Prognostic Impact of Long-Term Sodium Zirconium Cyclosilicate-Integrated Medical Therapy in Patients with Systolic Heart Failure
Abstract
:1. Introduction
2. Methods
2.1. Patient Selection
2.2. Study Design
2.3. SZC Therapy
2.4. Heart Failure Medications
2.5. Data Collection
2.6. Statistics
3. Results
3.1. Baseline Characteristics
3.2. Trajectory of Serum Potassium Level
3.3. Prognostic Impact of SZC-Incorporated Medical Therapy
3.4. Trajectory of Daily Medication Dose
3.5. Trajectory of Laboratory Data
3.6. Trajectory of Echocardiography Data
4. Discussion
4.1. Clinical Impact of SZC Secession
4.2. Clinical Implication of SZC Continuation
4.3. SZC Continuation and Clinical Outcomes
4.4. Limitations
4.5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hoy, S.M. Sodium Zirconium Cyclosilicate: A Review in Hyperkalaemia. Drugs 2018, 78, 1605–1613. [Google Scholar] [CrossRef] [PubMed]
- Stavros, F.; Yang, A.; Leon, A.; Nuttall, M.; Rasmussen, H.S. Characterization of structure and function of ZS-9, a K+ selective ion trap. PLoS ONE 2014, 9, e114686. [Google Scholar] [CrossRef] [PubMed]
- Takkar, C.; Nassar, T.; Qunibi, W. An evaluation of sodium zirconium cyclosilicate as a treatment option for hyperkalemia. Expert Opin. Pharmacother. 2021, 22, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Zannad, F.; Hsu, B.G.; Maeda, Y.; Shin, S.K.; Vishneva, E.M.; Rensfeldt, M.; Eklund, S.; Zhao, J. Efficacy and safety of sodium zirconium cyclosilicate for hyperkalaemia: The randomized, placebo-controlled HARMONIZE-Global study. ESC Heart Fail. 2020, 7, 54–64. [Google Scholar] [CrossRef]
- Fishbane, S.; Ford, M.; Fukagawa, M.; McCafferty, K.; Rastogi, A.; Spinowitz, B.; Staroselskiy, K.; Vishnevskiy, K.; Lisovskaja, V.; Al-Shurbaji, A.; et al. A Phase 3b, Randomized, Double-Blind, Placebo-Controlled Study of Sodium Zirconium Cyclosilicate for Reducing the Incidence of Predialysis Hyperkalemia. J. Am. Soc. Nephrol. 2019, 30, 1723–1733. [Google Scholar] [CrossRef]
- Spinowitz, B.S.; Fishbane, S.; Pergola, P.E.; Roger, S.D.; Lerma, E.V.; Butler, J.; von Haehling, S.; Adler, S.H.; Zhao, J.; Singh, B.; et al. Sodium Zirconium Cyclosilicate among Individuals with Hyperkalemia: A 12-Month Phase 3 Study. Clin. J. Am. Soc. Nephrol. 2019, 14, 798–809. [Google Scholar] [CrossRef]
- Kashihara, N.; Yamasaki, Y.; Osonoi, T.; Harada, H.; Shibagaki, Y.; Zhao, J.; Kim, H.; Yajima, T.; Sarai, N. A phase 3 multicenter open-label maintenance study to investigate the long-term safety of sodium zirconium cyclosilicate in Japanese subjects with hyperkalemia. Clin. Exp. Nephrol. 2021, 25, 140–149. [Google Scholar] [CrossRef]
- Roger, S.D.; Lavin, P.T.; Lerma, E.V.; McCullough, P.A.; Butler, J.; Spinowitz, B.S.; von Haehling, S.; Kosiborod, M.; Zhao, J.; Fishbane, S.; et al. Long-term safety and efficacy of sodium zirconium cyclosilicate for hyperkalaemia in patients with mild/moderate versus severe/end-stage chronic kidney disease: Comparative results from an open-label, Phase 3 study. Nephrol. Dial. Transplant. 2021, 36, 137–150. [Google Scholar] [CrossRef]
- Roger, S.D.; Spinowitz, B.S.; Lerma, E.V.; Singh, B.; Packham, D.K.; Al-Shurbaji, A.; Kosiborod, M. Efficacy and Safety of Sodium Zirconium Cyclosilicate for Treatment of Hyperkalemia: An 11-Month Open-Label Extension of HARMONIZE. Am. J. Nephrol. 2019, 50, 473–480. [Google Scholar] [CrossRef]
