Wrist Joint Restriction: Impact on Foot Pressure, Center of Gravity, and the Role of the Dominant Hand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Procedure
2.3. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, B.S.; Cho, C.H.; Lee, K.J.; Lee, S.W.; Byun, S.H. Pathomechanism of Triangular Fibrocartilage Complex Injuries in Patients with Distal-Radius Fractures: A Magnetic-Resonance Imaging Study. J. Clin. Med. 2022, 11, 6168. [Google Scholar] [CrossRef] [PubMed]
- Rundgren, J.; Bojan, A.; Mellstrand Navarro, C.; Enocson, A. Epidemiology, Classification, Treatment and Mortality of Distal Radius Fractures in Adults: An Observational Study of 23,394 Fractures from the National Swedish Fracture Register. BMC Musculoskelet. Disord. 2020, 21, 88. [Google Scholar] [CrossRef]
- Hsu, W.L. Adaptive Postural Control for Joint Immobilization during Multitask Performance. PLoS ONE 2014, 9, 108667. [Google Scholar] [CrossRef]
- Rios-Russo, J.L.; Lozada-Bado, L.S.; De Mel, S.; Frontera, W.; Micheo, W. Ulnar-Sided Wrist Pain in the Athlete: Sport-Specific Demands, Clinical Presentation, and Management Options. Curr. Sports Med. Rep. 2021, 20, 312–318. [Google Scholar] [CrossRef]
- Sprouse, R.A.; McLaughlin, A.M.; Harris, G.D. Braces and Splints for Common Musculoskeletal Conditions. Am. Fam. Physician 2018, 98, 570–576. [Google Scholar]
- Howell, D.M.; Bechmann, S.; Underwood, P.J. Wrist Splint. In Interventions, Controls, and Applications in Occupational Ergonomics; CRC Press: Boca Raton, FL, USA, 2023. [Google Scholar] [CrossRef]
- Hong, S.H.; Jung, S.Y.; Oh, H.K.; Lee, S.H.; Woo, Y.K. Effects of the Immobilization of the Upper Extremities on Spatiotemporal Gait Parameters during Walking in Stroke Patients: A Preliminary Study. Biomed. Res. Int. 2020, 2020, 6157231. [Google Scholar] [CrossRef]
- Cooper, J.E.; Shwedyk, E.; Quanbury, A.O.; Miller, J.; Hildebrand, D. Elbow Joint Restriction: Effect on Functional Upper Limb Motion during Performance of Three Feeding Activities. Arch. Phys. Med. Rehabil. 1993, 74, 805–809. [Google Scholar] [CrossRef] [PubMed]
- Boström, K.J.; Dirksen, T.; Zentgraf, K.; Wagner, H. The Contribution of Upper Body Movements to Dynamic Balance Regulation during Challenged Locomotion. Front. Hum. Neurosci. 2018, 12, 8. [Google Scholar] [CrossRef]
- Ford, M.P.; Wagenaar, R.C.; Newell, K.M. Arm Constraint and Walking in Healthy Adults. Gait Posture 2007, 26, 135–141. [Google Scholar] [CrossRef]
- Collins, S.H.; Adamczyk, P.G.; Kuo, A.D. Dynamic Arm Swinging in Human Walking. Proc. Biol. Sci. 2009, 276, 3679–3688. [Google Scholar] [CrossRef]
- Umberger, B.R. Effects of Suppressing Arm Swing on Kinematics, Kinetics, and Energetics of Human Walking. J. Biomech. 2008, 41, 2575–2580. [Google Scholar] [CrossRef]
- Ortega, J.D.; Fehlman, L.A.; Farley, C.T. Effects of Aging and Arm Swing on the Metabolic Cost of Stability in Human Walking. J. Biomech. 2008, 41, 3303–3308. [Google Scholar] [CrossRef] [PubMed]
- De Graaf, M.L.; Hubert, J.; Houdijk, H.; Bruijn, S.M. Influence of Arm Swing on Cost of Transport during Walking. Biol. Open 2019, 8, bio039263. [Google Scholar] [CrossRef]
