Usefulness of Myocardial Injury Parameters in Predicting Prolonged Postoperative Use of Inotropes Drugs in Patients Undergoing Heart Valve Surgery
Abstract
:1. Introduction
2. Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kochar, A.; Zheng, Y.; van Diepen, S.; Mehta, R.H.; Westerhout, C.M.; Mazer, D.C.; Duncan, A.I.; Whitlock, R.; Lopes, R.D.; Argenziano, M.; et al. Predictors and associated clinical outcomes of low cardiac output syndrome following cardiac surgery: Insights from the LEVO-CTS trial. Eur. Heart J. Acute Cardiovasc. Care 2022, 11, 818–825. [Google Scholar] [CrossRef] [PubMed]
- Mehta, R.H.; Leimberger, J.D.; van Diepen, S.; Meza, J.; Wang, A.; Jankowich, R.; Hay, D.; Fremes, S.; Duncan, A.; Soltesz, E.G.; et al. Levosimendan in patients with left ventricular dysfunction undergoing cardiac surgery. N. Engl. J. Med. 2017, 376, 2032–2042. [Google Scholar] [CrossRef] [PubMed]
- Cholley, B.; Caruba, T.; Grosjean, S.; Amour, J.; Ouattara, A.; Villacorta, J.; Miguet, B.; Guinet, P.; Lévy, F.; Squara, P.; et al. Effect of levosimendan on low cardiac output syndrome in patients with low ejection fraction undergoing coronary artery bypass grafting with cardiopulmonary bypass: The LICORN randomized clinical trial. JAMA 2017, 318, 548–556. [Google Scholar] [CrossRef] [PubMed]
- Lomivorotov, V.V.; Efremov, S.M.; Kirov, M.Y.; Fominskiy, E.V.; Karaskov, A.M. Low-cardiac-output syndrome after cardiac surgery. J. Cardiothorac. Vasc. Anesth. 2017, 31, 291–308. [Google Scholar] [CrossRef]
- Carrara, A.; Peluso, L.; Baccanelli, F.; Parrinello, M.; Santarpino, G.; Giroletti, L.; Graniero, A.; Agnino, A.; Albano, G. Relationship between Preoperative Red Cell Distribution Width and Prolonged Postoperative Use of Catecholamines in Minimally Invasive Mitral Valve Surgery Patients: A Retrospective Cohort Study. J. Clin. Med. 2024, 13, 5736. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef]
- Chioncel, O.; Parissis, J.; Mebazaa, A.; Thiele, H.; Desch, S.; Bauersachs, J.; Harjola, V.; Antohi, E.; Arrigo, M.; Ben Gal, T.; et al. Epidemiology, pathophysiology and contemporary management of cardiogenic shock—A position statement from the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 2020, 22, 1315–1341. [Google Scholar] [CrossRef]
- Thiele, H.; Ohman, E.M.; de Waha-Thiele, S.; Zeymer, U.; Desch, S. Management of cardiogenic shock complicating myocardial infarction: An update 2019. Eur. Heart J. 2019, 40, 2671–2683. [Google Scholar] [CrossRef]
- Mebazaa, A.; Combes, A.; van Diepen, S.; Hollinger, A.; Katz, J.N.; Landoni, G.; Hajjar, L.A.; Lassus, J.; Lebreton, G.; Montalescot, G.; et al. Management of cardiogenic shock complicating myocardial infarction. Intensive Care Med. 2018, 44, 760–773. [Google Scholar] [CrossRef]
- Randhawa, V.K.; Lee, R.; Alviar, C.L.; Rali, A.S.; Arias, A.; Vaidya, A.; Zern, E.K.; Fagan, A.; Proudfoot, A.G.; Katz, J.N. Extra-cardiac management of cardiogenic shock in the intensive care unit. J. Heart Lung Transplant. 2024, 43, 1051–1058. [Google Scholar] [CrossRef]
- Duchnowski, P. The Role of the N-Terminal of the Prohormone Brain Natriuretic Peptide in Predicting Postoperative Multiple Organ Dysfunction Syndrome. J. Clin. Med. 2022, 11, 7217. [Google Scholar] [CrossRef] [PubMed]
