent. Assoc. 2002, 30, 521–526. [Google Scholar]
- Eghbali, A.; De Rouck, T.; De Bruyn, H.; Cosyn, J. The gingival biotype assessed by experienced and inexperienced clinicians. J. Clin. Periodontol. 2009, 36, 958–963. [Google Scholar] [CrossRef] [PubMed]
- Ronay, V.; Sahrmann, P.; Bindl, A.; Attin, T.; Schmidlin, P.R. Current status and perspectives of mucogingival soft tissue measurement methods. J. Esthet. Restor. Dent. 2011, 23, 146–156. [Google Scholar] [CrossRef]
- De Rouck, T.; Eghbali, R.; Collys, K.; De Bruyn, H.; Cosyn, J. The gingival biotype revisited: Transparency of the periodontal probe through the gingival margin as a method to discriminate thin from thick gingiva. J. Clin. Periodontol. 2009, 36, 428–433. [Google Scholar] [CrossRef]
- Eger, T.; Müller, H.P.; Heinecke, A. Ultrasonic determination of gingival thickness. Subject variation and influence of tooth type and clinical features. J. Clin. Periodontol. 1996, 23, 839–845. [Google Scholar] [CrossRef] [PubMed]
- Müller, H.P.; Barrieeshi-Nusair, K.M.; Kononen, E. Repeatability of ultrasonic determination of gingival thickness. Clin. Oral Investig. 2007, 11, 439–442. [Google Scholar] [CrossRef] [PubMed]
- Benavides, E.; Rios, H.P.; Ganz, S.D.; An, C.H.; Resnik, R.; Reardon, G.T.; Feldman, S.J.; Mah, J.K.; Hatcher, D.; Kim, M.J.; et al. Use of cone beam computed tomography in implant dentistry: The International Congress of Oral Implantologists consensus report. Implant. Dent. 2012, 21, 78–86. [Google Scholar] [CrossRef]
- Zweers, J.; Thomas, R.Z.; Slot, D.E.; Weisgold, A.S.; Van der Weijden, F.G. Charakteristics of periodontal biotype, its dimensions, associations and prevalence: A systemic review. J. Clin. Periodontol. 2014, 41, 958–971. [Google Scholar] [CrossRef]
- Kahn, S.; Rodrigues, W.J.D.P.R.; Dias, A.T.; Resende, R.; Fernandes, J.C.H.; Fernandes, G.V.O. Crown lengthening surgery in the esthetic area for optimized results: A review with surgical recommendations. Surgeries 2024, 5, 1043–1055. [Google Scholar] [CrossRef]
- Cuny-Houchmand, M.; Renaudin, S.; Leroul, M.; Planche, L.; Guehennec, L.L.; Soueidan, A. Gingival biotype assessment: Visual inspection relevance and maxillary versus mandibular comparison. Open Dent, J. 2013, 7, 1–6. [Google Scholar] [CrossRef]
- Rasperini, G.; Acunzo, R.; Cannalire, P.; Farronato, G. Influence of Periodontal Biotype on Root Surface Exposure During Orthodontic Treatment: A Preliminary Study. Int. J. Periodontics Restor. Dent. 2015, 35, 665–675. [Google Scholar] [CrossRef]
- Ganti, B.; Bednarz, W.; Komuves, K.; Vag, J. Reproducibility of the PIROP ultrasonic biometer for gingival thickness measurements. J. Esthet. Restor. Dent. 2019, 31, 263–267. [Google Scholar] [CrossRef] [PubMed]
- Kus-Bartoszek, A.; Lipski, M.; Jarząbek, A.; Manowiec, J.; Droździk, A. Gingival Phenotype Changes and the Prevalence of Mucogingival Deformities during the Early Transitional Dentition Phase-A Two-Year Longitudinal Study. Int. J. Environ. Res. Public. Health 2022, 25, 3899. [Google Scholar] [CrossRef] [PubMed]
- Kus-Bartoszek, A.; Lipski, M.; Safranow, K.; Drozdzik, A. The attached gingiva thickness in the mandibular anterior region during the early transitional dentition phase. Quintessence Int. 2021, 52, 220–227. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Gamer, M.; Lemon, J.; Fellows, I.; Singh, P. irr: Various Coefficients of Interrater Reliability and Agreement, R Package Version 0.84.1. 2019. Available online: https://CRAN.R-project.org/package=irr (accessed on 26 January 2019).
