The Transformative Role of Artificial Intelligence in Plastic and Reconstructive Surgery: Challenges and Opportunities
Abstract
:1. Introduction: The Role of Artificial Intelligence in Plastic Surgery
2. AI in Preoperative Planning
2.1. Patient Selection and Risk Assessment
2.2. Outcome Prediction and Simulation
2.3. Advanced Imaging Analysis and 3D Modeling
2.4. Decision Support Systems and Surgical Planning
2.5. Integration into Clinical Workflow
2.6. Comparative Analysis of AI Preoperative Planning Approaches
Study | Algorithm Type | Clinical Application | Sample Size | Validation Method | Primary Outcome | Performance Metrics | Limitations |
---|---|---|---|---|---|---|---|
O’Neill et al. (2020) [22] | Decision-tree with ROSE oversampling | Breast reconstruction flap failure prediction | 1012 patients | Testing cohort | Flap failure prediction | AUC: 0.95 (training), 0.67 (testing) | Reduced sensitivity in testing cohort |
Cevik et al. (2023) [51] | Machine learning | Breast reconstruction (flap prediction) | N/A (review/conceptual) | Narrative review | AI’s role in improving pre-op planning | Not applicable | Conceptual scope; lacks empirical validation |
Lim et al. (2024) [38] | Computer vision + AI | DIEP flap planning (CT angiography) | 6 LLMs answering questions | Plastic surgeon panel | Improved learning and vessel interpretation | Diagnostic accuracy | Limited to one training environment |
Shoham et al. (2025) [49] | Machine learning (retrospective model) | Breast reduction complication prediction | 322 patients | Retrospective analysis | Prediction of post-op complications | AUC, sensitivity, specificity | Retrospective, needs prospective validation |
Nogueira et al. (2025) [52] | Deep learning, ML | Aesthetic surgery—general | N/A (systematic review) | Systematic literature review | Qualitative summary of AI applications | Not applicable | Lacks performance aggregation |
Eldaly et al. (2022) [31] | Simulation + AI | Rhinoplasty | 24 studies reviewed | Systematic review | Visualization and prediction accuracy | Simulation accuracy | Heterogeneity among reviewed studies |
Arjmand et al. (2023) [50] | Predictive modeling (AI) | Craniomaxillofacial surgery | 5 computed tomography imaging datasets | Model vs. actual face outcome | Face shape prediction from bone | Shape congruence score | Small dataset, complex anatomy modeling |
Raj et al. (2024) [56] | Mathematical AI tool | Pre-op rhinoplasty | 250 images | Comparison with expert ratings | Objective deformity quantification | Error reduction rate | Nasal deformity focus only |
Kapila et al. (2024) [57] | AI (systematic classification) | Microsurgery planning | N/A (systematic review) | Structured classification | 6 AI microsurgery domains identified | Not applicable | Narrative; lacks quantitative synthesis |
Adegboye et al. (2024) [13] | AI narrative review | Facial plastic and reconstructive surgery | N/A (narrative review) | Descriptive analysis | Categorization of AI applications | Not applicable | No experimental validation |
Lanzano (2024) [58] | AI-based modeling | Breast aesthetic planning | N/A (ahead of print, preliminary data) | Conceptual framework | Aesthetic ideal prediction | Not reported | Early stage; no clinical testing yet |
3. AI-Assisted Robotics in Plastic Surgery
3.1. Current Robotic Systems and Applications
3.2. Machine Learning for Surgical Precision and Automation
Underlying Mechanisms and Technical Foundations
3.3. Microsurgical Applications and Enhancement
3.4. Haptic Feedback and Sensory Augmentation
3.5. Training and Simulation Systems
3.6. Challenges and Integration with Human Expertise
4. AI in Postoperative Care and Patient Monitoring
4.1. Remote Monitoring Systems and Early Complication Detection
4.2. Predictive Analytics for Complication Risk
4.3. Pain Management and Prescription Optimization
4.4. Patient Engagement and Adherence Tools
4.5. Outcome Assessment and Long-Term Monitoring
4.6. Integration with Quality Improvement Systems
5. Challenges and Ethical Considerations
5.1. Data Privacy and Security
5.2. Algorithmic Bias and Fairness
5.3. Implementation Challenges in Clinical Practice
5.4. Professional Liability and Decision-Making Authority
5.5. Impact on Surgeon–Patient Relationship
5.6. Regulatory Frameworks and Validation Standards
5.7. Educational and Implementation Barriers
5.8. Commercialization and Conflicts of Interest
5.9. Toward Responsible Innovation
5.10. Limitations of Current Research and Implementation
6. Critical Analysis of the Evidence Base
6.1. Strength of Current Evidence
6.2. Methodological Limitations
6.3. Translation Gap
- Limited prospective validation in routine clinical environments.
- Insufficient evidence of cost-effectiveness or outcome improvement.
- Implementation barriers including workflow integration challenges.
- Regulatory hurdles and uncertainty.
- Lack of reimbursement mechanisms for AI-assisted procedures.
7. Future Directions
7.1. Emerging Technologies and Methodologies
7.2. Generative AI Applications
7.3. Real-Time Data Integration and Adaptive Systems
7.4. Integration with Other Digital Health Technologies
7.5. Evolution of Clinical Practice and Business Models
7.6. Research Priorities and Knowledge Gaps
7.7. Personalized AI-Driven Interventions
7.8. Preparing the Plastic Surgery Workforce
8. Conclusions: Shaping the Future of Plastic Surgery in the Age of AI
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial intelligence |
ML | Machine learning |
DL | Deep learning |
NLP | Natural language processing |
CT | Computed tomography |
MRI | Magnetic resonance imaging |
CTA | Computed tomography angiography |
MRA | Magnetic resonance angiography |
3D | Three-dimensional |
XAI | Explainable artificial intelligence |
XR | Extended reality |
IOMT | Internet of Medical Things |
PROMs | Patient-reported outcome measures |
References
- Zyoud, S.H. A Bibliometric Analysis of the Integration of mHealth, Telemedicine, and OpenAI in Aesthetic Plastic Surgery: Advancements, Trends, and Future Directions. Aesthetic Plast. Surg. 2025. [Google Scholar] [CrossRef] [PubMed]
