Characterization of Individuals with High-Frequency Artificial Tear Supplement Use
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Grouping
2.2. Examination Protocol
2.3. Subjective Symptoms
2.4. Grading of Superficial Punctate Keratitis (SPK) and Measurement of the FTBUT
2.5. Lipid Layer Thickness (LLT) and Blinks
2.6. Number of Expressible Meibomian Glands (MGEs)
2.7. Meiboscale
2.8. Aqueous Tear Secretion Evaluation
2.9. Ocular Surface Redness
2.10. Compliance
2.11. Dry Eye Subtyping
2.12. Long-Term Dry Eye Treatment and Follow-Up
2.13. Statistical Analysis
3. Results
3.1. Differences in Demographics and Dry Eye Parameters Between Low Users and High Users
3.2. Distribution of Dry Eye Subtypes
3.3. Compliance for Examination 2
3.4. Effects of Lid Care and Reducing Topical Eye Drop Application
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DED | dry eye disease |
FTBUT | fluorescein tear-film break-up time |
LLT | average lipid layer thickness |
MGE | number of expressible meibomian gland expression |
OSDI | Ocular Surface Disease Index |
PB | number of partial blinks |
PB rate (%) | partial blink rate |
SPEED | Standardized Patient Evaluation of Eye Dryness |
SPK | superficial punctate keratitis |
TB | number of total blinks |
References
- Tsubota, K.; Yokoi, N.; Watanabe, H.; Dogru, M.; Kojima, T.; Yamada, M.; Kinoshita, S.; Kim, H.M.; Tchah, H.W.; Hyon, J.Y.; et al. A New Perspective on Dry Eye Classification: Proposal by the Asia Dry Eye Society. Eye Contact Lens 2020, 46 (Suppl. S1), S2–S13. [Google Scholar] [CrossRef] [PubMed]
- Morthen, M.K.; Magno, M.S.; Utheim, T.P.; Hammond, C.J.; Vehof, J. The work-related burden of dry eye. Ocul. Surf. 2023, 28, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Scher, C.; Meador, L.; Van Cleave, J.H.; Reid, M.C. Moving Beyond Pain as the Fifth Vital Sign and Patient Satisfaction Scores to Improve Pain Care in the 21st Century. Pain. Manag. Nurs. 2018, 19, 125–129. [Google Scholar] [CrossRef]
- Puja, G.; Sonkodi, B.; Bardoni, R. Mechanisms of Peripheral and Central Pain Sensitization: Focus on Ocular Pain. Front. Pharmacol. 2021, 12, 764396. [Google Scholar] [CrossRef] [PubMed]
- Galor, A.; Moein, H.R.; Lee, C.; Rodriguez, A.; Felix, E.R.; Sarantopoulos, K.D.; Levitt, R.C. Neuropathic pain and dry eye. Ocul. Surf. 2018, 16, 31–44. [Google Scholar] [CrossRef]
- Mehra, D.; Cohen, N.K.; Galor, A. Ocular Surface Pain: A Narrative Review. Ophthalmol. Ther. 2020, 9, 1–21. [Google Scholar] [CrossRef]
- Ebrahimiadib, N.; Yousefshahi, F.; Abdi, P.; Ghahari, M.; Modjtahedi, B.S. Ocular Neuropathic Pain: An Overview Focusing on Ocular Surface Pains. Clin. Ophthalmol. 2020, 14, 2843–2854. [Google Scholar] [CrossRef]
- Dermer, H.; Lent-Schochet, D.; Theotoka, D.; Paba, C.; Cheema, A.A.; Kim, R.S.; Galor, A. A Review of Management Strategies for Nociceptive and Neuropathic Ocular Surface Pain. Drugs 2020, 80, 547–571. [Google Scholar] [CrossRef]
- Galor, A.; Hamrah, P.; Haque, S.; Attal, N.; Labetoulle, M. Understanding chronic ocular surface pain: An unmet need for targeted drug therapy. Ocul. Surf. 2022, 26, 148–156. [Google Scholar] [CrossRef]
