The Impact of Metformin on BNP Levels: A Potential Cardioprotective Role in Type 2 Diabetes
Abstract
:1. Introduction
2. Patients and Methods
2.1. Study Participants
2.2. Data Collection
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BNP | brain natriuretic peptide |
CVD | cardiovascular diseases |
T2D | type 2 diabetes |
AMPK | AMP-dependent kinase |
SGLT-2 | sodium–glucose cotransporter 2 |
GLP-1 | glucagon-like peptide-1 |
AST | aspartate aminotransferase |
ALT | alanine aminotransferase |
HDL | high-density lipoprotein |
LDL | low-density lipoprotein |
CLIA | chemiluminescence immunoassay |
Hb | hemoglobin |
References
- Ma, C.-X.; Ma, X.-N.; Guan, C.-H.; Li, Y.-D.; Mauricio, D.; Fu, S.-B. Cardiovascular disease in type 2 diabetes mellitus: Progress toward personalized management. Cardiovasc. Diabetol. 2022, 21, 74. [Google Scholar] [CrossRef] [PubMed]
- Haffner, S.M.; D’Agostino, R.; Mykkänen, L.; Tracy, R.; Howard, B.; Rewers, M.; Selby, J.; Savage, P.J.; Saad, M.F. Insulin sensitivity in subjects with type 2 diabetes. Relationship to cardiovascular risk factors: The Insulin Resistance Atherosclerosis Study. Diabetes Care 1999, 22, 562–568. [Google Scholar] [CrossRef] [PubMed]
- Morrish, N.J.; Wang, S.-L.; Stevens, L.K.; Fuller, J.H.; Keen, H. Mortality and causes of death in the WHO Multinational Study of Vascular Disease in Diabetes. Diabetologia 2001, 44 (Suppl. 2), S14–S21. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.L. A comprehensive definition for metabolic syndrome. Dis. Model. Mech. 2009, 2, 231–237. [Google Scholar] [CrossRef]
- Palazzuoli, A.; Iacoviello, M. Diabetes leading to heart failure and heart failure leading to diabetes: Epidemiological and clinical evidence. Heart Fail. Rev. 2023, 28, 585–596. [Google Scholar] [CrossRef]
- Sacre, J.W.; Magliano, D.J.; Shaw, J.E. Heart failure hospitalisation relative to major atherosclerotic events in type 2 diabetes with versus without chronic kidney disease: A meta-analysis of cardiovascular outcomes trials. Diabetes Metab. 2021, 47, 101249. [Google Scholar] [CrossRef]
- Nadar, S.K.; Shaikh, M.M. Biomarkers in Routine Heart Failure Clinical Care. Card. Fail. Rev. 2019, 5, 50–56. [Google Scholar] [CrossRef]
- Novack, M.L.; Zubair, M. Natriuretic Peptide B Type Test. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK556136/ (accessed on 23 April 2023).
- Pagana, K.D.; Pagana, T.J.; Pagana, T.N. Mosby’s Diagnostic & Laboratory Test Reference, 14th ed.; Elsevier: St. Louis, MO, USA, 2019. [Google Scholar]
- Taylor, C.J.; Lay-Flurrie, S.L.; Ordóñez-Mena, J.M.; Goyder, C.R.; Jones, N.R.; Roalfe, A.K.; Hobbs, F.R. Natriuretic peptide level at heart failure diagnosis and risk of hospitalisation and death in England 2004–2018. Heart 2021, 108, 543–549. [Google Scholar] [CrossRef]
- Tiwari, D.; Aw, T.C. Emerging Role of Natriuretic Peptides in Diabetes Care: A Brief Review of Pertinent Recent Literature. Diagnostics 2024, 14, 2251. [Google Scholar] [CrossRef]