- Zymliński, R.; Biegus, J.; Sokolski, M.; Siwołowski, P.; Nawrocka-Millward, S.; Todd, J.; Jankowska, E.A.; Banasiak, W.; Cotter, G.; Cleland, J.G.; et al. Increased blood lactate is prevalent and identifies poor prognosis in patients with acute heart failure without overt peripheral hypoperfusion. Eur. J. Heart Fail. 2018, 20, 1011–1018. [Google Scholar] [CrossRef] [PubMed]
- Duchnowski, P.; Śmigielski, W. Usefulness of myocardial damage biomarkers in predicting cardiogenic shock in patients undergoing heart valve surgery. Kardiol. Pol. 2024, 82, 423–426. [Google Scholar] [CrossRef] [PubMed]
- Vánky, F.B.; Håkanson, E.; Tamás, E.; Svedjeholm, R. Risk factors for postoperative heart failure in patients operated on for aortic stenosis. Ann. Thorac. Surg. 2006, 81, 1297–1304. [Google Scholar] [CrossRef]
- Desai, A.S.; Jarcho, J.A. Levosimendan for the Low Cardiac Output Syndrome after Cardiac Surgery. N. Engl. J. Med. 2017, 376, 2076–2078. [Google Scholar] [CrossRef]
- Higuchi, R.; Tobaru, T.; Hagiya, K.; Saji, M.; Takamisawa, I.; Shimizu, J.; Iguchi, N.; Takanashi, S.; Takayama, M.; Isobe, M. Outcomes of patients requiring extracorporeal membrane oxygenation in transcatheter aortic valve implantation: A clinical case series. Heart Vessels 2018, 33, 1343–1349. [Google Scholar] [CrossRef]
- Gilotra, N.A.; Stevens, G.R. Temporary mechanical circulatory support: A review of the options, indications, and outcomes. Clin. Med. Insights Cardiol. 2014, 8, 75–85. [Google Scholar] [CrossRef]
- Mebazaa, A.; Pitsis, A.A.; Rudiger, A.; Toller, W.; Longrois, D.; Ricksten, S.E.; Bobek, I.; De Hert, S.; Wieselthaler, G.; Schirmer, U.; et al. Clinical review: Practical recommendations on the management of perioperative heart failure in cardiac surgery. Crit. Care 2010, 4, 201. [Google Scholar] [CrossRef]
- Jakubiak, G.K. Cardiac Troponin Serum Concentration Measurement Is Useful Not Only in the Diagnosis of Acute Cardiovascular Events. J. Pers. Med. 2024, 14, 230. [Google Scholar] [CrossRef]
- Ponikowski, P.; Voors, A.A.; Anker, S.D.; Bueno, H.; Cleland, J.G.; Coats, A.J.; Falk, V.; González-Juanatey, J.R.; Harjola, V.P.; Jankowska, E.A. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2016, 37, 2129–2200. [Google Scholar]
- Hermans, G.; Van den Berghe, G. Clinical review: Intensive care unit acquired weakness. Crit. Care 2015, 19, 274. [Google Scholar] [CrossRef] [PubMed]
- Choffat, D.; Farhoumand, P.D.; Jaccard, E.; de la Harpe, R.; Kraege, V.; Benmachiche, M.; Gerber, C.; Leuzinger, S.; Podmore, C.; Truong, M.K.; et al. Risk stratification for hospital-acquired venous thromboembolism in medical patients (RISE): Protocol for a prospective cohort study. PLoS ONE 2022, 1, e0268833. [Google Scholar] [CrossRef] [PubMed]
- Gardner, R.; Ozalp, F.; Murday, A.; Robb, S.; McDonagh, T. N-terminal pro-brain natriuretic peptide. A new gold standard in predicting mortality in patients with advanced heart failure. Eur. Heart J. 2003, 24, 1735–1743. [Google Scholar] [CrossRef] [PubMed]
