Motor Coordination Disorders in Patients with Chronic Kidney Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Outcome Measurements
2.2.1. The Charlson Comorbidity Index (CCI)
2.2.2. The Short Form Physiological Profile Assessment (S-PPA)
2.2.3. Description of the Five Components of S-PPA
- Visual Contrast Sensitivity
- Proprioception
- Muscle Force Test
- Reaction Time Test
- Balance Test
2.3. Statistical Analysis
3. Results
3.1. Baseline Clinical Data
3.2. Results of Logistic Regression Model
3.3. Development and Results of Multivariate Logistic Regression Model
4. Discussion
5. Conclusions
- –
- Regular assessment of motor coordination** (e.g., S-PPA) and vascular health (e.g., PWV) to identify high-risk individuals.
- –
- Targeted interventions, such as vision correction, balance training, and optimization of cardiovascular therapy, to mitigate fall risk.
- –
- Further research to explore whether reducing arterial stiffness (e.g., through pharmacologic or lifestyle interventions) improves physical function and reduces falls in CKD.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lin, P.; Wan, B.; Zhong, J.; Wang, M.; Tang, F.; Wang, L.; Guo, J.; Ye, Y.; Liu, X.; Peng, L.; et al. Risk of fall in patients with chronic kidney disease: Results from the China health and retirement longitudinal study (CHARLS). BMC Public Health 2024, 24, 499. [Google Scholar] [CrossRef]
- López-Soto, P.J.; De Giorgi, A.; Senno, E.; Tiseo, R.; Ferraresi, A.; Canella, C.; Rodríguez-Borrego, M.A.; Manfredini, R.; Fabbian, F. Renal disease and accidental falls: A review of published evidence. BMC Nephrol. 2015, 16, 176. [Google Scholar] [CrossRef] [PubMed]
- Bowling, C.B.; Booth, J.N., III; Gutiérrez, O.M.; Tamura, M.K.; Huang, L.; Kilgore, M.; Judd, S.; Warnock, D.G.; McClellan, W.M.; Allman, R.M.; et al. Nondisease-specific problems and all-cause mortality among older adults with CKD: The REGARDS Study. Clin. J. Am. Soc. Nephrol. 2014, 9, 1737. [Google Scholar] [CrossRef]
- Kistler, B.M.; Khubchandani, J.; Jakubowicz, G.; Wilund, K.; Sosnoff, J. Falls and Fall-Related Injuries Among US Adults Aged 65 or Older with Chronic Kidney Disease. Prev. Chronic Dis. 2018, 15, E82. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Tomlinson, G.; Naglie, G.; Cook, W.L.; Jassal, S.V. Geriatric comorbidities, such as falls, confer an independent mortality risk to elderly dialysis patients. Nephrol. Dial. Transplant. 2008, 23, 1396. [Google Scholar] [CrossRef] [PubMed]
- Lord, S.R.; Menz, H.B.; Tiedemann, A. A physiological profile approach to falls risk assessment and prevention. Phys. Ther. 2003, 83, 237. [Google Scholar] [CrossRef]
- Lin, Y.; Yang, C.; Chu, H.; Wu, J.; Lin, K.; Shi, Y.; Wang, H.; Kong, G.; Zhang, L. Association between the Charlson Comorbidity Index and the risk of 30-day unplanned readmission in patients receiving maintenance dialysis. BMC Nephrol. 2019, 20, 363. [Google Scholar] [CrossRef]