- Pop-Busui, R.; Januzzi, J.L.; Bruemmer, D.; Butalia, S.; Green, J.B.; Horton, W.B.; Knight, C.; Levi, M.; Rasouli, N.; Richardson, C.R. Heart Failure: An Underappreciated Complication of Diabetes. A Consensus Report of the American Diabetes Association. Diabetes Care 2022, 45, 1670–1690. [Google Scholar] [CrossRef]
- Tsai, S.-H.; Lin, Y.-Y.; Chu, S.-J.; Hsu, C.-W.; Cheng, S.-M. Interpretation and use of natriuretic peptides in non-congestive heart failure settings. Yonsei Med. J. 2010, 51, 151–163. [Google Scholar] [CrossRef] [PubMed]
- Herman, R.; Kravos, N.A.; Jensterle, M.; Janež, A.; Dolžan, V. Metformin and Insulin Resistance: A Review of the Underlying Mechanisms behind Changes in GLUT4-Mediated Glucose Transport. Int. J. Mol. Sci. 2022, 23, 1264. [Google Scholar] [CrossRef] [PubMed]
- Schernthaner, G.; Brand, K.; Bailey, C.J. Metformin and the heart: Update on mechanisms of cardiovascular protection with special reference to comorbid type 2 diabetes and heart failure. Metabolism 2022, 130, 155160. [Google Scholar] [CrossRef] [PubMed]
- Salvatore, T.; Galiero, R.; Caturano, A.; Vetrano, E.; Rinaldi, L.; Coviello, F.; Di Martino, A.; Albanese, G.; Marfella, R.; Sardu, C.; et al. Effects of Metformin in Heart Failure: From Pathophysiological Rationale to Clinical Evidence. Biomolecules 2021, 11, 1834. [Google Scholar] [CrossRef]
- Templer, S.; Abdo, S.; Wong, T. Preventing diabetes complications. Intern. Med. J. 2024, 54, 1264–1274. [Google Scholar] [CrossRef]
- the DPP Research Group; Nathan, D.M.; Bennett, P.H.; Crandall, J.P.; Edelstein, S.L.; Goldberg, R.B.; Kahn, S.E.; Knowler, W.C.; Mather, K.J.; Mudaliar, S.; et al. Does diabetes prevention translate into reduced long-term vascular complications of diabetes? Diabetologia 2019, 62, 1319–1328. [Google Scholar] [CrossRef]
- Marinescu, M.; Oprea, V.D.; Nechita, A.; Tutunaru, D.; Nechita, L.-C.; Romila, A. The Use of Brain Natriuretic Peptide in the Evaluation of Heart Failure in Geriatric Patients. Diagnostics 2023, 13, 1512. [Google Scholar] [CrossRef]
- Keyzer, J.M.; Hoffmann, J.J.; Ringoir, L.; Nabbe, K.C.; Widdershoven, J.W.; Pop, V.J. Age- and gender-specific brain natriuretic peptide (BNP) reference ranges in primary care. Clin. Chem. Lab. Med. 2014, 52, 1341–1346. [Google Scholar] [CrossRef]
- Yan, P.; Wan, Q.; Zhang, Z.; Xu, Y.; Miao, Y.; Chen, P.; Gao, C. Association between Circulating B-Type Natriuretic Peptide and Diabetic Peripheral Neuropathy: A Cross-Sectional Study of a Chinese Type 2 Diabetic Population. J. Diabetes Res. 2020, 2020, 3436549. [Google Scholar] [CrossRef]
- Bachmann, K.N.; Huang, S.; Lee, H.; Dichtel, L.E.; Gupta, D.K.; Burnett, J.C.; Miller, K.K.; Wang, T.J.; Finkelstein, J.S. Effect of Testosterone on Natriuretic Peptide Levels. J. Am. Coll. Cardiol. 2019, 73, 1288–1296. [Google Scholar] [CrossRef]
- Cediel, G.; Codina, P.; Spitaleri, G.; Domingo, M.; Santiago-Vacas, E.; Lupón, J.; Bayes-Genis, A. Gender-Related Differences in Heart Failure Biomarkers. Front. Cardiovasc. Med. 2021, 7, 617705. [Google Scholar] [CrossRef] [PubMed]