- Tellefsen Nøland, S.; Badian, R.A.; Utheim, T.P.; Utheim, Ø.A.; Stojanovic, A.; Tashbayev, B.; Raeder, S.; Dartt, D.A.; Chen, X. Sex and age differences in symptoms and signs of dry eye disease in a Norwegian cohort of patients. Ocul. Surf. 2021, 19, 68–73. [Google Scholar] [CrossRef]
- Chang, S.W.; Wu, W.L. Association between Dry Eye Parameters Depends on Tear Components. J. Clin. Med. 2022, 11, 3056. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.-L.; Chang, S.-W. Dermatochalasis Aggravates Meibomian Gland Dysfunction Related Dry Eyes. J. Clin. Med. 2022, 11, 2379. [Google Scholar] [CrossRef]
- Siedlecki, A.N.; Smith, S.D.; Siedlecki, A.R.; Hayek, S.M.; Sayegh, R.R. Ocular pain response to treatment in dry eye patients. Ocul. Surf. 2020, 18, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Ho, W.-T.; Chiu, C.-Y.; Chang, S.-W. Low ambient temperature correlates with the severity of dry eye symptoms. Taiwan. J. Ophthalmol. 2022, 12, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Chun, Y.S.; Kim, K.W. Different perception of dry eye symptoms between patients with and without primary Sjogren’s syndrome. Sci. Rep. 2022, 12, 2172. [Google Scholar] [CrossRef]
- Tagawa, Y.; Noda, K.; Ohguchi, T.; Tagawa, Y.; Ishida, S.; Kitaichi, N. Corneal hyperalgesia in patients with short tear film break-up time dry eye. Ocul. Surf. 2019, 17, 55–59. [Google Scholar] [CrossRef]
- Lievens, C.; Berdy, G.; Douglass, D.; Montaquila, S.; Lin, H.; Simmons, P.; Carlisle-Wilcox, C.; Vehige, J.; Haque, S. Evaluation of an enhanced viscosity artificial tear for moderate to severe dry eye disease: A multicenter, double-masked, randomized 30-day study. Cont. Lens Anterior Eye 2019, 42, 443–449. [Google Scholar] [CrossRef]
- Craig, J.P.; Muntz, A.; Wang, M.T.M.; Luensmann, D.; Tan, J.; Trave Huarte, S.; Xue, A.L.; Jones, L.; Willcox, M.D.P.; Wolffsohn, J.S. Developing evidence-based guidance for the treatment of dry eye disease with artificial tear supplements: A six-month multicentre, double-masked randomised controlled trial. Ocul. Surf. 2021, 20, 62–69. [Google Scholar] [CrossRef]
- Gomes, J.A.P.; Azar, D.T.; Baudouin, C.; Bitton, E.; Chen, W.; Hafezi, F.; Hamrah, P.; Hogg, R.E.; Horwath-Winter, J.; Kontadakis, G.A.; et al. TFOS Lifestyle: Impact of elective medications and procedures on the ocular surface. Ocul. Surf. 2023, 29, 331–385. [Google Scholar] [CrossRef]
- Stalmans, I.; Lemij, H.; Clarke, J.; Baudouin, C. Signs and Symptoms of Ocular Surface Disease: The Reasons for Patient Dissatisfaction with Glaucoma Treatments. Clin. Ophthalmol. 2020, 14, 3675–3680. [Google Scholar] [CrossRef]
- Zaharia, A.C.; Dumitrescu, O.M.; Radu, M.; Rogoz, R.E. Adherence to Therapy in Glaucoma Treatment—A Review. J. Pers. Med. 2022, 12, 514. [Google Scholar] [CrossRef] [PubMed]
- Quaranta, L.; Novella, A.; Tettamanti, M.; Pasina, L.; Weinreb, R.N.; Nobili, A. Adherence and Persistence to Medical Therapy in Glaucoma: An Overview. Ophthalmol. Ther. 2023, 12, 2227–2240. [Google Scholar] [CrossRef] [PubMed]
- Bézie, A.; Morisseau, V.; Rolland, R.; Guillemassé, A.; Brouard, B.; Chaix, B. Using a Chatbot to Study Medication Overuse Among Patients Suffering From Headaches. Front. Digit. Health 2022, 4, 801782. [Google Scholar] [CrossRef]