- Koller, M. robustlmm: An R Package for Robust Estimation of Linear Mixed-Effects Models. J. Stat. Softw. 2016, 75, 1–24. [Google Scholar] [CrossRef]
- Lüdecke, D. sjPlot: Data Visualization for Statistics in Social Science, R Package Version 2.8.15; 2023. Available online: https://CRAN.R-project.org/package=sjPlot (accessed on 17 August 2023).
- Makowski, D.; Lüdecke, D.; Patil, I.; Thériault, R.; Ben-Shachar, M.; Wiernik, B. Automated Results Reporting as a Practical Tool to Improve Reproducibility and Methodological Best Practices Adoption. CRAN 2023. Available online: https://easystats.github.io/report/ (accessed on 8 December 2024).
- Patil, I. Visualizations with statistical details: The ‘ggstatsplot’ approach. J. Open Source Softw. 2021, 6, 3167. [Google Scholar] [CrossRef]
- Sjoberg, D.; Whiting, K.; Curry, M.; Lavery, J.; Larmarange, J. Reproducible Summary Tables with the gtsummary Package. R. J. 2021, 13, 570–580. [Google Scholar] [CrossRef]
- Marques, T.M.; Santos, N.B.; Montero, J.; Correia, A.; Fernandes, G.V. The effect of the interproximal creeping attachment in aesthetic site after root coverage surgery with VIST technique—A case report. Indian J. Dent. Res. 2023, 34, 90–93. [Google Scholar] [CrossRef]
- Pini Prato, G.P.; Di Gianfilippo, R. On the value of the 2017 classification of phenotype and gingival recessions. J. Periodontol. 2021, 92, 613–618. [Google Scholar] [CrossRef]
- Chambrone, L.; Garcia-Venezuela, F.S. Periodontal phenotype modification of complexes periodontal-orthodontic case scenarios: A clinical review on the applications of allogenous dermal matrix as an alternative to subepithelial connective tissue graft. J. Esthet. Restor. Dent. 2023, 35, 158–167. [Google Scholar] [CrossRef]
- Santamaria, P.; Paolantonio, M.; Romano, L.; Serroni, M.; Rexhepi, I.; Secondi, L.; Paolantonio, G.; Sinjari, B.; De Ninis, P.; Femminella, B. Gingival phenotype changes after different periodontal plastic surgical techniques: A single -masked randomized controlled clinical trial. Clin. Oral Investig. 2023, 27, 3423–3435. [Google Scholar] [CrossRef] [PubMed]
- Merjohn, G.K.; Chambrone, L.; Brodsky, A.I.; Xenoud, P. Mandibular anterior lingual recession: Keratinized tissue grafting and minimally invasive harvesting. Clin. Adv. Periodontics 2021, 11, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Huttner, E.A.; Machado, D.C.; de Oliveira, R.B.; Antunes, A.G.; Hebling, E. Effects of human aging on periodontal tissues. Spec. Care Dentist. 2009, 29, 149–155. [Google Scholar] [CrossRef]
- Johal, A.; Katsaros, C.; Kiliaridis, S.; Leitao, P.; Rosa, M.; Sculean, A.; Weiland, F.; Zachrisson, B. State of the science on controversial topics: Orthodontic therapy and gingival recession (a report of the Angle Society of Europe 2013 meeting). Prog. Orthod. 2013, 14, 16. [Google Scholar] [CrossRef] [PubMed]
- Acunzo, R.; Gorbunkova, A.; Rezolla, M.; Bellucci, G.; Rasperini, G. Short-term effect of regular vs mini curettes on periodontal tissue according to phenotype: A randomized control clinical trial. Int. J. Esther. Dent. 2021, 16, 364–374. [Google Scholar]
- Pini Prato, G.; Di Gianfilippo, R.; Pannuti, C.M.; Allen, E.P.; Aroca, S.; Avila-Ortiz, G.; Bouchard, P.; Cairo, F.; Chackartchi, T.; Cortellini, P.; et al. Diagnostic reproducibility of the 2018 classification of gingival recession defects and gingival phenotype: A multicenter inter- and intra-examiner agreement study. J. Periodontol. 2023, 94, 661–672. [Google Scholar] [CrossRef]