- Landau, M.; Kassir, M.; Goldust, M. Transforming Aesthetic Medicine with Generative Artificial Intelligence. J. Cosmet. Dermatol. 2025, 24, e70015. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Shan, M.; Liu, H.; Xia, Y.; Kuang, X.; Song, K.; Wang, Y. Comparison of Predictive Models for Keloid Recurrence Based on Machine Learning. J. Cosmet. Dermatol. 2025, 24, e70008. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.; Zhong, C.; Chen, Q.; Zhao, Y.; Yang, T.; Zhou, J.; Liao, S.; Chen, J. Zygomatic Osteotomy surgery design software based on skull CT scans—Self-supervised algo reduces workload. J. Cranio-Maxillofac. Surg. 2025; in press. [Google Scholar] [CrossRef]
- Mahedia, M.; Rohrich, R.N.; Sadiq, K.O.; Bailey, L.; Harrison, L.M.; Hallac, R.R. Exploring the Utility of ChatGPT in Cleft Lip Repair Education. J. Clin. Med. 2025, 14, 993. [Google Scholar] [CrossRef]
- Jarvis, T.; Thornburg, D.; Rebecca, A.M.; Teven, C.M. Artificial Intelligence in Plastic Surgery: Current Applications, Future Directions, and Ethical Implications. Plast. Reconstr. Surg. Glob. Open 2020, 8, e3200. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, Y.; Ouyang, X.; Li, H.; Dai, R. Random forest algorithm for predicting postoperative hypotension in oral cancer resection and free flap reconstruction surgery. Sci. Rep. 2025, 15, 5452. [Google Scholar] [CrossRef]
- Lopes, J.; Guimarães, T.; Duarte, J.; Santos, M. Enhancing Surgery Scheduling in Health Care Settings with Metaheuristic Optimization Models: Algorithm Validation Study. JMIR Med. Inform. 2025, 13, e57231. [Google Scholar] [CrossRef]
- Knoedler, L.; Hoch, C.C.; Knoedler, S.; Klimitz, F.J.; Schaschinger, T.; Niederegger, T.; Heiland, M.; Koerdt, S.; Pooth, R.; Kauke-Navarro, M.; et al. Objectifying aesthetic outcomes following face transplantation—The AI research metrics model (CAARISMA ® ARMM). J. Stomatol. Oral. Maxillofac. Surg. 2025, 126, 102277. [Google Scholar] [CrossRef]
- Perlmutter, J.W.; Milkovich, J.; Fremont, S.; Datta, S.; Mosa, A. Beyond the Surface: Assessing GPT-4’s Accuracy in Detecting Melanoma and Suspicious Skin Lesions from Dermoscopic Images. Plast Surg. 2025, 22925503251315489. [Google Scholar] [CrossRef]
- Guni, A.; Varma, P.; Zhang, J.; Fehervari, M.; Ashrafian, H. Artificial Intelligence in Surgery: The Future Is Now. Eur. Surg. Res. 2024, 65, 22–39. [Google Scholar] [CrossRef]
- Buccheri, E.M.; Villanucci, A. Response to: Letter on Artificial Intelligence: Enhancing Scientific Presentations in Aesthetic Surgery. Aesthetic Plast. Surg. 2025. [Google Scholar] [CrossRef] [PubMed]
- Adegboye, F.O.; Peterson, A.A.; Sharma, R.K.; Stephan, S.J.; Patel, P.N.; Yang, S.F. Applications of Artificial Intelligence in Facial Plastic and Reconstructive Surgery: A Narrative Review. Facial Plast. Surg. Aesthetic Med. 2024, 12, e6323. [Google Scholar] [CrossRef]
- Barone, M.; De Bernardis, R.; Persichetti, P. Artificial Intelligence in Plastic Surgery: Analysis of Applications, Perspectives, and Psychological Impact. Aesthetic Plast. Surg. 2024, 49, 1637–1639. [Google Scholar] [CrossRef] [PubMed]
- Seth, I.; Lim, B.; Joseph, K.; Gracias, D.; Xie, Y.; Ross, R.J.; Rozen, W.M. Use of artificial intelligence in breast surgery: A narrative review. Gland. Surg. 2024, 13, 395–411. [Google Scholar] [CrossRef] [PubMed]
- Gorgy, A.; Xu, H.H.; Hawary, H.E.; Nepon, H.; Lee, J.; Vorstenbosch, J. Integrating AI into Breast Reconstruction Surgery: Exploring Opportunities, Applications, and Challenges. Plast. Surg. 2024, 22925503241292349. [Google Scholar] [CrossRef]
- Sarikonda, A.; Abishek, R.; Isch, E.L.; Momin, A.A.; Self, M.; Sambangi, A.; Carreras, A.; Jallo, J.; Harrop, J.; Sivaganesan, A.; et al. Assessing the Clinical Appropriateness and Practical Utility of ChatGPT as an Educational Resource for Patients Considering Minimally Invasive Spine Surgery. Cureus 2024, 16, e71105. [Google Scholar] [CrossRef]
- Kolivand, M.; Al-jumeily, D. Pre-planning for Plastic Surgery Using Machine Learning: A Proof of Concept. In Emerging Technologies in Computing; Miraz, M.H., Southall, G., Ali, M., Ware, A., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 44–57. [Google Scholar]
- Vles, M.D.; Terng, N.C.O.; Zijlstra, K.; Mureau, M.A.M.; Corten, E.M.L. Virtual and augmented reality for preoperative planning in plastic surgical procedures: A systematic review. J. Plast. Reconstr. Aesthetic Surg. 2020, 73, 1951–1959. [Google Scholar] [CrossRef]
- Abi-Rafeh, J.; Bassiri-Tehrani, B.; Kazan, R.; Furnas, H.; Hammond, D.; Adams, W.P., Jr.; Nahai, F. Preoperative Patient Guidance and Education in Aesthetic Breast Plastic Surgery: A Novel Proposed Application of Artificial Intelligence Large Language Models. Aesthetic Surg. J. Open Forum 2024, 6, ojae062. [Google Scholar] [CrossRef]
- Ghanem, M.; Ghaith, A.K.; Bydon, M. Chapter 6—Artificial intelligence and personalized medicine: Transforming patient care. In The New Era of Precision Medicine; Bydon, M., Ed.; Academic Press: Cambridge, MA, USA, 2024; pp. 131–142. ISBN 978-0-443-13963-5. [Google Scholar] [CrossRef]
- O’Neill, A.C.; Yang, D.; Roy, M.; Sebastiampillai, S.; Hofer, S.O.P.; Xu, W. Development and Evaluation of a Machine Learning Prediction Model for Flap Failure in Microvascular Breast Reconstruction. Ann. Surg. Oncol. 2020, 27, 3466–3475. [Google Scholar] [CrossRef]
- Naoum, G.E.; Ho, A.Y.; Shui, A.; Salama, L.; Goldberg, S.; Arafat, W.; Winograd, J.; Colwell, A.; Smith, B.L.; Taghian, A.G. Risk of Developing Breast Reconstruction Complications: A Machine-Learning Nomogram for Individualized Risk Estimation with and without Postmastectomy Radiation Therapy. Plast. Reconstr. Surg. 2022, 149, 1e. [Google Scholar] [CrossRef]
- Braun, S.E.; Sinik, L.M.; Meyer, A.M.; Larson, K.E.; Butterworth, J.A. Predicting Complications in Breast Reconstruction: Development and Prospective Validation of a Machine Learning Model. Ann. Plast. Surg. 2023, 91, 282. [Google Scholar] [CrossRef] [PubMed]
- Tan, I.J.; Katamanin, O.M.; Greene, R.K.; Jafferany, M. Artificial intelligence in psychodermatology: A brief report of applications and impact in clinical practice. Skin. Res. Technol. 2024, 30, e70044. [Google Scholar] [CrossRef] [PubMed]
- Sutton, R.T.; Pincock, D.; Baumgart, D.C.; Sadowski, D.C.; Fedorak, R.N.; Kroeker, K.I. An overview of clinical decision support systems: Benefits, risks, and strategies for success. NPJ Digit. Med. 2020, 3, 17. [Google Scholar] [CrossRef] [PubMed]
- Varghese, C.; Harrison, E.M.; O’Grady, G.; Topol, E.J. Artificial intelligence in surgery. Nat. Med. 2024, 30, 1257–1268. [Google Scholar] [CrossRef]