- Diener, H.C.; Donoghue, S.; Gaul, C.; Holle-Lee, D.; Jöckel, K.H.; Mian, A.; Schröder, B.; Kühl, T. Prevention of medication overuse and medication overuse headache in patients with migraine: A randomized, controlled, parallel, allocation-blinded, multicenter, prospective trial using a mobile software application. Trials 2022, 23, 382. [Google Scholar] [CrossRef]
- Goldstein, M.H.; Silva, F.Q.; Blender, N.; Tran, T.; Vantipalli, S. Ocular benzalkonium chloride exposure: Problems and solutions. Eye 2022, 36, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Güçlü, H.; Çınar, A.K.; Çınar, A.C.; Akaray, İ.; Şambel Aykutlu, M.; Sakallıoğlu, A.K.; Gürlü, V. Corneal epithelium and limbal region alterations due to glaucoma medications evaluated by anterior segment optic coherence tomography: A case-control study. Cutan. Ocul. Toxicol. 2021, 40, 85–94. [Google Scholar] [CrossRef]
- Chang, H.L.; Kuo, B.I.; Wu, J.H.; Huang, W.L.; Su, C.C.; Chen, W.L. Anti-glaucoma agents-induced pseudodendritic keratitis presumed to be herpetic simplex keratitis: A clinical case series. Sci. Rep. 2021, 11, 21443. [Google Scholar] [CrossRef]
- Wu, W.L.; Chang, S.W. Effects of cyclosporine on steroid-refractory dry eyes. Taiwan J. Ophthalmol. 2023, 13, 306–316. [Google Scholar] [CrossRef]
- Efron, N.; Pritchard, N.; Brandon, K.; Copeland, J.; Godfrey, R.; Hamlyn, B.; Vrbancic, V. A survey of the use of grading scales for contact lens complications in optometric practice. Clin. Exp. Optom. 2011, 94, 193–199. [Google Scholar] [CrossRef]
- Vehof, J.; Sillevis Smitt-Kamminga, N.; Nibourg, S.A.; Hammond, C.J. Sex differences in clinical characteristics of dry eye disease. Ocul. Surf. 2018, 16, 242–248. [Google Scholar] [CrossRef]
- Miller, K.L.; Walt, J.G.; Mink, D.R.; Satram-Hoang, S.; Wilson, S.E.; Perry, H.D.; Asbell, P.A.; Pflugfelder, S.C. Minimal clinically important difference for the ocular surface disease index. Arch. Ophthalmol. 2010, 128, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Ahn, H.; Ji, Y.W.; Jun, I.; Kim, T.I.; Lee, H.K.; Seo, K.Y. Effects of meibomian gland dysfunction and aqueous deficiency on friction-related disease. Ocul. Surf. 2022, 26, 295–299. [Google Scholar] [CrossRef] [PubMed]
- Vu, C.H.V.; Kawashima, M.; Yamada, M.; Suwaki, K.; Uchino, M.; Shigeyasu, C.; Hiratsuka, Y.; Yokoi, N.; Tsubota, K. Influence of Meibomian Gland Dysfunction and Friction-Related Disease on the Severity of Dry Eye. Ophthalmology 2018, 125, 1181–1188. [Google Scholar] [CrossRef]
- Uchino, M.; Yokoi, N.; Shimazaki, J.; Hori, Y.; Tsubota, K.; Japan Dry Eye Society. Adherence to Eye Drops Usage in Dry Eye Patients and Reasons for Non-Compliance: A Web-Based Survey. J. Clin. Med. 2022, 11, 367. [Google Scholar] [CrossRef]
- McMonnies, C.W. Could contact lens dryness discomfort symptoms sometimes have a neuropathic basis? Eye Vis. 2021, 8, 12. [Google Scholar] [CrossRef] [PubMed]
- Tuan, H.I.; Chi, S.C.; Kang, Y.N. An Updated Systematic Review with Meta-Analysis of Randomized Trials on Topical Cyclosporin A for Dry-Eye Disease. Drug Des. Devel Ther. 2020, 14, 265–274. [Google Scholar] [CrossRef]