- Maffei, S.; Del Ry, S.; Prontera, C.; Clerico, A. Increase in circulating levels of cardiac natriuretic peptides after hormone replacement therapy in postmenopausal women. Clin. Sci. 2001, 101, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Knudsen, C.W.; Vik-Mo, H.; Omland, T. Blood haemoglobin is an independent predictor of B-type natriuretic peptide (BNP). Clin. Sci. 2005, 109, 69–74. [Google Scholar] [CrossRef]
- Karakoyun, I.; Colak, A.; Arslan, F.D.; Hasturk, A.G.; Duman, C. Anemia considerations when assessing natriuretic peptide levels in ED patients. Am. J. Emerg. Med. 2017, 35, 1677–1681. [Google Scholar] [CrossRef]
- He, W.-T.; Mori, M.; Yu, X.-F.; Kanda, T. Higher BNP levels within physiological range correlate with beneficial nonfasting lipid profiles in the elderly: A cross-sectional study. Lipids Health Dis. 2016, 15, 3. [Google Scholar] [CrossRef]
- Srisawasdi, P.; Vanavanan, S.; Charoenpanichkit, C.; Kroll, M.H. The effect of renal dysfunction on BNP, NT-proBNP, and their ratio. Am. J. Clin. Pathol. 2010, 133, 14–23. [Google Scholar] [CrossRef]
- Vickery, S.; Price, C.P.; John, R.I.; Abbas, N.A.; Webb, M.C.; Kempson, M.E.; Lamb, E.J. B-type natriuretic peptide (BNP) and amino-terminal proBNP in patients with CKD: Relationship to renal function and left ventricular hypertrophy. Am. J. Kidney Dis. 2005, 46, 610–620. [Google Scholar] [CrossRef]
- Khan, A.M.; Cheng, S.; Magnusson, M.; Larson, M.G.; Newton-Cheh, C.; McCabe, E.L.; Coviello, A.D.; Florez, J.C.; Fox, C.S.; Levy, D.; et al. Cardiac natriuretic peptides, obesity, and insulin resistance: Evidence from two community-based studies. J. Clin. Endocrinol. Metab. 2011, 96, 3242–3249. [Google Scholar] [CrossRef]
- Chang, H.-R.; Hsieh, J.-C.; Chen, M.Y.-C.; Wang, J.-H.; Hsu, B.-G.; Wang, L.-Y. N-terminal pro-B-type natriuretic peptide is inversely associated with metabolic syndrome in hypertensive patients. Am. J. Med. Sci. 2014, 348, 210–214. [Google Scholar] [CrossRef]
- Tsukamoto, O.; Fujita, M.; Kato, M.; Yamazaki, S.; Asano, Y.; Ogai, A.; Okazaki, H.; Asai, M.; Nagamachi, Y.; Maeda, N.; et al. Natriuretic peptides enhance the production of adiponectin in human adipocytes and in patients with chronic heart failure. J. Am. Coll. Cardiol. 2009, 53, 2070–2077. [Google Scholar] [CrossRef]
- Mezzasoma, L.; Talesa, V.N.; Romani, R.; Bellezza, I. ANP and BNP Exert Anti-Inflammatory Action via NPR-1/cGMP Axis by Interfering with Canonical, Non-Canonical, and Alternative Routes of Inflammasome Activation in Human THP1 Cells. Int. J. Mol. Sci. 2020, 22, 24. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Jiang, C.; Guo, M.; Zeng, Y.; Jiang, Z.; Zhang, D.; Tu, M.; Tan, X.; Yan, P.; Xu, X.; et al. Effects of SGLT2 inhibitors on cardiac function and health status in chronic heart failure: A systematic review and meta-analysis. Cardiovasc. Diabetol. 2024, 23, 2. [Google Scholar] [CrossRef] [PubMed]
- Lundin, M.; Ferrannini, G.; Mellbin, L.; Johansson, I.; Norhammar, A.; Näsman, P.; Shahim, B.; Smetana, S.; Venkateshvaran, A.; Wang, A.; et al. SOdium-glucose CO-transporter inhibition in patients with newly detected Glucose Abnormalities and a recent Myocardial Infarction (SOCOGAMI). Diabetes Res. Clin. Pract. 2022, 193, 110141. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, W.; Kubota, Y.; Hoshika, Y.; Mozawa, K.; Tara, S.; Tokita, Y.; Yodogawa, K.; Iwasaki, Y.-K.; Yamamoto, T.; Takano, H.; et al. Effects of empagliflozin versus placebo on cardiac sympathetic activity in acute myocardial infarction patients with type 2 diabetes mellitus: The EMBODY trial. Cardiovasc. Diabetol. 2020, 19, 148. [Google Scholar] [CrossRef]