- Zanotto, T.; Mercer, T.H.; van der Linden, M.L.; Rush, R.; Traynor, J.P.; Petrie, C.J.; Doyle, A.; Chalmers, K.; Allan, N.; Shilliday, I.; et al. The relative importance of frailty, physical and cardiovascular function as exercise-modifiable predictors of falls in haemodialysis patients: A prospective cohort study. BMC Nephrol. 2020, 21, 99. [Google Scholar] [CrossRef]
- Shirai, N.; Yamamoto, S.; Osawa, Y.; Tsubaki, A.; Morishita, S.; Sugahara, T.; Narita, I. Low muscle strength and physical function contribute to falls in hemodialysis patients, but not muscle mass. Clin. Exp. Nephrol. 2024, 28, 67–74. [Google Scholar] [CrossRef]
- Cook, W.L.; Tomlinson, G.; Donaldson, M.; Markowitz, S.N.; Naglie, G.; Sobolev, B.; Jassal, S.V. Falls and fall-related injuries in older dialysis patients. Clin. J. Am. Soc. Nephrol. 2006, 1, 1197–1204. [Google Scholar] [CrossRef]
- Bossola, M.; Marino, C.; Di Napoli, A.; Agabiti, N.; Tazza, L.; Davoli, M. Functional impairment and risk of mortality in patients on chronic hemodialysis: Results of the Lazio Dialysis Registry. J. Nephrol. 2008, 31, 593. [Google Scholar] [CrossRef] [PubMed]
- Doshi, S.; Moorthi, R.N.; Fried, L.F.; Sarnak, M.J.; Satterfield, S.; Shlipak, M.; Lange-Maia, B.S.; Newman, A.B.; Strotmeyer, E.S. Chronic kidney disease as a risk factor for peripheral nerve impairment in older adults: A longitudinal analysis of Health, Aging and Body Composition (Health ABC) study. PLoS ONE 2020, 15, e0242406. [Google Scholar] [CrossRef]
- Papakonstantinopoulou, K.; Sofianos, I. Risk of falls in chronic kidney disease. J. Frailty Sarcopenia Falls 2017, 2, 33–38. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, H.; Bai, Y.; Zhang, Y.; Huang, L.; Zhang, H. Prevalence of physical frailty and impact on survival in patients with chronic kidney disease: A systematic review and meta-analysis. BMC Nephrol. 2023, 24, 258. [Google Scholar] [CrossRef] [PubMed]
- Mei, F.; Gao, Q.; Chen, F.; Zhao, L.; Shang, Y.; Hu, K.; Zhang, W.; Zhao, B.; Ma, B. Frailty as a Predictor of Negative Health Outcomes in Chronic Kidney Disease: A Systematic Review and Meta-Analysis. J. Am. Med. Dir. Assoc. 2021, 22, 535–543.e7. [Google Scholar] [CrossRef]
- Zanoli, L.; Lentini, P.; Briet, M.; Castellino, P.; House, A.A.; London, G.M.; Malatino, L.; McCullough, P.A.; Mikhailidis, D.P.; Boutouyrie, P. Arterial Stiffness in the Heart Disease of CKD. J. Am. Soc. Nephrol. 2019, 30, 918–928. [Google Scholar] [CrossRef] [PubMed]
- Zuo, J.; Hu, Y.; Chang, G.; Chu, S.-L.; Tan, I.; Butlin, M.; Avolio, A. Relationship between Arterial Stiffness and Chronic Kidney Disease in Patients with Primary Hypertension. J. Hum. Hypertens. 2020, 34, 577–585. [Google Scholar] [CrossRef]
- Chandra, P.; Sands, R.L.; Gillespie, B.W.; Levin, N.W.; Kotanko, P.; Kiser, M.; Finkelstein, F.; Hinderliter, A.; Rajagopalan, S.; Sengstock, D.; et al. Relationship between heart rate variability and pulse wave velocity and their association with patient outcomes in chronic kidney disease. Clin. Nephrol. 2014, 81, 9–19. [Google Scholar] [CrossRef]