- Park, J.J.; Tiefenbach, J.; Demetriades, A.K. The role of artificial intelligence in surgical simulation. Front. Med. Technol. 2022, 4, 1076755. [Google Scholar] [CrossRef]
- Lin, Z.; Lei, C.; Yang, L. Modern Image-Guided Surgery: A Narrative Review of Medical Image Processing and Visualization. Sensors 2023, 23, 9872. [Google Scholar] [CrossRef]
- Brenac, C.; Fazilat, A.Z.; Fallah, M.; Kawamoto-Duran, D.; Sunwoo, P.S.; Longaker, M.T.; Wan, D.C.; Guo, J.L. AI in plastic surgery: Customizing care for each patient. AIS 2024, 4, 296–315. [Google Scholar] [CrossRef]
- Eldaly, A.S.; Avila, F.R.; Torres-Guzman, R.A.; Maita, K.; Garcia, J.P.; Palmieri Serrano, L.; Forte, A.J. Simulation and Artificial Intelligence in Rhinoplasty: A Systematic Review. Aesthetic Plast. Surg. 2022, 46, 2368–2377. [Google Scholar] [CrossRef]
- Zhang, B.H.; Chen, K.; Lu, S.M.; Nakfoor, B.; Cheng, R.; Gibstein, A.; Tanna, N.; Thorne, C.H.; Bradley, J.P. Turning Back the Clock: Artificial Intelligence Recognition of Age Reduction after Face-Lift Surgery Correlates with Patient Satisfaction. Plast. Reconstr. Surg. 2021, 148, 45. [Google Scholar] [CrossRef]
- Seth, I.; Bulloch, G.; Joseph, K.; Hunter-Smith, D.J.; Rozen, W.M. Use of Artificial Intelligence in the Advancement of Breast Surgery and Implications for Breast Reconstruction: A Narrative Review. J. Clin. Med. 2023, 12, 5143. [Google Scholar] [CrossRef]
- Kim, J.; Lee, S.M.; Kim, D.E.; Kim, S.; Chung, M.J.; Kim, Z.; Kim, T.; Lee, K.-T. Development of an Automated Free Flap Monitoring System Based on Artificial Intelligence. JAMA Netw. Open 2024, 7, e2424299. [Google Scholar] [CrossRef]
- Wendler, T.; van Leeuwen, F.W.B.; Navab, N.; van Oosterom, M.N. How molecular imaging will enable robotic precision surgery. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 4201–4224. [Google Scholar] [CrossRef] [PubMed]
- Fadero, P.E.; Shah, M. Three dimensional (3D) modelling and surgical planning in trauma and orthopaedics. Surgeon 2014, 12, 328–333. [Google Scholar] [CrossRef]
- Shaikh, S. 3D Printing in Surgical Planning: 3D Reconstruction and Surgical Guides. In 3D Printing in Prosthetics and Orthotics: Innovations and Opportunities; Shaikh, S., Ed.; Springer Nature: Singapore, 2024; pp. 49–56. ISBN 978-981-97-4913-3. [Google Scholar]
- Lim, B.; Cevik, J.; Seth, I.; Sofiadellis, F.; Ross, R.J.; Rozen, W.M.; Cuomo, R. Evaluating Artificial Intelligence’s Role in Teaching the Reporting and Interpretation of Computed Tomographic Angiography for Preoperative Planning of the Deep Inferior Epigastric Artery Perforator Flap. JPRAS Open 2024, 40, 273–285. [Google Scholar] [CrossRef] [PubMed]
- Moosa, S.; Dydynsky, R. The Role of Artificial Intelligence in Predicting Flap Outcomes in Plastic Surgery: Protocol of a Systematic Review. Undergrad. Res. Nat. Clin. Sci. Technol. J. 2022, 6, 1–8. [Google Scholar] [CrossRef]
- Patel, A.; Dada, A.; Saggi, S.; Yamada, H.; Ambati, V.S.; Goldstein, E.; Hsiao, E.C.; Mummaneni, P.V. Personalized Approaches to Spine Surgery. Int. J. Spine Surg. 2024, 18, 676–693. [Google Scholar] [CrossRef]
- Ospina-Gómez, J.E.; Molano-Diaz, J.M.; Rojas-Gómez, M.C.; Latorre-Arévalo, M.G.; Sanchez-Vargas, M. Advances and applications of artificial intelligence in breast reconstruction surgery: A systematic review. Eur. J. Plast. Surg. 2025, 48, 12. [Google Scholar] [CrossRef]
- Tokgöz, E.; Carro, M.A. Applications of Artificial Intelligence, Machine Learning, and Deep Learning on Facial Plastic Surgeries. In Cosmetic and Reconstructive Facial Plastic Surgery: A Review of Medical and Biomedical Engineering and Science Concepts; Tokgöz, E., Carro, M.A., Eds.; Springer Nature: Cham, Switzerland, 2023; pp. 281–306. ISBN 978-3-031-31168-0. [Google Scholar]
- Dundar, T.T.; Yurtsever, I.; Pehlivanoglu, M.K.; Yildiz, U.; Eker, A.; Demir, M.A.; Mutluer, A.S.; Tektaş, R.; Kazan, M.S.; Kitis, S.; et al. Machine Learning-Based Surgical Planning for Neurosurgery: Artificial Intelligent Approaches to the Cranium. Front. Surg. 2022, 9, 863633. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, H.; Kim, Y.O. Virtual Reality and Augmented Reality in Plastic Surgery: A Review. Arch. Plast. Surg. 2017, 44, 179–187. [Google Scholar] [CrossRef]
- Thaker, N.G.; Loaiza-Bonilla, A.; Choudhri, A.; Doria, C. Bringing AI to the Clinic for Pancreatic Cancer Care: The Imperative for Seamless Integration into Clinical Workflows. AI Precis. Oncol. 2004, 1, 239–243. Available online: https://www.liebertpub.com/doi/abs/10.1089/aipo.2024.0031 (accessed on 25 February 2025). [CrossRef]
- Monteiro, A.C.B.; França, R.P.; Arthur, R.; Iano, Y. An Overview of Medical Internet of Things, Artificial Intelligence, and Cloud Computing Employed in Health Care from a Modern Panorama. In The Fusion of Internet of Things, Artificial Intelligence, and Cloud Computing in Health Care; Siarry, P., Jabbar, M.A., Aluvalu, R., Abraham, A., Madureira, A., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 3–23. ISBN 978-3-030-75220-0. [Google Scholar]
- Shih, H.-J.; Xue, H.; Min, H.; Wojtusiak, J.; Chang, J. Informing Patient-Provider Engagement for Shared Decision Making Through Mobile Health Applications. PPA 2023, 17, 3489–3501. [Google Scholar] [CrossRef] [PubMed]
- Knight, D.R.T.; Aakre, C.A.; Anstine, C.V.; Munipalli, B.; Biazar, P.; Mitri, G.; Valery, J.R.; Brigham, T.; Niazi, S.K.; Perlman, A.I.; et al. Artificial intelligence for patient scheduling in the real-world health care setting: A metanarrative review. Health Policy Technol. 2023, 12, 100824. [Google Scholar] [CrossRef]
- Shoham, G.; Zuckerman, T.; Fliss, E.; Govrin, O.; Zaretski, A.; Singolda, R.; Kedar, D.J.; Leshem, D.; Madah, E.; Arad, E.; et al. Utilizing Artificial Intelligence for Predicting Postoperative Complications in Breast Reduction Surgery: A Comprehensive Retrospective Analysis of Predictive Features and Outcomes. Aesthetic Surg. J. 2025, sjaf021. [Google Scholar] [CrossRef] [PubMed]
- Arjmand, H.; Clement, A.; Hardisty, M.; Fialkov, J.A.; Whyne, C.M. Artificial Intelligence–Based Modeling Can Predict Face Shape Based on Underlying Craniomaxillofacial Bone. J. Craniofacial Surg. 2023, 34, 1915. [Google Scholar] [CrossRef]
- Cevik, J.; Seth, I.; Rozen, W.M. Transforming breast reconstruction: The pioneering role of artificial intelligence in preoperative planning. Gland. Surg. 2023, 12, 1271275. [Google Scholar] [CrossRef]