- Yilmaz, B.T.; Comerdov, E.; Kutuk, C.; Nart, J.; Keceli, H.G. Modified coronally advanced tunnel versus epithelialized free gingival graft technique in gingival phenotype modification: A comparative randomized controlled clinical trial. Clin. Oral Investig. 2022, 26, 6283–6293. [Google Scholar] [CrossRef]
- Said, K.N.; Abu Khalid, A.S.; Farook, F.F. Anatomic factors influencing dimensions of soft tissue graft from the hard palate. A clinical study. Clin. Exp. Dent. Res. 2020, 6, 462–469. [Google Scholar] [CrossRef]
- Sirrinirund, B.; Wang, I.; Ramadan, G.; Kripfgans, O.D.; Chan, H. Ridge augumentation planning, wound healing evaluation, and peri-implant tissue phenotype assessment with ultrasonography: A case report. Clin. Adv. Peroodontics. 2024, 14, 30–37. [Google Scholar] [CrossRef]
- Baroothi, S.; Tavelli, L.; Di Gianfilippo, R.; Shedden, K.; Oh, T.J.; Rasperini, G.; Neiva, R.; Giannobile, W.V.; Wang, H.L. Soft tissue phenotype modification predicts gingival margin long-term (10 year) stability: Longitudinal analysis of six randomized clinical trials. J. Clin. Periodontol. 2022, 49, 672–683. [Google Scholar] [CrossRef]
- Agudio, G.; Chambrone, L.; Selvaggi, F.; Pini-Prato, G.P. Effect of gingival augmentation procedure (free gingival graft) on reducing the risk of non-carious cervical lesions: A 24-to 30-year follow-up study. J. Periodontol. 2019, 90, 1235–1243. [Google Scholar] [CrossRef]
- Romano, L.; Paolantonio, M.; De Ninis, P.; Saleh, M.H.A.; Sinjari, B.; Xhajanka, E.; Femminella, B.; Wang, H.L.; Ravidá, A. Minimally invasive gingival phenotype modification in gingival recession associated with a non-carious cervical lesion using the root plastique technique: A quasi-experimental one-group pretest-posttest study. J. Periodontol. 2023, 94, 641–651. [Google Scholar] [CrossRef]
- Kan, J.Y.; Marimoto, T.; Rungcharassaeng, K.; Roe, P.; Smith, D.H. Gingival biotype assessment in the esthetic zone: Visual versus direct measurement. Int. J. Periodontics Restor. Dent. 2010, 30, 237–243. [Google Scholar]
- Fu, J.H.; Yeh, C.Y.; Chan, H.L.; Tatarakis, N.; Leong, D.J.M.; Wang, H.L. Tissue biotype and its relation to the underlying bone morphology. J. Periodontol. 2010, 81, 569–574. [Google Scholar] [CrossRef] [PubMed]
- Fisher, K.R.; Richter, T.; Kebschull, M.; Petersen, N.; Fickl, S. On the relationship between gingival biotypes and gingival thickness in young Caucasians. Clin. Oral Implants Res. 2015, 6, 865–869. [Google Scholar] [CrossRef] [PubMed]
- Fischer, K.R.; Kunzlberger, A.; Donos, N.; Fickl, S.; Friedmann, A. Gingival biotype revisited-novel classification and assessment tool. Clin. Oral Investig. 2018, 22, 443–448. [Google Scholar] [CrossRef]
- Shrestha, S.; Goel, K.; Niraula, S.R. Assessment of gingival biotypes in patients visiting a tertiary care centre in eastern Nepal. J. Nepal. Health Res. Counc. 2020, 14, 472–477. [Google Scholar] [CrossRef]
- Kan, J.Y.K.; Rungcharassaeng, K.; Umezu, K.; Kois, J.C. Dimensions of peri-implantmucosa: An evaluation of maxillary anterior single implants in humans. J. Periodontol. 2003, 74, 557–562. [Google Scholar] [CrossRef]
- Frost, N.A.; Mealey, B.L.; Jones, A.A.; Huynh-Ba, G. Periodontal biotype: Gingival thickness as it relates to probe visibility and buccal plate thickness. J. Periodontol. 2015, 86, 1141–1149. [Google Scholar] [CrossRef]
- Machado Alves, P.H.; Lira Pacheno Alves, T.C.; Pegoraro, T.A.; Costa, Y.M.; Bonfante, E.A.; Fraga de Almeida, A.L.P. Measurement properties of gingival biotype evaluation methods. Clin. Implant. Relat. Res. 2018, 20, 280–284. [Google Scholar]
- Daly, C.H.; Wheeler, J.B. The use of ultrasonic thickness measurement in the clinical evaluation of the oral soft tissues. Int. Dent. J. 1971, 21, 418–429. [Google Scholar] [PubMed]