- Townsend, R.R.; Anderson, A.H.; Chirinos, J.A.; Feldman, H.I.; Grunwald, J.E.; Nessel, L.; Roy, J.; Weir, M.R.; Wright, J.T.; Bansal, N.; et al. Association of Pulse Wave Velocity With Chronic Kidney Disease Progression and Mortality. Hypertension 2018, 71, 1101–1107. [Google Scholar] [CrossRef]
- Zanotto, T.; Mercer, T.H.; van der Linden, M.L.; Traynor, J.P.; Doyle, A.; Chalmers, K.; Allan, N.; Shilliday, I.; Koufaki, P. Association of postural balance and falls in adult patients receiving haemodialysis: A prospective cohort study. Gait Posture 2020, 82, 110–117. [Google Scholar] [CrossRef]
- Karasavvidou, D.; Boutouyrie, P.; Kalaitzidis, R.; Kettab, H.; Pappas, K.; Stagikas, D.; Antonakis, N.; Tsalikakis, D.; Elisaf, M.; Laurent, S. Arterial damage and cognitive decline in chronic kidney disease patients. J. Clin. Hypertens. 2018, 20, 1276–1284. [Google Scholar] [CrossRef] [PubMed]
- Aimagambetova, B.; Ariko, T.; Merritt, S.; Rundek, T. Arterial stiffness measured by pulse wave velocity correlated with cognitive decline in hypertensive individuals: A systematic review. BMC Neurol. 2024, 24, 393. [Google Scholar] [CrossRef]
- Wong, A.K.W.; Lord, S.R.; Trollor, J.N.; Sturnieks, D.L.; Delbaere, K.; Menant, J.; Brodaty, H.; Sachdev, P.S.; Close, J.C.T. High Arterial Pulse Wave Velocity Is a Risk Factor for Falls in Community-Dwelling Older People. J. Am. Geriatr. Soc. 2014, 62, 1534–1539. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.C.; Chen, H.; Miller, M.E.; Webb, C.C.; Williamson, J.D.; Marsh, A.P.; Hugenschmidt, C.E.; Baker, L.D.; Laurienti, P.J.; Kritchevsky, S.B. Association Between Contrast Sensitivity and Physical Function in Cognitively Healthy Older Adults: The Brain Networks and Mobility Function Study. J. Gerontol. Ser. A 2023, 78, 1513–1521. [Google Scholar] [CrossRef]
- Allali, G.; Launay, C.P.; Blumen, H.M.; Callisaya, M.L.; De Cock, A.-M.; Kressig, R.W.; Srikanth, V.; Steinmetz, J.-P.; Verghese, J.; Beauchet, O. Falls, Cognitive Impairment, and Gait Performance: Results From the GOOD Initiative. J. Am. Med. Dir. Assoc. 2017, 18, 335–340. [Google Scholar] [CrossRef]
- Wood, J.M.; Lacherez, P.F.; Black, A.A.; Cole, M.H.; Boon, M.Y.; Kerr, G.K. Postural stability and gait among older adults with age-related maculopathy. Investig. Ophthalmol. Vis. Sci. 2009, 50, 482–487. [Google Scholar] [CrossRef]
- Wai, W.C.; Lamoureux, E.; Cheng, C.-Y.; Cheung, G.; Cheung, C.Y.L.; Tai, E.S.; Wong, T.Y.; Sabanayagam, C. Increased Burden of Vision Impairment and Eye Diseases in Patients with Chronic Kidney Disease. Investig. Ophthalmol. Vis. Sci. 2015, 56, 2099. [Google Scholar]
- Jin, H.; Zhou, Y.; Stagg, B.C.; Ehrlich, J.R. Association between vision impairment and increased prevalence of falls in older US adults. J. Am. Geriatr. Soc. 2024, 72, 1373–1383. [Google Scholar] [CrossRef]