- Manzini, J.L. DECLARACIÓN DE HELSINKI: PRINCIPIOS ÉTICOS PARA LA INVESTIGACIÓN MÉDICA SOBRE SUJETOS HUMANOS. Acta Bioethica 2000, 6, 321–334. [Google Scholar] [CrossRef]
- Cobos-Moreno, P.; Astasio-Picado, Á.; Martínez- Nova, A.; Sánchez- Rodríguez, R.; Escamilla-Martínez, E.; Gómez-Martín, B. The Podoprint® Plantar Pressure Platform: Evaluation of Reliability and Repeatability, and Determination of the Normality Parameters. J. Tissue Viability 2022, 31, 619–624. [Google Scholar] [CrossRef] [PubMed]
- Sayudo, I.F.; Sudarman, J.P.; Fernandes, A.; Park, J.Y.; Leibovitch, L.; Machinski, E.; Mahmoud, M.O. Short Versus Regular Periods of Cast Immobilization for Distal Radial Fractures: A Systematic Review and Meta-Analysis. Cureus 2024, 16, e54704. [Google Scholar] [CrossRef] [PubMed]
- de Bruijn, M.A.N.; van Ginkel, L.A.; Boersma, E.Z.; van Silfhout, L.; Tromp, T.N.; van de Krol, E.; Edwards, M.J.R.; Stirler, V.M.A.; Hermans, E. Cast Immobilization Duration for Distal Radius Fractures, a Systematic Review. Eur. J. Trauma. Emerg. Surg. 2024, 50, 1621–1636. [Google Scholar] [CrossRef]
- Patil, I. Visualizations with Statistical Details: The “ggstatsplot” Approach. J. Open Source Softw. 2021, 6, 3167. [Google Scholar] [CrossRef]
- Cantero-Téllez, R. A Global Proprioception Concept after Hand Injury-Patient Report. J. Hand Ther. 2024, 37, 293–295. [Google Scholar] [CrossRef]
- Xu, C.; Wen, X.X.; Huang, L.Y.; Shang, L.; Cheng, X.X.; Yan, Y.B.; Lei, W. Normal Foot Loading Parameters and Repeatability of the Footscan® Platform System. J. Foot Ankle Res. 2017, 10, 30. [Google Scholar] [CrossRef]
- Zammit, G.V.; Menz, H.B.; Munteanu, S.E. Reliability of the TekScan MatScan® System for the Measurement of Plantar Forces and Pressures during Barefoot Level Walking in Healthy Adults. J. Foot Ankle Res. 2010, 3, 11. [Google Scholar] [CrossRef] [PubMed]
- Maetzler, M.; Bochdansky, T.; Abboud, R.J. Normal Pressure Values and Repeatability of the Emed® ST2 System. Gait Posture 2010, 32, 391–394. [Google Scholar] [CrossRef] [PubMed]
- Ramanathan, A.K.; Kiran, P.; Arnold, G.P.; Wang, W.; Abboud, R.J. Repeatability of the Pedar-X® in-Shoe Pressure Measuring System. Foot Ankle Surg. 2010, 16, 70–73. [Google Scholar] [CrossRef]
- Castro, M.P.D.; Meucci, M.; Soares, D.P.; Fonseca, P.; Borgonovo-Santos, M.; Sousa, F.; Machado, L.; Vilas-Boas, J.P. Accuracy and Repeatability of the Gait Analysis by the WalkinSense System. Biomed. Res. Int. 2014, 2014, 348659. [Google Scholar] [CrossRef]
- Izquierdo-Renau, M.; Pérez-Soriano, P.; Ribas-García, V.; Queralt, A. Intra and Intersession Repeatability and Reliability of the S-Plate® Pressure Platform. Gait Posture 2017, 52, 224–226. [Google Scholar] [CrossRef]
- Sánchez-Sáez, J.M.; Palomo-López, P.; Becerro-De-bengoa-vallejo, R.; Calvo-Lobo, C.; Losa-Iglesias, M.E.; López-Del-amo-lorente, A.; López-López, D. Stability of Three Different Sanitary Shoes on Healthcare Workers: A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2019, 16, 2126. [Google Scholar] [CrossRef]