- Moein, H.R.; Akhlaq, A.; Dieckmann, G.; Abbouda, A.; Pondelis, N.; Salem, Z.; Müller, R.T.; Cruzat, A.; Cavalcanti, B.M.; Jamali, A.; et al. Visualization of microneuromas by using in vivo confocal microscopy: An objective biomarker for the diagnosis of neuropathic corneal pain? Ocul. Surf. 2020, 18, 651–656. [Google Scholar] [CrossRef]
- Chiang, J.C.B.; Tran, V.; Wolffsohn, J.S. The impact of dry eye disease on corneal nerve parameters: A systematic review and meta-analysis. Ophthalmic Physiol. Opt. 2023, 43, 1079–1091. [Google Scholar] [CrossRef]
Variables in the Equation | B | S.E. | p-Value | Odds Ratio (OR) | |
---|---|---|---|---|---|
Model 1 | SPEED | 0.047 | 0.010 | 0.000 | 1.048 |
OSDI | 0.013 | 0.002 | 0.000 | 1.013 | |
LLT | −0.010 | 0.002 | 0.000 | 0.990 | |
MGE | −0.001 | 0.011 | 0.939 | 0.999 | |
Meiboscale (grade) | 0.042 | 0.052 | 0.422 | 1.043 | |
Schirmer (mm) | −0.054 | 0.011 | 0.000 | 0.948 | |
TBUT (sec) | 0.021 | 0.024 | 0.379 | 1.021 | |
SPK (grade) | 0.666 | 0.048 | 0.000 | 1.947 | |
Bulbar redness (grade) | 0.486 | 0.147 | 0.001 | 1.627 | |
Constant | −3.364 | 0.238 | 0.000 | 0.035 | |
Model 2 | SPEED | 0.047 | 0.010 | 0.000 | 1.048 |
OSDI | 0.013 | 0.002 | 0.000 | 1.013 | |
LLT | −0.010 | 0.002 | 0.000 | 0.990 | |
Meiboscale (grade) | 0.043 | 0.050 | 0.396 | 1.044 | |
Schirmer (mm) | −0.054 | 0.011 | 0.000 | 0.948 | |
TBUT (sec) | 0.021 | 0.024 | 0.381 | 1.021 | |
SPK (grade) | 0.666 | 0.048 | 0.000 | 1.947 | |
Bulbar redness (grade) | 0.486 | 0.147 | 0.001 | 1.625 | |
Constant | −3.371 | 0.221 | 0.000 | 0.034 | |
Model 3 | SPEED | 0.046 | 0.010 | 0.000 | 1.048 |
OSDI | 0.013 | 0.002 | 0.000 | 1.014 | |
LLT | −0.011 | 0.002 | 0.000 | 0.989 | |
Schirmer (mm) | −0.053 | 0.011 | 0.000 | 0.948 | |
TBUT (sec) | 0.020 | 0.024 | 0.392 | 1.020 | |
SPK (grade) | 0.671 | 0.047 | 0.000 | 1.955 | |
Bulbar redness (grade) | 0.494 | 0.147 | 0.001 | 1.639 | |
Constant | −3.304 | 0.206 | 0.000 | 0.037 | |
Model 4 | SPEED | 0.047 | 0.010 | 0.000 | 1.048 |
OSDI | 0.013 | 0.002 | 0.000 | 1.013 | |
LLT | −0.011 | 0.002 | 0.000 | 0.990 | |
Schirmer (mm) | −0.053 | 0.011 | 0.000 | 0.949 | |
SPK (grade) | 0.664 | 0.047 | 0.000 | 1.943 | |
Bulbar redness (grade) | 0.500 | 0.146 | 0.001 | 1.648 | |
Constant | −3.249 | 0.196 | 0.000 | 0.039 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, W.-L.; Chang, S.-W. Characterization of Individuals with High-Frequency Artificial Tear Supplement Use. J. Clin. Med. 2025, 14, 2694. https://doi.org/10.3390/jcm14082694
Wu W-L, Chang S-W. Characterization of Individuals with High-Frequency Artificial Tear Supplement Use. Journal of Clinical Medicine. 2025; 14(8):2694. https://doi.org/10.3390/jcm14082694
Chicago/Turabian StyleWu, Wan-Lin, and Shu-Wen Chang. 2025. "Characterization of Individuals with High-Frequency Artificial Tear Supplement Use" Journal of Clinical Medicine 14, no. 8: 2694. https://doi.org/10.3390/jcm14082694
APA StyleWu, W.-L., & Chang, S.-W. (2025). Characterization of Individuals with High-Frequency Artificial Tear Supplement Use. Journal of Clinical Medicine, 14(8), 2694. https://doi.org/10.3390/jcm14082694