- Zinman, B.; Wanner, C.; Lachin, J.M.; Fitchett, D.; Bluhmki, E.; Hantel, S.; Mattheus, M.; Devins, T.; Johansen, O.E.; Woerle, H.J.; et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N. Engl. J. Med. 2015, 373, 2117–2128. [Google Scholar] [CrossRef]
- McMurray, J.J.V.; Solomon, S.D.; Inzucchi, S.E.; Køber, L.; Kosiborod, M.N.; Martinez, F.A.; Ponikowski, P.; Sabatine, M.S.; Anand, I.S.; Bělohlávek, J.; et al. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N. Engl. J. Med. 2019, 381, 1995–2008. [Google Scholar] [CrossRef]
- Dorkhan, M.; Frid, A.; Groop, L. Differences in effects of insulin glargine or pioglitazone added to oral anti-diabetic therapy in patients with type 2 diabetes: What to add—Insulin glargine or pioglitazone? Diabetes Res. Clin. Pract. 2008, 82, 340–345. [Google Scholar] [CrossRef]
- Tahrani, A.A.; Varughese, G.I.; Scarpello, J.H.; Hanna, F.W. Metformin, heart failure, and lactic acidosis: Is metformin absolutely contraindicated? BMJ 2007, 335, 508–512. [Google Scholar] [CrossRef]
- Top, W.M.C.; Lehert, P.; Schalkwijk, C.G.; Stehouwer, C.D.A.; Kooy, A. Metformin and N-terminal pro B-type natriuretic peptide in type 2 diabetes patients, a post-hoc analysis of a randomized controlled trial. PLoS ONE 2021, 16, e0247939. [Google Scholar] [CrossRef]
- Fawzi, H.A.; Sabbar, R.; Kadhim, S.A.A.; Flayih, A.; Mohammad, B.; Swadi, A. Metformin effects on cardiac parameters in non-diabetic Iraqi patients with heart failure and mid-range ejection fraction—A comparative two-arm parallel clinical study. J. Med. Life 2023, 16, 1400–1406. [Google Scholar] [CrossRef]
- Sokolova, L.; Belchina, Y.; Cherviakova, S.; Vatseba, T.; Kovzun, O.; Pushkarev, V. The effect of metformin treatment on the level of GLP-1, NT-proBNP and endothelin-1 in patients with type 2 diabetes mellitus. Int. J. Endocrinol. 2020, 16, 616–621. [Google Scholar] [CrossRef]
Variable | Mean ± Std | Min.–Max. (Median) |
---|---|---|
Age (years) | 56.82 ± 9.2 | 23–75 (58) |
Diabetes duration (years) | 9.96 ± 5.04 | 1–17 (12) |
Gender (F/M) | 132/120 | |
BNP (ng/L) | 37.43 ± 39.59 | 2–314 (25.7) |
HbA1c (%) | 7.90 ± 1.77 | 4.8–15.5 (7.45) |
Glucose (mg/dL) | 152.24 ± 59.59 | 47–430 (137) |
Total cholesterol (mg/dL) | 176.73 ± 42.13 | 77–335 (174) |
HDL cholesterol (mg/dL) | 43.64 ± 12.05 | 16–95 (42) |
LDL cholesterol (mg/dL) | 101.58 ± 35.52 | 20–251 (94.8) |
Triglycerides (mg/dL) | 160.45 ± 94.06 | 37–602 (133.5) |
Hemoglobin (g/dL) | 13.55 ± 1.58 | 9.2–17.1 (13.5) |
Urea (mg/dL) | 35.03 ± 11.26 | 12–96 (33) |
Creatinine (mg/dL) | 0.90 ± 0.22 | 0.48–1.84 (0.87) |
AST (U/L) | 16.71 ± 14.59 | 4–188 (14) |
ALT (U/L) | 27.17 ± 19.19 | 8–160 (22) |
Comorbidities | N (%) | |
Hyperlipidemia | 131 (51.9) | |
Hypertension | 104 (41.2) | |
Coronary artery disease | 26 (10.3) | |