- Weidemann, F.; Herrmann, S.; Störk, S.; Niemann, M.; Frantz, S.; Lange, V.; Beer, M.; Gattenlöhner, S.; Voelker, W.; Ertl, G.; et al. Impact of myocardial fibrosis in patients with symptomatic severe aortic stenosis. Circulation 2009, 120, 577–584. [Google Scholar] [CrossRef]
- Bowels, C.; Hiesinger, W. Postcardiotomy shock extracorporeal membrane oxygenation: Peripheral or central? JTCVS Open 2021, 8, 66–69. [Google Scholar] [CrossRef]
- Ostadal, P.; Belohlavek, J. Response by Ostadal and Belohlavek to letter regarding article, “Extracorporeal membrane oxygenation in the therapy of cardiogenic shock: Results of the ECMO-CS randomized clinical trial”. Circulation 2023, 148, 804. [Google Scholar] [CrossRef]
- Armillotta, M.; Bergamaschi, L.; Paolisso, P.; Belmonte, M.; Angeli, F.; Sansonetti, A.; Stefanizzi, A.; Bertolini, D.; Bodega, F.; Amicone, S.; et al. Myocardial Infarction and Periprocedural Myocardial Injury in Patients with Non-ST-Segment-Elevation Myocardial Infarction. Circulation 2025, 151, 760–772. [Google Scholar] [CrossRef]
Preoperative Characteristics of Patients | Values All Patients | Values Patients with Hemodynamic Instability (n = 210) | Values Patients Without Hemodynamic Instability (n = 397) | p-Value |
---|---|---|---|---|
Age, years | 65 (57–71) | 67 (62–74) | 63 (55–70) | 0.01 |
Male: men, n (%) | 352 (58) | 108 (52) | 244 (62) | 0.02 |
LV ejection fraction, (%) | 60 (50–65) | 55 (45–65) | 60 (55–65) | <0.001 |
EuroSCORE II, % | 2.4 (1.4–3.9) | 3.4 (1.7–5.1) | 2.0 (1.0–3.0) | <0.001 |
Atrial fibrillation, n (%) | 237 (39) | 136 (64) | 101 (25) | <0.001 |
Previous myocardial infarction, n (%) | 39 (6) | 22 (10) | 17 (4) | 0.02 |
Diabetes mellitus, n (%) | 97 (15) | 42 (20) | 55 (13) | 0.08 |
Hemoglobin, g/dL | 13.7 (12.7–14.6) | 13.3 (12.1–14.5) | 13.9 (12.9–14.9) | <0.001 |
GFR, mmol/L | 66.8 (55–81) | 60 (47.5–72.5) | 70 (56.5–83.5) | <0.001 |
TnT, ng/L | 12.4 (7–30) | 18.5 (7–30) | 11.1(4.6–17.6) | <0.001 |
NT-proBNP, pg/mL | 895 (295–1945) | 1618 (757–3217) | 602 (230–1432) | <0.001 |
CRP, mg/dL | 0.2 (0.1–0.5) | 0.3 (0.2–0.7) | 0.2 (0.1–0.3) | <0.001 |
Aortic cross-clamp time, min | 110 (63–130) | 122 (84–160) | 80 (55–105) | 0.06 |
Cardiopulmonary bypass time, min | 115 (82–130) | 168 (129–208) | 103 (79–127) | 0.007 |
Postoperative characteristics of patients | ||||
Rethoracotomy, n (%) | 78 (13) | 56 (26) | 22 (6) | <0.001 |
Postoperative stroke, n (%) | 21 (3.4) | 18 (8) | 3 (1) | <0.001 |
Re-intubation, n (%) | 83 (13) | 71 (33) | 12 (3) | <0.001 |
Renal replacement therapy, n (%) | 43 (7) | 42 (20) | 1 (0.2) | <0.001 |
Mechanical circulatory support, n (%) | 21 (3.4) | 21 (10) | 0 (0) | <0.001 |
Multiple-organ dysfunction syndrome, n (%) | 40 (6) | 37 (17) | 3 (1) | <0.001 |
Hospital stay after surgery, day | 11 (8–17) | 16 (11–30) | 9 (7–13) | <0.001 |
30-day mortality, n (%) | 25 (4.1) | 20 (9.5) | 5 (1) | <0.001 |
TnT I [ng/L] | 615 (362–1111) | 870 (443–1297) | 499 (247–751) | <0.001 |
TnT II [ng/L] | 675 (389–1458) | 1081 (380–1782) | 515 (218–812) | <0.001 |
Main procedures | ||||
AVR, n (%) | 313 (51) | 55 (26) | 258 (65) | 0.11 |
AVP, n (%) | 12 (2) | 3 (1) | 9 (22) | 0.25 |
AVR + MVR, n (%) | 53 (9) | 34 (16) | 19 (5) | 0.91 |