- Nogueira, R.; Eguchi, M.; Kasmirski, J.; de Lima, B.V.; Dimatos, D.C.; Lima, D.L.; Glatter, R.; Tran, D.L.; Piccinini, P.S. Machine Learning, Deep Learning, Artificial Intelligence and Aesthetic Plastic Surgery: A Qualitative Systematic Review. Aesthetic Plast. Surg. 2025, 49, 389–399. [Google Scholar] [CrossRef]
- Rodler, S.; Ganjavi, C.; De Backer, P.; Magoulianitis, V.; Ramacciotti, L.S.; De Castro Abreu, A.L.; Gill, I.S.; Cacciamani, G.E. Generative artificial intelligence in surgery. Surgery 2024, 175, 1496–1502. [Google Scholar] [CrossRef]
- RKato, M.; Parizotto, J.D.O.L.; Oliveira, P.H.J.D.; Gonçalves, J.R. Artificial Intelligence in Orthognathic Surgery—A Narrative Review of Surgical Digital Tools and 3D Orthognathic Surgical Planning. J. Calif. Dent. Assoc. 2023, 51, 2202444. [Google Scholar] [CrossRef]
- Shujaat, S.; Riaz, M.; Jacobs, R. Synergy between artificial intelligence and precision medicine for computer-assisted oral and maxillofacial surgical planning. Clin. Oral Investig. 2023, 27, 897–906. [Google Scholar] [CrossRef]
- Raj, U.; Garg, A.; Vathulya, M.; Kandwal, A. Quantifying nasal deformities using a novel mathematical method to complement preoperative assessment in rhinoplasty patients. J. Plast. Reconstr. Aesthetic Surg. 2024, 92, 75–78. [Google Scholar] [CrossRef]
- Kapila, A.K.; Georgiou, L.; Hamdi, M. Decoding the Impact of AI on Microsurgery: Systematic Review and Classification of Six Subdomains for Future Development. Plast. Reconstr. Surg. Glob. Open 2024, 12, e6323. [Google Scholar] [CrossRef] [PubMed]
- Lanzano, G. The Role of AI in Crafting Aesthetically Ideal Breasts: Enhancing Preoperative Planning in Plastic Surgery. Aesthetic Plast. Surg. 2024. [Google Scholar] [CrossRef] [PubMed]
- Murphy, D.; Saleh, D. Artificial Intelligence in plastic surgery: What is it? Where are we now? What is on the horizon? Annals 2020, 102, 577–580. [Google Scholar] [CrossRef] [PubMed]
- Struk, S.; Qassemyar, Q.; Leymarie, N.; Honart, J.-F.; Alkhashnam, H.; De Fremicourt, K.; Conversano, A.; Schaff, J.-B.; Rimareix, F.; Kolb, F.; et al. The ongoing emergence of robotics in plastic and reconstructive surgery. Ann. Chir. Plast. Esthétique 2018, 63, 105–112. [Google Scholar] [CrossRef]
- Duong, T.V.; Vy, V.P.T.; Hung, T.N.K. Artificial Intelligence in Plastic Surgery: Advancements, Applications, and Future. Cosmetics 2024, 11, 109. [Google Scholar] [CrossRef]
- Azizian, M.; Liu, M.; Khalaji, I.; Sorger, J.; Oh, D.; Daimios, S. 3—The da Vinci Surgical System. In Handbook of Robotic and Image-Guided Surgery; Abedin-Nasab, M.H., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 39–55. ISBN 978-0-12-814245-5. [Google Scholar]
- Wee, I.J.Y.; Kuo, L.-J.; Ngu, J.C.-Y. A systematic review of the true benefit of robotic surgery: Ergonomics. Int. J. Med. Robot. Comput. Assist. Surg. 2020, 16, e2113. [Google Scholar] [CrossRef]
- Gupta, A.K.; Ivanova, I.A.; Renaud, H.J. How good is artificial intelligence (AI) at solving hairy problems? A review of AI applications in hair restoration and hair disorders. Dermatol. Ther. 2021, 34, e14811. [Google Scholar] [CrossRef]
- Tokgöz, E.; Carro, M.A. Robotics Applications in Facial Plastic Surgeries. In Cosmetic and Reconstructive Facial Plastic Surgery: A Review of Medical and Biomedical Engineering and Science Concepts; Tokgöz, E., Carro, M.A., Eds.; Springer Nature: Cham, Switzerland, 2023; pp. 307–341. ISBN 978-3-031-31168-0. [Google Scholar]
- Ward, T.M.; Mascagni, P.; Ban, Y.; Rosman, G.; Padoy, N.; Meireles, O.; Hashimoto, D.A. Computer vision in surgery. Surgery 2021, 169, 1253–1256. [Google Scholar] [CrossRef]
- Datta, S.; Li, Y.; Ruppert, M.M.; Ren, Y.; Shickel, B.; Ozrazgat-Baslanti, T.; Rashidi, P.; Bihorac, A. Reinforcement learning in surgery. Surgery 2021, 170, 329–332. [Google Scholar] [CrossRef]
- Ostrander, B.T.; Massillon, D.; Meller, L.; Chiu, Z.-Y.; Yip, M.; Orosco, R.K. The current state of autonomous suturing: A systematic review. Surg. Endosc. 2024, 38, 2383–2397. [Google Scholar] [CrossRef]
- Pfeiffer, M.; Riediger, C.; Weitz, J.; Speidel, S. Learning soft tissue behavior of organs for surgical navigation with convolutional neural networks. Int. J. CARS 2019, 14, 1147–1155. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Kumar, S.; Kaushik, A.; Kumar, A.; Saini, J.S. Real time estimation and suppression of hand tremor for surgical robotic applications. Microsyst. Technol. 2022, 28, 305–311. [Google Scholar] [CrossRef]
- Bergholz, M.; Ferle, M.; Weber, B.M. The benefits of haptic feedback in robot assisted surgery and their moderators: A meta-analysis. Sci. Rep. 2023, 13, 19215. [Google Scholar] [CrossRef] [PubMed]
- Thamm, O.C.; Eschborn, J.; Schäfer, R.C.; Schmidt, J. Advances in Modern Microsurgery. J. Clin. Med. 2024, 13, 5284. [Google Scholar] [CrossRef]
- Hong, J.P.; Song, S.; Suh, H.S.P. Supermicrosurgery: Principles and applications. J. Surg. Oncol. 2018, 118, 832–839. [Google Scholar] [CrossRef]
- Savage, S.A.; Seth, I.; Angus, Z.G.; Rozen, W.M. Advancements in microsurgery: A comprehensive systematic review of artificial intelligence applications. J. Plast. Reconstr. Aesthetic Surg. 2025, 101, 65–76. [Google Scholar] [CrossRef]
- Tang, M.; Sugiyama, T.; Takahari, R.; Sugimori, H.; Yoshimura, T.; Ogasawara, K.; Kudo, K.; Fujimura, M. Assessment of changes in vessel area during needle manipulation in microvascular anastomosis using a deep learning-based semantic segmentation algorithm: A pilot study. Neurosurg. Rev. 2024, 47, 200. [Google Scholar] [CrossRef]
- Marcus, H.J.; Ramirez, P.T.; Khan, D.Z.; Layard Horsfall, H.; Hanrahan, J.G.; Williams, S.C.; Beard, D.J.; Bhat, R.; Catchpole, K.; Cook, A.; et al. The IDEAL framework for surgical robotics: Development, comparative evaluation and long-term monitoring. Nat. Med. 2024, 30, 61–75. [Google Scholar] [CrossRef]
- Eldaly, A.S.; Avila, F.R.; Torres-Guzman, R.A.; Maita, K.; Garcia, J.P.; Serrano, L.P.; Forte, A.J. Artificial intelligence and lymphedema: State of the art. J. Clin. Transl. Res. 2022, 8, 234–242. [Google Scholar]
- Knudsen, J.E.; Ghaffar, U.; Ma, R.; Hung, A.J. Clinical applications of artificial intelligence in robotic surgery. J. Robot. Surg. 2024, 18, 102. [Google Scholar] [CrossRef]