Hypothyroidism | 14 (5.5) |
Medications (n) | BNP | p | |
---|---|---|---|
Metformin | Non-user (61) | 49.18 ± 45.69 | 0.034 |
User (191) | 33.68 ± 36.78 | ||
SGLT2 inhibitors | Non-user (110) | 42.02 ± 45.49 | 0.162 |
User (142) | 33.88 ± 34.08 | ||
DPP-4 inhibitors | Non-user (122) | 40.47 ± 40.03 | 0.523 |
User (130) | 34.58 ± 39.12 | ||
Pioglitazone | Non-user (180) | 41.46 ± 43.98 | 0.021 |
User (72) | 27.37 ± 22.85 | ||
Sulfonylureas | Non-user (215) | 38.12 ± 41.49 | 0.764 |
User (37) | 33.42 ± 25.99 | ||
Insulin | Non-user (104) | 31.44 ± 27.07 | 0.195 |
User (148) | 41.64 ± 46.04 | ||
Statins | Non-user (165) | 40.12 ± 40.33 | 0.060 |
User (87) | 32.33 ± 37.85 | ||
Fibrates | Non-user (232) | 37.84 ± 40.51 | 0.714 |
User (20) | 32.70 ± 26.99 |
R | p | |
---|---|---|
Age | 0.410 | <0.001 |
Diabetes duration | 0.149 | 0.018 |
HbA1c | 0.091 | 0.150 |
Fasting glucose | 0.095 | 0.131 |
HDL cholesterol | 0.092 | 0.145 |
LDL cholesterol | −0.100 | 0.115 |
Triglyceride | −0.034 | 0.589 |
Urea | 0.072 | 0.253 |
Creatinine | 0.000 | 0.995 |
Hemoglobin | −0.284 | <0.001 |
ALT | −0.151 | 0.016 |
AST | −0.044 | 0.491 |
Model 1 | ||||
---|---|---|---|---|
B | S.E. | 95% CI for B (Lower–Upper) | p | |
(Constant) | −21.180 | 15.936 | −52.569–10.209 | 0.185 |
Age | 1.305 | 0.281 | 0.750–1.859 | <0.001 |
Diabetes duration | 0.078 | 0.504 | −0.915–1.071 | 0.877 |
Male gender | −12.915 | 4.653 | −22.080–−3.750 | 0.006 |
Metformin | −11.312 | 5.474 | −22.094–−0.530 | 0.040 |
Pioglitazone | −5.486 | 5.297 | −15.920–4.947 | 0.301 |
Model 2 | ||||
B | S.E. | 95% CI for B (Lower–Upper) | p | |
(Constant) | 31.531 | 33.886 | −35.216–98.279 | 0.353 |
Age | 1.293 | 0.266 | 0.769–1.816 | <0.001 |
Metformin | −11.857 | 5.948 | −23.573–−0.142 | 0.047 |
Male gender | −6.218 | 5.724 | −17.494–5.057 | 0.278 |
HbA1c | 0.738 | 1.373 | −1.966–3.442 | 0.591 |
LDL cholesterol | −0.040 | 0.068 | −0.174–0.093 | 0.551 |
HDL cholesterol | 0.069 | 0.209 | −0.344–0.481 | 0.743 |
Hemoglobin | −3.980 | 1.701 | −7.331–−0.628 | 0.020 |
Creatinine | −7.106 | 12.807 | −32.333–18.121 | 0.580 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoca, E.; Kalaycı, N.; Ahbab, S.; Engin, İ.; Ataoğlu, H.E. The Impact of Metformin on BNP Levels: A Potential Cardioprotective Role in Type 2 Diabetes. J. Clin. Med. 2025, 14, 2733. https://doi.org/10.3390/jcm14082733
Hoca E, Kalaycı N, Ahbab S, Engin İ, Ataoğlu HE. The Impact of Metformin on BNP Levels: A Potential Cardioprotective Role in Type 2 Diabetes. Journal of Clinical Medicine. 2025; 14(8):2733. https://doi.org/10.3390/jcm14082733
Chicago/Turabian StyleHoca, Emre, Nilsu Kalaycı, Süleyman Ahbab, İsmail Engin, and Hayriye Esra Ataoğlu. 2025. "The Impact of Metformin on BNP Levels: A Potential Cardioprotective Role in Type 2 Diabetes" Journal of Clinical Medicine 14, no. 8: 2733. https://doi.org/10.3390/jcm14082733
APA StyleHoca, E., Kalaycı, N., Ahbab, S., Engin, İ., & Ataoğlu, H. E. (2025). The Impact of Metformin on BNP Levels: A Potential Cardioprotective Role in Type 2 Diabetes. Journal of Clinical Medicine, 14(8), 2733. https://doi.org/10.3390/jcm14082733