- Sharma, S.; Thakur, S.L.; Joshi, S.K.; Kulkarni, S.S. Measurement of gingival thickness using digital vernier caliper and ultrasonographic method: A comparative study. J. Investig. Cain Dent. 2014, 5, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Savitha, B.; Vandana, K.L. Comparative assessment of gingival thickness using transgingival probing and ultrasonographic method. Indian J. Dent. Res. 2005, 16, 135–139. [Google Scholar] [PubMed]
- Malpartida-Carrillo, V.; Tinedo-Lopez, P.L.; Guerrero, M.E.; Amaya-Pajares, S.P.; Özcan, M.; Rösing, C.K. Periodontal phenotype: A review of historical and current classifications evaluating different methods and characteristics. J. Esthet. Restor. Dent. 2021, 33, 432–445. [Google Scholar] [CrossRef]
Phenotype | Rater 1, N = 103 (%) | Rater 2, N = 103 (%) |
---|---|---|
thin | 54 (52.43%) | 53 (51.96%) |
thick | 49 (47.57%) | 50 (48.04%) |
Rater 1, N = 103 (%) | Rater 2, N = 103 (%) | |
---|---|---|
Upper right central incisor | ||
thin | 20 (19.42%) | 21 (20.39%) |
medium | 64 (62.14%) | 64 (62.14%) |
thick | 19 (18.45%) | 18 (17.48%) |
Upper left central incisor | ||
thin | 17 (16.67%) | 18 (17.48%) |
medium | 70 (68.63%) | 69 (67.01%) |
thick | 15 (14.71%) | 16 (15.46%) |
Category | Upper Right Central Incisor | Upper Left Central Incisor | ||
---|---|---|---|---|
Kappa | p | Kappa | p | |
Overall, including the following: | 0.70 | <0.001 | 0.74 | <0.001 |
thin | 0.73 | <0.001 | 0.82 | <0.001 |
medium | 0.67 | <0.001 | 0.70 | <0.001 |
thick | 0.70 | <0.001 | 0.71 | <0.001 |
Characteristic | N | Central Upper Incisor | p b | |
---|---|---|---|---|
Right, N = 103 a | Left, N = 103 a | |||
Thickness of free gingiva (mm) | 103 | 0.96 (0.68. 1.13) | 0.93 (0.72. 1.09) | 0.589 |
Keratinized gingival thickness (mm) | 103 | 0.97 (0.80. 1.09) | 0.94 (0.81. 1.09) | 0.786 |
Variable | Comparison | Spearman’s r | 95% CI | p-Value |
---|---|---|---|---|
Upper right central incisor | ||||
Free gingiva | VA vs. PTM | 0.71 | 0.61–0.80 | <0.001 |
VA vs. DM | 0.62 | 0.50–0.72 | <0.001 | |
PTM vs. DM | 0.67 | 0.55–0.76 | <0.001 | |
Keratinized gingiva | VA vs. PTM | 0.69 | 0.58–0.78 | <0.001 |
VA vs. DM | 0.64 | 0.52–0.74 | <0.001 | |
PTM vs. DM | 0.66 | 0.54–0.76 | <0.001 | |
Upper left central incisor | ||||
free gingiva | VA vs. PTM | 0.76 | 0.66–0.85 | <0.001 |
VA vs. DM | 0.74 | 0.63–0.84 | <0.001 | |
PTM vs. DM | 0.75 | 0.66–0.84 | <0.001 | |
Keratinized gingiva | VA vs. PTM | 0.63 | 0.51–0.73 | <0.001 |
VA vs. DM | 0.63 | 0.52–0.73 | <0.001 | |
PTM vs. DM | 0.69 | 0.59–0.78 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dziewulska, A.; Czerniawska-Kliman, L.; Droździk, A.; Grocholewicz, K. Comparative Evaluation of Selected Methods for Assessing Gingival Phenotype. J. Clin. Med. 2025, 14, 2669. https://doi.org/10.3390/jcm14082669
Dziewulska A, Czerniawska-Kliman L, Droździk A, Grocholewicz K. Comparative Evaluation of Selected Methods for Assessing Gingival Phenotype. Journal of Clinical Medicine. 2025; 14(8):2669. https://doi.org/10.3390/jcm14082669
Chicago/Turabian StyleDziewulska, Anna, Luiza Czerniawska-Kliman, Agnieszka Droździk, and Katarzyna Grocholewicz. 2025. "Comparative Evaluation of Selected Methods for Assessing Gingival Phenotype" Journal of Clinical Medicine 14, no. 8: 2669. https://doi.org/10.3390/jcm14082669
APA StyleDziewulska, A., Czerniawska-Kliman, L., Droździk, A., & Grocholewicz, K. (2025). Comparative Evaluation of Selected Methods for Assessing Gingival Phenotype. Journal of Clinical Medicine, 14(8), 2669. https://doi.org/10.3390/jcm14082669