- Nusinovici, S.; Sabanayagam, C.; Teo, B.W.; Tan, G.S.W.; Wong, T.Y. Vision Impairment in CKD Patients: Epidemiology, Mechanisms, Differential Diagnoses, and Prevention. Am. J. Kidney Dis. 2019, 73, 846–857. [Google Scholar] [CrossRef]
- Deva, R.; Alias, M.A.; Colville, D.; Tow, F.K.N.-F.H.; Ooi, Q.L.; Chew, S.; Mohamad, N.; Hutchinson, A.; Koukouras, I.; Power, D.A.; et al. Vision-threatening retinal abnormalities in chronic kidney disease stages 3 to 5. Clin. J. Am. Soc. Nephrol. 2011, 6, 1866–1871. [Google Scholar] [CrossRef]
- Capossela, L.; Ferretti, S.; D’alonzo, S.; Di Sarno, L.; Pansini, V.; Curatola, A.; Chiaretti, A.; Gatto, A. Bone Disorders in Pediatric Chronic Kidney Disease: A Literature Review. Biology 2023, 12, 1395. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, W.; Guo, R.; Huang, D.; Ji, J.; Gansevoort, R.T.; Snieder, H.; Jansonius, N.M. Co-occurrence of chronic kidney disease and glaucoma: Epidemiology and etiological mechanisms. Surv. Ophthalmol. 2023, 68, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Pham, V.Q.; Nishida, T.; Moghimi, S.; Girkin, C.A.; Fazio, M.A.; Liebmann, J.M.; Zangwill, L.M.; Weinreb, R.N. Long-Term Blood Pressure Variability and Visual Field Progression in Glaucoma. JAMA Ophthalmol 2024, 14, e244868. [Google Scholar] [CrossRef] [PubMed]
Median of PPA Score < 3.36 No. 67 | Median of PPA Score ≥ 3.36 No. 65 | p | |
---|---|---|---|
Demografic | |||
Age (y.) (±SD) | 57.95 ± 14.2 | 71.66 ± 11.5 | <0.01 |
Female (%) | 21 (31) | 33 (65) | 0.16 * |
Weight (kg) (±SD) | 83 ± 19.49 | 75.18 ± 16.44 | <0.05 |
Height (m) (±SD) | 1.70 ± 0.09 | 1.65 ± 0.09 | <0.01 |
BMI (/kg/m2) (±SD) | 28.30 ± 5.87 | 27.2 ± 5.02 | 0.26 * |
Cause of CKD | |||
HTN and DM (%) | 27 (40) | 30 (46) | >0.05 * |
GN (%) | 21 (31) | 17 (26) | >0.05 * |
others (%) | 19 (28) | 18 (28) | >0.05 * |
Comorbidity | |||
CCI (point) (±SD) | 4.48 ± 2.7 | 5.86 ± 2.27 | <0.01 |
Number of HD patients with history of CV disease (%) | 13 (19) | 24 (37) | >0.05 * |
Number of HD patients (%) | 17 (25) | 23 (35) | >0.05 * |
Smoking (pack/y) (±SD) | 7.36 ± 14.93 | 7.80 ± 13.68 | >0.05 * |
Mobil-O-Graph® blood pressure monitor parameters | |||
pSBP (mmHg) (±SD) | 135.5 ± 21.39 | 142.23 ± 28.12 | >0.05 |
pMBP (mmHg) (±SD) | 109.09 ± 15.95 | 109.66 ± 20.06 | >0.05 |
pDBP (mmHg) (±SD) | 87.07 ± 15.07 | 81.63 ± 15.66 | >0.05 |
pPP (mmHg) (±SD) | 48.09 ± 18.27 | 59.86 ± 20.41 | <0.01 |
HR (beat/min) (±SD) | 72.67 ± 13.69 | 73 ± 16.12 | >0.05 |
AIx@75 (%) (±SD) | 16.29 ± 15.34 | 22.51 ± 14.48 | <0.05 |
Heart stroke volume (mL) (±SD) | 74.66 ± 18.26 | 75.94 ± 17.23 | >0.05 |
CO (mL/min) (±SD) | 5.26 ± 0.99 | 5.38 ± 1.05 | >0.05 |
Augmentation pressure (mmHg) (±SD) | 6.85 ± 7.65 | 12.08 ± 11.52 | <0.01 |
PWV (m/s) (±SD) | 8.35 ± 1.95 | 10.65 ± 2.31 | <0.01 |
QRISK3—risk of having a heart attack or stroke within the next 10 years (%) | |||
QRISK3 (%) (±SD) | 22.54 ± 15.05 | 32.09 ± 15.71 | <0.01 |
QRISK3—the relative risk (±SD) | 5.01 ± 5.17 | 2.65 ± 3.33 | <0.01 |