- Minopoulos, G.M.; Memos, V.A.; Stergiou, K.D.; Stergiou, C.L.; Psannis, K.E. A Medical Image Visualization Technique Assisted with AI-Based Haptic Feedback for Robotic Surgery and Healthcare. Appl. Sci. 2023, 13, 3592. [Google Scholar] [CrossRef]
- Dias, R.D.; Yule, S.J.; Zenati, M.A. Augmented Cognition in the Operating Room. In Digital Surgery; Atallah, S., Ed.; Springer International Publishing: Cham, Switzerland, 2021; pp. 261–268. ISBN 978-3-030-49100-0. [Google Scholar]
- Iftikhar, M.; Saqib, M.; Zareen, M.; Mumtaz, H. Artificial intelligence: Revolutionizing robotic surgery: Review. Ann. Med. Surg. 2024, 86, 5401. [Google Scholar] [CrossRef] [PubMed]
- Kazemzadeh, K.; Akhlaghdoust, M.; Zali, A. Advances in artificial intelligence, robotics, augmented and virtual reality in neurosurgery. Front. Surg. 2023, 10, 1241923. [Google Scholar] [CrossRef]
- Sinha, A.; West, A.; Vasdev, N.; Sooriakumaran, P.; Rane, A.; Dasgupta, P.; McKirdy, M. Current practises and the future of robotic surgical training. Surgeon 2023, 21, 314–322. [Google Scholar] [CrossRef] [PubMed]
- Wah, J.N.K. Revolutionizing surgery: AI and robotics for precision, risk reduction, and innovation. J. Robot. Surg. 2025, 19, 47. [Google Scholar] [CrossRef]
- Byrd, J.K.; Paquin, R. Cost Considerations for Robotic Surgery. Otolaryngol. Clin. N. Am. 2020, 53, 1131–1138. [Google Scholar] [CrossRef]
- O’Sullivan, S.; Nevejans, N.; Allen, C.; Blyth, A.; Leonard, S.; Pagallo, U.; Holzinger, K.; Holzinger, A.; Sajid, M.I.; Ashrafian, H. Legal, regulatory, and ethical frameworks for development of standards in artificial intelligence (AI) and autonomous robotic surgery. Int. J. Med. Robot. Comput. Assist. Surg. 2019, 15, e1968. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/rcs.1968 (accessed on 25 February 2025). [CrossRef]
- Lee, A.; Baker, T.S.; Bederson, J.B.; Rapoport, B.I. Levels of autonomy in FDA-cleared surgical robots: A systematic review. NPJ Digit. Med. 2024, 7, 1–8. [Google Scholar] [CrossRef]
- Jiang, F.; Jiang, Y.; Zhi, H.; Dong, Y.; Li, H.; Ma, S.; Wang, Y.; Dong, Q.; Shen, H.; Wang, Y. Artificial intelligence in healthcare: Past, present and future. Stroke Vasc. Neurol. 2017, 2, 230–243. [Google Scholar] [CrossRef]
- Del Vecchio, D.; Stein, M.J.; Dayan, E.; Marte, J.; Theodorou, S. Nanotechnology and Artificial Intelligence: An Emerging Paradigm for Postoperative Patient Care. Aesthetic Surg. J. 2023, 43, 748–757. [Google Scholar] [CrossRef]
- Prakashan, D.; Kaushik, A.; Gandhi, S. Smart sensors and wound dressings: Artificial intelligence-supported chronic skin monitoring—A review. Chem. Eng. J. 2024, 497, 154371. [Google Scholar] [CrossRef]
- Kitaguchi, D.; Takeshita, N.; Hasegawa, H.; Ito, M. Artificial intelligence-based computer vision in surgery: Recent advances and future perspectives. Ann. Gastroenterol. Surg. 2022, 6, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Bassani, S.; Eccher, A.; Molteni, G. Harnessing the Power of Artificial Intelligence: Revolutionizing Free Flaps Monitoring in Head and Neck Tumor Treatment. CRO 2023, 28, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Stam, W.T.; Goedknegt, L.K.; Ingwersen, E.W.; Schoonmade, L.J.; Bruns, E.R.J.; Daams, F. The prediction of surgical complications using artificial intelligence in patients undergoing major abdominal surgery: A systematic review. Surgery 2022, 171, 1014–1021. [Google Scholar] [CrossRef]
- Bonde, A.; Varadarajan, K.M.; Bonde, N.; Troelsen, A.; Muratoglu, O.K.; Malchau, H.; Yang, A.D.; Alam, H.; Sillesen, M. Assessing the utility of deep neural networks in predicting postoperative surgical complications: A retrospective study. Lancet Digit. Health 2021, 3, e471–e485. [Google Scholar] [CrossRef]
- Wu, G.; Khair, S.; Yang, F.; Cheligeer, C.; Southern, D.; Zhang, Z.; Feng, Y.; Xu, Y.; Quan, H.; Williamson, T.; et al. Performance of machine learning algorithms for surgical site infection case detection and prediction: A systematic review and meta-analysis. Ann. Med. Surg. 2022, 84, 104956. [Google Scholar] [CrossRef]
- Xue, B.; Li, D.; Lu, C.; King, C.R.; Wildes, T.; Avidan, M.S.; Kannampallil, T.; Abraham, J. Use of Machine Learning to Develop and Evaluate Models Using Preoperative and Intraoperative Data to Identify Risks of Postoperative Complications. JAMA Netw. Open 2021, 4, e212240. [Google Scholar] [CrossRef]
- Zhang, M.; Zhu, L.; Lin, S.-Y.; Herr, K.; Chi, C.-L.; Demir, I.; Dunn Lopez, K.; Chi, N.-C. Using artificial intelligence to improve pain assessment and pain management: A scoping review. J. Am. Med. Inform. Assoc. 2023, 30, 570–587. [Google Scholar] [CrossRef]
- Fontaine, D.; Vielzeuf, V.; Genestier, P.; Limeux, P.; Santucci-Sivilotto, S.; Mory, E.; Darmon, N.; Lanteri-Minet, M.; Mokhtar, M.; Laine, M.; et al. Artificial intelligence to evaluate postoperative pain based on facial expression recognition. Eur. J. Pain 2022, 26, 1282–1291. [Google Scholar] [CrossRef]
- Wang, J.E.; Beaulieu-Jones, B.; Brat, G.A.; Marwaha, J.S. The role of artificial intelligence in helping providers manage pain and opioid use after surgery. Glob. Surg. Educ. 2024, 3, 57. [Google Scholar] [CrossRef]
- Gabriel, R.A.; Park, B.H.; Hsu, C.-N.; Macias, A.A. A Review of Leveraging Artificial Intelligence to Predict Persistent Postoperative Opioid Use and Opioid Use Disorder and its Ethical Considerations. Curr. Pain. Headache Rep. 2025, 29, 30. [Google Scholar] [CrossRef] [PubMed]
- Levy, R.A.; Kay, A.H.; Hills, N.; Chen, L.; Chapman, J.S. Exploring the relationship between language, postoperative pain, and opioid use. AJOG Glob. Rep. 2024, 4, 100342. [Google Scholar] [CrossRef] [PubMed]
- Campbell, K.; Louie, P.; Levine, B.; Gililland, J. Using Patient Engagement Platforms in the Postoperative Management of Patients. Curr. Rev. Musculoskelet. Med. 2020, 13, 479–484. [Google Scholar] [CrossRef] [PubMed]
- Dwyer, T.; Hoit, G.; Burns, D.; Higgins, J.; Chang, J.; Whelan, D.; Kiroplis, I.; Chahal, J. Use of an Artificial Intelligence Conversational Agent (Chatbot) for Hip Arthroscopy Patients Following Surgery. Arthrosc. Sports Med. Rehabil. 2023, 5, e495–e505. [Google Scholar] [CrossRef]
- Shahid, M.; Mehmood, R. AI in Rehabilitation and Physical Therapy: Personalized Recovery Plans for Patients. Int. J. Artif. Intell. Cybersecur. 2024, 1. Available online: https://ijaics.org/index.php/IJAICS/article/view/8 (accessed on 25 February 2025).