- Pereiro-Buceta, H.; Calvo-Lobo, C.; Becerro-De-bengoa-vallejo, R.; Losa-Iglesias, M.E.; Romero-Morales, C.; López-López, D.; Martínez-Jiménez, E.M. Intra and Intersession Repeatability and Reliability of Dynamic Parameters in Pressure Platform Assessments on Subjects with Simulated Leg Length Discrepancy. A Cross-Sectional Research. Sao Paulo Med. J. 2021, 139, 424–434. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, R.B.; Gentile, A.M. Sit-to-Stand: Functional Relationship between Upper Body and Lower Limb Segments. Hum. Mov. Sci. 1994, 13, 817–840. [Google Scholar] [CrossRef]
- Cantero-Téllez, R.; Orza, S.G.; Bishop, M.D.; Berjano, P.; Villafañe, J.H. Duration of Wrist Immobilization Is Associated with Shoulder Pain in Patients with after Wrist Immobilization: An Observational Study. J. Exerc. Rehabil. 2018, 14, 694–698. [Google Scholar] [CrossRef]
- Nishiike, S.; Okazaki, S.; Watanabe, H.; Akizuki, H.; Imai, T.; Uno, A.; Kitahara, T.; Horii, A.; Takeda, N.; Inohara, H. The Effect of Visual-Vestibulosomatosensory Conflict Induced by Virtual Reality on Postural Stability in Humans. J. Med. Investig. 2013, 60, 236–239. [Google Scholar] [CrossRef]
- Stoffregen, T.A.; Pagulayan, R.J.; Bardy, B.G.; Hettinger, L.J. Modulating Postural Control to Facilitate Visual Performance. Hum. Mov. Sci. 2000, 19, 203–220. [Google Scholar] [CrossRef]
- Fullin, A.; Caravaggi, P.; Picerno, P.; Mosca, M.; Caravelli, S.; De Luca, A.; Lucariello, A.; De Blasiis, P. Variability of Postural Stability and Plantar Pressure Parameters in Healthy Subjects Evaluated by a Novel Pressure Plate. Int. J. Environ. Res. Public Health 2022, 19, 2913. [Google Scholar] [CrossRef]
- De Blasiis, P.; Caravaggi, P.; Fullin, A.; Leardini, A.; Lucariello, A.; Perna, A.; Guerra, G.; De Luca, A. Postural Stability and Plantar Pressure Parameters in Healthy Subjects: Variability, Correlation Analysis and Differences under Open and Closed Eye Conditions. Front. Bioeng. Biotechnol. 2023, 11, 1198120. [Google Scholar] [CrossRef]
- Hébert-Losier, K.; Murray, L. Reliability of Centre of Pressure, Plantar Pressure, and Plantar-Flexion Isometric Strength Measures: A Systematic Review. Gait Posture 2020, 75, 46–62. [Google Scholar] [CrossRef]
- Trehan, S.K.; Wolff, A.L.; Gibbons, M.; Hillstrom, H.J.; Daluiski, A. The Effect of Simulated Elbow Contracture on Temporal and Distance Gait Parameters. Gait Posture 2015, 41, 791–794. [Google Scholar] [CrossRef]
- Leblebici, G.; Tarakcı, E.; Kısa, E.P.; Akalan, E.; Kasapçopur, Ö. The Effects of Improvement in Upper Extremity Function on Gait and Balance in Children with Upper Extremity Affected. Gait Posture 2024, 110, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Slobounov, S.; Hallett, M.; Stanhope, S.; Shibasaki, H. Role of Cerebral Cortex in Human Postural Control: An EEG Study. Clin. Neurophysiol. 2005, 116, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Siemionow, V.; Yue, G.H.; Ranganathan, V.K.; Liu, J.Z.; Sahgal, V. Relationship between Motor Activity-Related Cortical Potential and Voluntary Muscle Activation. Exp. Brain Res. 2000, 133, 303–311. [Google Scholar] [CrossRef]