Physiological Profile Assessment | |||
Fall risk score (Z score) (±SD) | 1.86 ± 0.98 | 5.41 ± 1.98 | <0.01 |
Fall risk score (point) (±SD) | 3.19 ± 0.98 | 4.53 ± 0.50 | <0.01 |
Melbourne edge test (dB) (±SD) | 17.10 ± 2.26 | 12.5 ± 3.88 | <0.01 |
Proprioception (%) (±SD) | 2.05 ± 6.01 | 3.33 ± 4.29 | >0.05 |
Isometric knee extension test right (kg) (±SD) | 24.50 ± 10.07 | 16.75 ± 7.43 | <0.01 |
Isometric knee extension test left (kg) (±SD) | 24.12 ± 10.44 | 15.47 ± 7.06 | <0.01 |
The hand reaction time test (s) (±SD) | 244.92 ± 46.90 | 402 ± 162 | <0.01 |
The postural sway test (cm2) (±SD) | 37.80 ± 86.01 | 200.35 ± 235.57 | <0.01 |
30-second sit-to-stand test (No. of repetitions) (±SD) | 14.85 ± 6.64 | 8.95 ± 5.65 | <0.01 |
Biochemistry | |||
Hemoglobin (g/dL) (±SD) | 10.77 ± 1.59 | 10.65 ± 2.03 | >0.05 |
Total protein (g/dL) (±SD) | 6.04 ± 0.91 | 6.2 ± 0.74 | >0.05 |
Albuminy (g/dL) (±SD) | 3.40 ± 0.59 | 3.42 ± 0.48 | >0.05 |
TC (mg/dL) (±SD) | 205.94 ± 68.71 | 181.74 ± 61.31 | >0.05 |
TG (mg/dL) (±SD) | 186.90 ± 85.73 | 134.70 ± 71.50 | <0.01 |
CRP (mg/L) (±SD) | 12.94 ± 16.87 | 9.12 ± 13.73 | >0.05 |
Ca++ (mg/dL) (±SD) | 8.65 ± 1.07 | 8.67 ± 0.73 | >0.05 |
Pi (mg/dL) (±SD) | 5.52 ± 1.52 | 5.12 ± 1.61 | >0.05 |
PTH (pg/mL) | 467 ± 474 | 342 ± 443 | >0.05 |
AP (U/L) (±SD) | 117 ± 154 | 116 ± 93 | >0.05 |
sCr (mg/dL) | 4.63 ± 2.58 | 4.22 ± 2.27 | >0.05 |
GFR (mL/min.) | 22.39 ± 25.50 | 18.33 ± 13.99 | >0.05 |
urea (mg/dL) | 108.41 ± 42.93 | 114.57 ± 39.86 | >0.05 |
2-years follow-up | |||
Overall number of falls in 2 years | 11 | 73 | |
Number of patients who fell within 2 years (%) | 8 (12) | 41 (63) | <0.01 * |
Number of patients who had a cardiovascular incident within 2 years (%) | 2 (3) | 10 (15) | <0.05 * |
Number of deaths in 2 years | 0 (0) | 14 (22) | <0.01 * |
OR | 95%CI | p | ||
---|---|---|---|---|
Demographic | ||||
Age 50–59 years | 0.372 | 0.127 | 1.084 | >0.05 |
Age 60–69 years | 0.862 | 0.430 | 1.730 | >0.05 |
Age 70–79 years | 2.601 | 1.293 | 5.230 | <0.01 |
>80 years | 4.953 | 1.597 | 15.363 | <0.01 |
Age (y.) | 1.083 | 1.043 | 1.125 | <0.01 |
Female (Y1) | 1.767 | 1.222 | 2.555 | <0.01 |
BMI (kg/m2) | 1.017 | 0.953 | 1.085 | >0.05 |
Comorbidity | ||||
CCI (point) | 1.290 | 1.106 | 1.505 | <0.01 |
No. of CV disease in interview | 1.405 | 0.905 | 2.181 | >0.05 |
CV disease Y = 1 | 1.280 | 0.881 | 1.860 | >0.05 |
Mobil-O-Graph® blood pressure monitor parameters | ||||
PP (mmHg) | 1.470 | 1.188 | 1.820 | <0.01 |
PWV (m/s) | 1.036 | 1.012 | 1.061 | <0.01 |
AIx@75 (mmHg) (%) | 1.007 | 0.979 | 1.036 | >0.05 |
QRISK3—risk of having a heart attack or stroke within the next 10 years (%) | ||||
QRISK3 (%) | 1.041 | 1.016 | 1.066 | <0.01 |
Physiological Profile Assessment | ||||
Z score | 1.705 | 1.363 | 2.132 | <0.01 |
Fall risk score | 3.161 | 1.815 | 5.504 | <0.01 |
Melbourne edge test (dB) | 0.732 | 0.646 | 0.829 | <0.01 |
The strength of the right hand grip (kg) | 0.905 | 0.860 | 0.952 | <0.01 |