- Kontadakis, G.; Chasiouras, D.; Proimaki, D.; Halkiadakis, M.; Fyntikaki, M.; Mania, K. Gamified platform for rehabilitation after total knee replacement surgery employing low cost and portable inertial measurement sensor node. Multimed. Tools Appl. 2020, 79, 3161–3188. [Google Scholar] [CrossRef]
- Mascagni, P.; Alapatt, D.; Sestini, L.; Altieri, M.S.; Madani, A.; Watanabe, Y.; Alseidi, A.; Redan, J.A.; Alfieri, S.; Costamagna, G.; et al. Computer vision in surgery: From potential to clinical value. NPJ Digit. Med. 2022, 5, 1–9. [Google Scholar] [CrossRef]
- Tzou, C.-H.J.; Artner, N.M.; Pona, I.; Hold, A.; Placheta, E.; Kropatsch, W.G.; Frey, M. Comparison of three-dimensional surface-imaging systems. J. Plast. Reconstr. Aesthetic Surg. 2014, 67, 489–497. [Google Scholar] [CrossRef]
- Al-hababi, M.A.M.; Khan, M.B.; Al-Turjman, F.; Zhao, N.; Yang, X. Non-Contact Sensing Testbed for Post-Surgery Monitoring by Exploiting Artificial-Intelligence. Appl. Sci. 2020, 10, 4886. [Google Scholar] [CrossRef]
- Shaik, T.; Tao, X.; Higgins, N.; Li, L.; Gururajan, R.; Zhou, X.; Acharya, U.R. Remote patient monitoring using artificial intelligence: Current state, applications, and challenges. WIREs Data Min. Knowl. Discov. 2023, 13, e1485. [Google Scholar] [CrossRef]
- Salati, M.; Migliorelli, L.; Moccia, S.; Andolfi, M.; Roncon, A.; Guiducci, G.M.; Xiumè, F.; Tiberi, M.; Frontoni, E.; Refai, M. A Machine Learning Approach for Postoperative Outcome Prediction: Surgical Data Science Application in a Thoracic Surgery Setting. World J. Surg. 2021, 45, 1585–1594. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Sim, J.; Wang, J.X.; Forrest, C.B.; Krull, K.R.; Srivastava, D.; Hudson, M.M.; Robison, L.L.; Baker, J.N.; Huang, I.-C. Natural Language Processing and Machine Learning Methods to Characterize Unstructured Patient-Reported Outcomes: Validation Study. J. Med. Internet Res. 2021, 23, e26777. [Google Scholar] [CrossRef] [PubMed]
- Colborn, K.; Brat, G.; Callcut, R. Predictive Analytics and Artificial Intelligence in Surgery—Opportunities and Risks. JAMA Surg. 2023, 158, 337–338. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, D.A.; Rosman, G.; Rus, D.; Meireles, O.R. Artificial Intelligence in Surgery: Promises and Perils. Ann. Surg. 2018, 268, 70. [Google Scholar] [CrossRef]
- Cobianchi, L.; Verde, J.M.; Loftus, T.J.; Piccolo, D.; Dal Mas, F.; Mascagni, P.; Garcia Vazquez, A.; Ansaloni, L.; Marseglia, G.R.; Massaro, M.; et al. Artificial Intelligence and Surgery: Ethical Dilemmas and Open Issues. J. Am. Coll. Surg. 2022, 235, 268. [Google Scholar] [CrossRef]
- Kenig, N.; Monton Echeverria, J.; Rubi, C. Ethics for AI in Plastic Surgery: Guidelines and Review. Aesthetic Plast. Surg. 2024, 48, 2204–2209. [Google Scholar] [CrossRef]
- Choi, E.; Leonard, K.W.; Jassal, J.S.; Levin, A.M.; Ramachandra, V.; Jones, L.R. Artificial Intelligence in Facial Plastic Surgery: A Review of Current Applications, Future Applications, and Ethical Considerations. Facial Plast. Surg. 2023, 39, 454–459. [Google Scholar] [CrossRef]
- Salako, A.; Fabuyi, J.; Aideyan, N.T.; Selesi-Aina, O.; Dapo-Oyewole, D.L.; Olaniyi, O.O. Advancing Information Governance in AI-Driven Cloud Ecosystem: Strategies for Enhancing Data Security and Meeting Regulatory Compliance. Asian J. Res. Comput. Sci. 2024, 17, 66–88. [Google Scholar] [CrossRef]
- Kotsenas, A.L.; Balthazar, P.; Andrews, D.; Geis, J.R.; Cook, T.S. Rethinking Patient Consent in the Era of Artificial Intelligence and Big Data. J. Am. Coll. Radiol. 2021, 18, 180–184. [Google Scholar] [CrossRef]
- Baxter, N.B.; Howard, J.C.; Chung, K.C. A Systematic Review of Health Disparities Research in Plastic Surgery. Plast. Reconstr. Surg. 2021, 147, 529. [Google Scholar] [CrossRef]
- Rahman, E.; Sadeghi-Esfahlani, S.; Rao, P.; Garcia, P.; Ioannidis, S.; Nosta, J.; Rahman, Z.; Webb, W.R. Skin, scalpel and the silicon chip: A systematic review on the accuracy, bias and data governance of artificial intelligence in dermatology, minimally invasive aesthetics, aesthetic, plastic and reconstructive surgery. Eur. J. Plast. Surg. 2025, 48, 17. [Google Scholar] [CrossRef]
- Kiseleva, A.; Kotzinos, D.; De Hert, P. Transparency of AI in Healthcare as a Multilayered System of Accountabilities: Between Legal Requirements and Technical Limitations. Front. Artif. Intell. 2022, 5, 879603. [Google Scholar] [CrossRef] [PubMed]
- Cabitza, F.; Rasoini, R.; Gensini, G.F. Unintended Consequences of Machine Learning in Medicine. JAMA 2017, 318, 517–518. [Google Scholar] [CrossRef] [PubMed]
- Topol, E.J. High-performance medicine: The convergence of human and artificial intelligence. Nat. Med. 2019, 25, 44–56. [Google Scholar] [CrossRef]
- Kapila, A.K.; Hamdi, M. Time to Evolve Plastic Surgery Education? Integrating Robotic Techniques and Artificial Intelligence into Training Curricula. Plast. Reconstr. Surg. Glob. Open 2024, 12, e5778. [Google Scholar] [CrossRef]
- Goddard, K.; Roudsari, A.; Wyatt, J.C. Automation bias: A systematic review of frequency, effect mediators, and mitigators. J. Am. Med. Inform. Assoc. 2012, 19, 121–127. [Google Scholar] [CrossRef]
- Terranova, C.; Cestonaro, C.; Fava, L.; Cinquetti, A. AI and professional liability assessment in healthcare. A revolution in legal medicine? Front. Med. 2024, 10, 1337335. [Google Scholar] [CrossRef]
- Griffin, F. Artificial Intelligence and Liability in Health Care. Health Matrix 2021, 31, 65. [Google Scholar]
- Jamjoom, A.A.B.; Jamjoom, A.M.A.; Thomas, J.P.; Palmisciano, P.; Kerr, K.; Collins, J.W.; Vayena, E.; Stoyanov, D.; Marcus, H.J. The iRobotSurgeon Collaboration Autonomous surgical robotic systems and the liability dilemma. Front. Surg. 2022, 9, 1015367. [Google Scholar] [CrossRef]