AVR + MVP, n (%) | 10 (2) | 6 (2.8) | 4 (1) | 0.3 |
AVP + MVP, n (%) | 2 (0.3) | 0 (0) | 2 (1) | 0.74 |
MVP, n (%) | 92 (15) | 44 (21) | 48 (15) | 0.47 |
MVR, n (%) | 107 (7) | 63 (30) | 44 (12) | 0.17 |
TVR, n (%) | 7 (1) | 4 (2) | 3 (1) | 0.11 |
Concomitant procedure | ||||
TVP, n (%) | 164 (27) | 106 (50) | 58 (14) | 0.01 |
CABG, n (%) | 79 (15) | 29 (17) | 50 (13) | 0.64 |
Univariate Analysis | Multivariate Analysis | |||||
---|---|---|---|---|---|---|
Variable | Odds Ratio | 95% Cl | p-Value | Odds Ratio | 95% Cl | p-Value |
Age, years | 1.035 | 1.018–1.052 | <0.001 | 1.022 | 1.002–1.043 | 0.03 |
Female sex, n (%) | 1.855 | 1.321–2.605 | <0.001 | |||
TnT, ng/L | 1.911 | 1.521–2.402 | <0.001 | |||
NT-proBNP, pg/mL | 1.950 | 1.659–2.292 | <0.001 | 1.570 | 1.304–1.891 | <0.001 |
CRP, mg/dL | 1.610 | 1.337–1.938 | <0.001 | |||
EuroSCORE II, % | 1.379 | 1.265–1.503 | <0.001 | |||
LV ejection fraction, % | 0.961 | 0.946–0.976 | <0.001 | |||
Stroke in history, n (%) | 2.100 | 1.015–4.344 | 0.04 | |||
Atrial fibrillation, n (%) | 5.386 | 3.746–7.742 | <0.001 | 3.072 | 1.982–4.759 | <0.001 |
Hemoglobin level, g/dL | 0.763 | 0.684–0.851 | <0.001 | |||
GFR, mL/min/1.73 m2), n (%) | 0.966 | 0.955–0.976 | <0.001 | |||
TnT I, ng/L | 2.922 | 2.244–3.805 | <0.001 | |||
TnT II, ng/L | 2.676 | 2.107–3.390 | <0.001 | 1.933 | 1.492–2.506 | <0.001 |
Rethoracotomy, n (%) | 6.198 | 3.653–10.516 | <0.001 | 5.518 | 2.800–10.876 | <0.001 |
Univariate Analysis | Multivariate Analysis | |||||
---|---|---|---|---|---|---|
Variable | Odds Ratio | 95% Cl | p-Value | Odds Ratio | 95% Cl | p-Value |
CRP, mg/dL | 1.793 | 1.293–2.485 | <0.001 | |||
NT-proBNP, pg/mL | 1.650 | 1.260–2.162 | <0.001 | |||
TnT, ng/L | 2.062 | 1.433–2.967 | <0.001 | |||
EuroSCORE II, % | 1.542 | 1.072–1.241 | <0.001 | |||
Hemoglobin level, g/dL | 0.665 | 0.551–0.803 | <0.001 | 0.696 | 0.558–0.87 | 0.001 |
Hs-TnT I, ng/L | 3.388 | 2.312–4.966 | <0.001 | |||
Hs-TnT II, ng/L | 3.440 | 2.370–4.992 | <0.001 | 3.413 | 2.328–5.005 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duchnowski, P.; Śmigielski, W.; Kołsut, P. Usefulness of Myocardial Injury Parameters in Predicting Prolonged Postoperative Use of Inotropes Drugs in Patients Undergoing Heart Valve Surgery. J. Clin. Med. 2025, 14, 2719. https://doi.org/10.3390/jcm14082719
Duchnowski P, Śmigielski W, Kołsut P. Usefulness of Myocardial Injury Parameters in Predicting Prolonged Postoperative Use of Inotropes Drugs in Patients Undergoing Heart Valve Surgery. Journal of Clinical Medicine. 2025; 14(8):2719. https://doi.org/10.3390/jcm14082719
Chicago/Turabian StyleDuchnowski, Piotr, Witold Śmigielski, and Piotr Kołsut. 2025. "Usefulness of Myocardial Injury Parameters in Predicting Prolonged Postoperative Use of Inotropes Drugs in Patients Undergoing Heart Valve Surgery" Journal of Clinical Medicine 14, no. 8: 2719. https://doi.org/10.3390/jcm14082719
APA StyleDuchnowski, P., Śmigielski, W., & Kołsut, P. (2025). Usefulness of Myocardial Injury Parameters in Predicting Prolonged Postoperative Use of Inotropes Drugs in Patients Undergoing Heart Valve Surgery. Journal of Clinical Medicine, 14(8), 2719. https://doi.org/10.3390/jcm14082719