- Cioncoloni, D.; Rosignoli, D.; Feurra, M.; Rossi, S.; Bonifazi, M.; Rossi, A.; Mazzocchio, R. Role of Brain Hemispheric Dominance in Anticipatory Postural Control Strategies. Exp. Brain Res. 2016, 234, 1997–2005. [Google Scholar] [CrossRef]
- Zhavoronkova, L.A.; Zharikova, A.V.; Kushnir, E.M.; Mikhalkova, A.A. EEG Markers of Upright Posture in Healthy Individuals. Hum. Physiol. 2012, 38, 604–612. [Google Scholar] [CrossRef]
- Bonaventura, R.E.; Giustino, V.; Chiaramonte, G.; Giustiniani, A.; Smirni, D.; Battaglia, G.; Messina, G.; Oliveri, M. Investigating Prismatic Adaptation Effects in Handgrip Strength and in Plantar Pressure in Healthy Subjects. Gait Posture 2020, 76, 264–269. [Google Scholar] [CrossRef] [PubMed]
Value | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 61.39 | 55.11–67.68 | <0.001 |
Eyes [OE] | −9.51 | −12.42–−6.60 | <0.001 |
Dominant | −8.48 | −12.05–−4.92 | <0.001 |
Not dominant | −11.17 | −14.74–−7.61 | <0.001 |
Random effects | |||
σ2 | 134.31 | ||
τ00 DNI | 327.79 | ||
ICC | 0.71 | ||
NDNI | 41 | ||
Observations | 246 | ||
Marginal R2/Conditional R2 | 0.090/0.735 |
Value | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 63.15 | 56.55–69.76 | <0.001 |
Eyes [OE] | −13.03 | −18.05–−8.01 | <0.001 |
Dominant | −10.30 | −15.32–−5.28 | <0.001 |
Not dominant | −14.64 | −19.66–−9.62 | <0.001 |
Eyes [OE] x Dominant | 3.64 | −3.46–10.74 | 0.314 |
Eyes [OE] x Not dominant | 6.93 | −0.17–14.03 | 0.056 |
Random effects | |||
σ2 | 133.19 | ||
τ00 DNI | 327.97 | ||
ICC | 0.71 | ||
NDNI | 41 | ||
Observations | 246 | ||
Marginal R2/Conditional R2 | 0.093/0.738 |
Value | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 27.60 | 20.37–34.82 | <0.001 |
Eyes [OE] | −4.56 | −8.88–−0.23 | 0.039 |
Dominant | −1.66 | −6.95–3.63 | 0.537 |
Not dominant | −4.45 | −9.74–0.84 | 0.099 |
Random effects | |||
σ2 | 296.04 | ||
τ00 DNI | 354.05 | ||
ICC | 0.54 | ||
NDNI | 41 | ||
Observations | 246 | ||
Marginal R2/Conditional R2 | 0.013/0.551 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cruz Gambero, L.; Gijón-Noguerón, G.A.; Díaz Miguel, S.; Barón-López, J.; Raquel, C.-T. Wrist Joint Restriction: Impact on Foot Pressure, Center of Gravity, and the Role of the Dominant Hand. J. Clin. Med. 2025, 14, 2829. https://doi.org/10.3390/jcm14082829
Cruz Gambero L, Gijón-Noguerón GA, Díaz Miguel S, Barón-López J, Raquel C-T. Wrist Joint Restriction: Impact on Foot Pressure, Center of Gravity, and the Role of the Dominant Hand. Journal of Clinical Medicine. 2025; 14(8):2829. https://doi.org/10.3390/jcm14082829
Chicago/Turabian StyleCruz Gambero, Leire, Gabriel A. Gijón-Noguerón, Salvador Díaz Miguel, Javier Barón-López, and Cantero-Téllez Raquel. 2025. "Wrist Joint Restriction: Impact on Foot Pressure, Center of Gravity, and the Role of the Dominant Hand" Journal of Clinical Medicine 14, no. 8: 2829. https://doi.org/10.3390/jcm14082829
APA StyleCruz Gambero, L., Gijón-Noguerón, G. A., Díaz Miguel, S., Barón-López, J., & Raquel, C.-T. (2025). Wrist Joint Restriction: Impact on Foot Pressure, Center of Gravity, and the Role of the Dominant Hand. Journal of Clinical Medicine, 14(8), 2829. https://doi.org/10.3390/jcm14082829