- Rincon, N.; Gerke, S.; Wagner, J.K. Implications of An Evolving Regulatory Landscape on the Development of AI and ML in Medicine. In Biocomputing 2025; World Scientific: Singapore, 2024; pp. 154–166. ISBN 978-981-98-0701-7. [Google Scholar]
- Chen, K.; Congiusta, S.; Nash, I.S.; Coppa, G.F.; Smith, M.L.; Kasabian, A.K.; Thorne, C.; Tanna, N. Factors Influencing Patient Satisfaction in Plastic Surgery: A Nationwide Analysis. Plast. Reconstr. Surg. 2018, 142, 820. [Google Scholar] [CrossRef]
- Rodler, S.; Kopliku, R.; Ulrich, D.; Kaltenhauser, A.; Casuscelli, J.; Eismann, L.; Waidelich, R.; Buchner, A.; Butz, A.; Cacciamani, G.E.; et al. Patients’ Trust in Artificial Intelligence–based Decision-making for Localized Prostate Cancer: Results from a Prospective Trial. Eur. Urol. Focus 2024, 10, 654–661. [Google Scholar] [CrossRef] [PubMed]
- Farid, Y.; Chang, C.; Marcasciano, M.; Meglio, F.D.; Rodríguez-Mantilla, I.; Nanni, J.; Ortiz, S.; Chen, H.-C. Consent 2.0: Informed choices in the age of artificial intelligence. Surgery 2024, 175, 1454–1455. [Google Scholar] [CrossRef] [PubMed]
- Adegbesan, A.; Akingbola, A.; Aremu, O.; Adewole, O.; Amamdikwa, J.C.; Shagaya, U. From Scalpels to Algorithms: The Risk of Dependence on Artificial Intelligence in Surgery. J. Med. Surg. Public Health 2024, 3, 100140. [Google Scholar] [CrossRef]
- Khan, F. Regulating the Revolution: A Legal Roadmap to Optimizing AI in Healthcare. Minn. JL Sci. Tech. 2023, 25, 49. [Google Scholar] [CrossRef]
- Reddy, S. Global Harmonization of Artificial Intelligence-Enabled Software as a Medical Device Regulation: Addressing Challenges and Unifying Standards. Mayo Clin. Proc. Digit. Health 2025, 3, 100191. [Google Scholar] [CrossRef]
- Cancela-Outeda, C. The EU’s AI act: A framework for collaborative governance. Internet Things 2024, 27, 101291. [Google Scholar] [CrossRef]
- Kachalia, A.; Mello, M.M.; Nallamothu, B.K.; Studdert, D.M. Legal and Policy Interventions to Improve Patient Safety. Circulation 2016, 133, 661–671. [Google Scholar] [CrossRef]
- Turner, A.E.; Abu-Ghname, A.; Davis, M.J.; Ali, K.; Winocour, S. Role of Simulation and Artificial Intelligence in Plastic Surgery Training. Plast. Reconstr. Surg. 2020, 146, 390e. [Google Scholar] [CrossRef]
- Spoer, D.L.; Kiene, J.M.; Dekker, P.K.; Huffman, S.S.; Kim, K.G.; Abadeer, A.I.; Fan, K.L. A Systematic Review of Artificial Intelligence Applications in Plastic Surgery: Looking to the Future. Plast. Reconstr. Surg. Glob. Open 2022, 10, e4608. [Google Scholar] [CrossRef]
- Celi, L.A.; Cellini, J.; Charpignon, M.-L.; Dee, E.C.; Dernoncourt, F.; Eber, R.; Mitchell, W.G.; Moukheiber, L.; Schirmer, J.; Situ, J.; et al. Sources of bias in artificial intelligence that perpetuate healthcare disparities—A global review. PLoS Digit. Health 2022, 1, e0000022. [Google Scholar] [CrossRef]
- Karamchandani, M.M.; Tian, T.; Hall, R.; Nickel, I.; Aalberg, J.; Lassaletta, A.D.; Chatterjee, A.; Walters, D.M. Discrepancies in Financial Conflicts of Interest in Robotic Cardiothoracic Surgery Studies. Ann. Thorac. Surg. 2024, 117, 466–472. [Google Scholar] [CrossRef] [PubMed]
- Polevikov, S. Advancing AI in healthcare: A comprehensive review of best practices. Clin. Chim. Acta 2023, 548, 117519. [Google Scholar] [CrossRef] [PubMed]
- Reddy, S.; Rogers, W.; Makinen, V.-P.; Coiera, E.; Brown, P.; Wenzel, M.; Weicken, E.; Ansari, S.; Mathur, P.; Casey, A.; et al. Evaluation framework to guide implementation of AI systems into healthcare settings. BMJ Health Care Inform. 2021, 28, e100444. [Google Scholar] [CrossRef] [PubMed]
- Mennella, C.; Maniscalco, U.; Pietro, G.D.; Esposito, M. Ethical and regulatory challenges of AI technologies in healthcare: A narrative review. Heliyon 2024, 10, e26297. [Google Scholar] [CrossRef]
- Haenssle, H.A.; Fink, C.; Schneiderbauer, R.; Toberer, F.; Buhl, T.; Blum, A.; Kalloo, A.; Hassen, A.B.H.; Thomas, L.; Enk, A.; et al. Man against machine: Diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann. Oncol. 2018, 29, 1836–1842. [Google Scholar] [CrossRef]
- Hassan, A.M.; Rajesh, A.; Asaad, M.; Nelson, J.A.; Coert, J.H.; Mehrara, B.J.; Butler, C.E. Artificial Intelligence and Machine Learning in Prediction of Surgical Complications: Current State, Applications, and Implications. Am. Surg. 2023, 89, 25–30. [Google Scholar] [CrossRef]
- Diana, M.; Marescaux, J. Robotic surgery. Br. J. Surg. 2015, 102, e15–e28. [Google Scholar] [CrossRef]
- Steinhubl, S.R.; Topol, E.J. Moving From Digitalization to Digitization in Cardiovascular Care. J. Am. College Cardiol. JACC 2015, 66, 1489–1496. [Google Scholar] [CrossRef]
- Liu, X.; Faes, L.; Kale, A.U.; Wagner, S.K.; Fu, D.J.; Bruynseels, A.; Mahendiran, T.; Moraes, G.; Shamdas, M.; Kern, C.; et al. A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: A systematic review and meta-analysis. Lancet Digit. Health 2019, 1, e271–e297. [Google Scholar] [CrossRef]
- Haider, S.A.; Ho, O.A.; Borna, S.; Gomez-Cabello, C.A.; Pressman, S.M.; Cole, D.; Sehgal, A.; Leibovich, B.C.; Forte, A.J. Use of Multimodal Artificial Intelligence in Surgical Instrument Recognition. Bioengineering 2025, 12, 72. [Google Scholar] [CrossRef]
- Wen, J.; Zhang, Z.; Lan, Y.; Cui, Z.; Cai, J.; Zhang, W. A survey on federated learning: Challenges and applications. Int. J. Mach. Learn. Cyber. 2023, 14, 513–535. [Google Scholar] [CrossRef] [PubMed]
- Klonoff, D.C. Fog Computing and Edge Computing Architectures for Processing Data From Diabetes Devices Connected to the Medical Internet of Things. J. Diabetes Sci. Technol. 2017, 11, 647–652. [Google Scholar] [CrossRef] [PubMed]
- Patidar, N.; Mishra, S.; Jain, R.; Prajapati, D.; Solanki, A.; Suthar, R.; Patel, K.; Patel, H. Transparency in AI Decision Making: A Survey of Explainable AI Methods and Applications. Adv. Robot. Technol. 2024, 2. Available online: https://papers.ssrn.com/abstract=4766176 (accessed on 25 February 2025).