The strength of the left hand grip (kg) | 0.912 | 0.869 | 0.957 | <0.01 |
Average response time (cs) | 1.890 | 2.703 | 1.321 | <0.01 |
Postural sway (cm2) | 1.004 | 1.006 | 1.001 | <0.01 |
30-second sit-to-stand test (No.) | 0.840 | 0.775 | 0.911 | <0.01 |
Laboratory | ||||
Hemoglobin (g/dL) | 0.938 | 0.768 | 1.144 | >0.05 |
Total protein (g/dL) | 0.798 | 0.509 | 1.251 | >0.05 |
Albuminy (g/dL) | 0.709 | 0.354 | 1.421 | >0.05 |
Pi (mg/dL) | 0.779 | 0.582 | 1.044 | >0.05 |
2-years follow-up | ||||
Death during 2 years (Y1) | 1.949 | 1.090 | 3.487 | <0.01 |
CV incidents (Y1) | 1.135 | 0.347 | 3.713 | >0.05 |
adj.OR | 95%CI | p | Walda | Estimate | ||
---|---|---|---|---|---|---|
Age 50–59 years | 1.034 | 0.162 | 6.578 | >0.05 | 0.001 | 0.033 |
Age 60–69 years | 3.253 | 0.867 | 12.211 | >0.05 | 3.055 | 1.180 |
Age 70–79 years | 0.779 | 0.206 | 2.948 | >0.05 | 0.135 | −0.249 |
>80 years | 0.071 | 0.004 | 1.338 | >0.05 | 3.116 | −2.642 |
Female (Y1) | 2.009 | 0.877 | 4.602 | >0.05 | 2.718 | 0.697 |
Z score | 1.085 | 0.610 | 1.931 | >0.05 | 0.078 | 0.082 |
PWV (m/s) | 1.347 | 0.809 | 2.243 | >0.05 | 1.312 | 0.298 |
QRISK3 (%) | 1.050 | 0.983 | 1.121 | >0.05 | 2.126 | 0.049 |
Fall risk score | 0.677 | 0.221 | 2.072 | >0.05 | 0.467 | −0.390 |
Melbourne edge test (dB) | 0.712 | 0.535 | 0.948 | <0.05 | 5.422 | −0.340 |
The strength of the right hand grip (kg) | 0.938 | 0.852 | 1.033 | >0.05 | 1.675 | −0.064 |
Average response time (cs) | 1.001 | 0.995 | 1.008 | >0.05 | 0.192 | 0.001 |
30-s sit-to-stand test (No.) | 1.005 | 0.866 | 1.166 | >0.05 | 0.004 | 0.005 |
CCI (point) | 1.041 | 0.777 | 1.394 | >0.05 | 0.073 | 0.040 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jerzak, P.; Kusztal, M.; Dziubek, W.; Rogowski, Ł.; Ostrowska, B.; Gołębiowski, M.; Bronikowska, P.; Chumadevska, M.; Stojanowski, J.; Gołębiowski, T. Motor Coordination Disorders in Patients with Chronic Kidney Disease. J. Clin. Med. 2025, 14, 2804. https://doi.org/10.3390/jcm14082804
Jerzak P, Kusztal M, Dziubek W, Rogowski Ł, Ostrowska B, Gołębiowski M, Bronikowska P, Chumadevska M, Stojanowski J, Gołębiowski T. Motor Coordination Disorders in Patients with Chronic Kidney Disease. Journal of Clinical Medicine. 2025; 14(8):2804. https://doi.org/10.3390/jcm14082804
Chicago/Turabian StyleJerzak, Patryk, Mariusz Kusztal, Wioletta Dziubek, Łukasz Rogowski, Bożena Ostrowska, Maciej Gołębiowski, Paulina Bronikowska, Maria Chumadevska, Jakub Stojanowski, and Tomasz Gołębiowski. 2025. "Motor Coordination Disorders in Patients with Chronic Kidney Disease" Journal of Clinical Medicine 14, no. 8: 2804. https://doi.org/10.3390/jcm14082804
APA StyleJerzak, P., Kusztal, M., Dziubek, W., Rogowski, Ł., Ostrowska, B., Gołębiowski, M., Bronikowska, P., Chumadevska, M., Stojanowski, J., & Gołębiowski, T. (2025). Motor Coordination Disorders in Patients with Chronic Kidney Disease. Journal of Clinical Medicine, 14(8), 2804. https://doi.org/10.3390/jcm14082804