- Zhang, J.; Lu, V.; Khanduja, V. The impact of extended reality on surgery: A scoping review. Int. Orthop. SICOT 2023, 47, 611–621. [Google Scholar] [CrossRef] [PubMed]
- Frid-Adar, M.; Diamant, I.; Klang, E.; Amitai, M.; Goldberger, J.; Greenspan, H. GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification. Neurocomputing 2018, 321, 321–331. [Google Scholar] [CrossRef]
- Moroni, L.; Burdick, J.A.; Highley, C.; Lee, S.J.; Morimoto, Y.; Takeuchi, S.; Yoo, J.J. Biofabrication strategies for 3D in vitro models and regenerative medicine. Nat. Rev. Mater. 2018, 3, 21–37. [Google Scholar] [CrossRef]
- Lee, H.; Savva, M.; Chang, A.X. Text-to-3D Shape Generation. Comput. Graph. Forum 2024, 43, e15061. [Google Scholar] [CrossRef]
- Pakkasjärvi, N.; Luthra, T.; Anand, S. Artificial Intelligence in Surgical Learning. Surgeries 2023, 4, 86–97. [Google Scholar] [CrossRef]
- Maier-Hein, L.; Eisenmann, M.; Sarikaya, D.; März, K.; Collins, T.; Malpani, A.; Fallert, J.; Feussner, H.; Giannarou, S.; Mascagni, P.; et al. Surgical data science—From concepts toward clinical translation. Med. Image Anal. 2022, 76, 102306. [Google Scholar] [CrossRef]
- Nguyen, D.C.; Pham, Q.-V.; Pathirana, P.N.; Ding, M.; Seneviratne, A.; Lin, Z.; Dobre, O.; Hwang, W.-J. Federated Learning for Smart Healthcare: A Survey. ACM Comput. Surv. 2022, 55, 37. [Google Scholar] [CrossRef]
- Mulita, F.; Verras, G.-I.; Anagnostopoulos, C.-N.; Kotis, K. A Smarter Health through the Internet of Surgical Things. Sensors 2022, 22, 4577. [Google Scholar] [CrossRef] [PubMed]
- Crawford, M. TOWARD SMARTER SURGERIES: Surgical instrumentation is being developed with better materials and “smart” technologies, leading to more efficient procedures. Orthop. Des. Technol. 2023, 19, 52–62. [Google Scholar]
- Ahmed, H.; Devoto, L. The Potential of a Digital Twin in Surgery. Surg. Innov. 2021, 28, 509–510. [Google Scholar] [CrossRef] [PubMed]
- Hasselgren, A.; Rensaa, J.-A.H.; Kralevska, K.; Gligoroski, D.; Faxvaag, A. Blockchain for Increased Trust in Virtual Health Care: Proof-of-Concept Study. J. Med. Internet Res. 2021, 23, e28496. [Google Scholar] [CrossRef]
- Mackay, B.S.; Marshall, K.; Grant-Jacob, J.A.; Kanczler, J.; Eason, R.W.; Oreffo, R.O.C.; Mills, B. The future of bone regeneration: Integrating AI into tissue engineering. Biomed. Phys. Eng. Express 2021, 7, 052002. [Google Scholar] [CrossRef]
- Huang, E.Y.; Knight, S.; Guetter, C.R.; Davis, C.H.; Moller, M.; Slama, E.; Crandall, M. Telemedicine and telementoring in the surgical specialties: A narrative review. Am. J. Surg. 2019, 218, 760–766. [Google Scholar] [CrossRef]
- Tariq, A.; Gill, A.Y.; Hussain, H.K. Evaluating the Potential of Artificial Intelligence in Orthopedic Surgery for Value-based Healthcare. Int. J. Multidiscip. Sci. Arts IJMDSA 2023, 2, 27–35. [Google Scholar] [CrossRef]
- Alowais, S.A.; Alghamdi, S.S.; Alsuhebany, N.; Alqahtani, T.; Alshaya, A.I.; Almohareb, S.N.; Aldairem, A.; Alrashed, M.; Bin Saleh, K.; Badreldin, H.A.; et al. Revolutionizing healthcare: The role of artificial intelligence in clinical practice. BMC Med. Educ. 2023, 23, 689. [Google Scholar] [CrossRef]
- Farid, Y.; Fernando Botero Gutierrez, L.; Ortiz, S.; Gallego, S.; Zambrano, J.C.; Morrelli, H.U.; Patron, A. Artificial Intelligence in Plastic Surgery: Insights from Plastic Surgeons, Education Integration, ChatGPT’s Survey Predictions, and the Path Forward. Plast. Reconstr. Surg. Glob. Open 2024, 12, e5515. [Google Scholar] [CrossRef]
- Ching, S.; Thoma, A.; McCabe, R.E.; Antony, M.M. Measuring Outcomes in Aesthetic Surgery: A Comprehensive Review of the Literature. Plast. Reconstr. Surg. 2003, 111, 469. [Google Scholar] [CrossRef]
- Hamamoto, R.; Suvarna, K.; Yamada, M.; Kobayashi, K.; Shinkai, N.; Miyake, M.; Takahashi, M.; Jinnai, S.; Shimoyama, R.; Sakai, A.; et al. Application of Artificial Intelligence Technology in Oncology: Towards the Establishment of Precision Medicine. Cancers 2020, 12, 3532. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Baxter, S.L.; Xu, J.; Xu, J.; Zhou, X.; Zhang, K. The practical implementation of artificial intelligence technologies in medicine. Nat. Med. 2019, 25, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Lucy, A.; Cochrun, S.; Abraham, P.; Hardiman, K.M.; Corey, B.; Chen, H. Preserving the Pipeline of Surgeon Scientists: The Role of a Structured Research Curriculum. J. Surg. Res. 2023, 290, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, N.; Turner, A.; Grome, L.; Abu-Ghname, A.; Davis, M.J.; Reece, E.M.; Buchanan, E.P.; Winocour, S. Use of Simulation in Plastic Surgery Training. Plast. Reconstr. Surg. Glob. Open 2020, 8, e2896. [Google Scholar] [CrossRef]
- Webb, W.R.; Rao, P.; Garcia, P.E.; Carruthers, J.D.A.; Rahman, E. Harmony and hype: Navigating translational science in aesthetic medicine and plastic surgery. Eur. J. Plast. Surg. 2024, 47, 104. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mansoor, M.; Ibrahim, A.F. The Transformative Role of Artificial Intelligence in Plastic and Reconstructive Surgery: Challenges and Opportunities. J. Clin. Med. 2025, 14, 2698. https://doi.org/10.3390/jcm14082698
Mansoor M, Ibrahim AF. The Transformative Role of Artificial Intelligence in Plastic and Reconstructive Surgery: Challenges and Opportunities. Journal of Clinical Medicine. 2025; 14(8):2698. https://doi.org/10.3390/jcm14082698
Chicago/Turabian StyleMansoor, Masab, and Andrew F. Ibrahim. 2025. "The Transformative Role of Artificial Intelligence in Plastic and Reconstructive Surgery: Challenges and Opportunities" Journal of Clinical Medicine 14, no. 8: 2698. https://doi.org/10.3390/jcm14082698
APA StyleMansoor, M., & Ibrahim, A. F. (2025). The Transformative Role of Artificial Intelligence in Plastic and Reconstructive Surgery: Challenges and Opportunities. Journal of Clinical Medicine, 14(8), 2698. https://doi.org/10.3390/jcm14082698