- Rastogi, A.; Pollack, C.V., Jr.; Sanchez Lazaro, I.J.; Lesen, E.; Arnold, M.; Franzen, S.; Allum, A.; Hernandez, I.; Murohara, T.; Kanda, E. Maintained renin-angiotensin-aldosterone system inhibitor therapy with sodium zirconium cyclosilicate following a hyperkalaemia episode: A multicountry cohort study. Clin. Kidney J. 2024, 17, sfae083. [Google Scholar] [CrossRef]
- Pollack, C.V., Jr.; Arroyo, D.; Kanda, E.; Lazaro, I.J.S.; Lesen, E.; Franzen, S.; Gray, C.M.; Lipinska, A.; Murohara, T.; Rastogi, A. Duration of sodium zirconium cyclosilicate treatment and continuation of RAASi therapy after a hyperkalaemia episode. ESC Heart Fail. 2024. [Google Scholar] [CrossRef]
- Kosiborod, M.N.; Cherney, D.Z.I.; Desai, A.S.; Testani, J.M.; Verma, S.; Chinnakondepalli, K.; Dolling, D.; Patel, S.; Dahl, M.; Eudicone, J.M.; et al. Sodium Zirconium Cyclosilicate for Management of Hyperkalemia During Spironolactone Optimization in Patients With Heart Failure. J. Am. Coll. Cardiol. 2025, 85, 971–984. [Google Scholar] [CrossRef] [PubMed]
- Tsutsui, H.; Ide, T.; Ito, H.; Kihara, Y.; Kinugawa, K.; Kinugawa, S.; Makaya, M.; Murohara, T.; Node, K.; Saito, Y.; et al. JCS/JHFS 2021 Guideline Focused Update on Diagnosis and Treatment of Acute and Chronic Heart Failure. J. Card. Fail. 2021, 27, 1404–1444. [Google Scholar] [CrossRef] [PubMed]
- Epstein, M.; Reaven, N.L.; Funk, S.E.; McGaughey, K.J.; Oestreicher, N.; Knispel, J. Evaluation of the treatment gap between clinical guidelines and the utilization of renin-angiotensin-aldosterone system inhibitors. Am. J. Manag. Care. 2015, 21 (Suppl. 11), S212–S220. [Google Scholar] [PubMed]
- Linde, C.; Bakhai, A.; Furuland, H.; Evans, M.; McEwan, P.; Ayoubkhani, D.; Qin, L. Real-World Associations of Renin-Angiotensin-Aldosterone System Inhibitor Dose, Hyperkalemia, and Adverse Clinical Outcomes in a Cohort of Patients With New-Onset Chronic Kidney Disease or Heart Failure in the United Kingdom. J. Am. Heart Assoc. 2019, 8, e012655. [Google Scholar] [CrossRef]
- Kashihara, N.; Kohsaka, S.; Kanda, E.; Okami, S.; Yajima, T. Hyperkalemia in Real-World Patients Under Continuous Medical Care in Japan. Kidney Int. Rep. 2019, 4, 1248–1260. [Google Scholar] [CrossRef]
- Kitai, T.; Kohsaka, S.; Kato, T.; Kato, E.; Sato, K.; Teramoto, K.; Yaku, H.; Akiyama, E.; Ando, M.; Izumi, C.; et al. JCS/JHFS 2025 Guideline on Diagnosis and Treatment of Heart Failure. J. Card. Fail. 2025. [Google Scholar] [CrossRef]
- Tafesse, E.; Hurst, M.; Hoskin, L.; Badora, K.; Sugrue, D.; Qin, L.; James, G.; McEwan, P. Risk factors associated with the incidence and recurrence of hyperkalaemia in patients with cardiorenal conditions. Int. J. Clin. Pract. 2021, 75, e13941. [Google Scholar] [CrossRef]
- Chang, J.; Ambrosy, A.P.; Vardeny, O.; Van Spall, H.G.C.; Mentz, R.J.; Sauer, A.J. Mineralocorticoid Antagonism in Heart Failure: Established and Emerging Therapeutic Role. JACC Heart Fail. 2024, 12, 1979–1993. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Bohm, M.; Burri, H.; Butler, J.; Celutkiene, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef]
- Stevens, P.E.; Ahmed, S.B.; Carrero, J.J.; Foster, B.; Francis, A.; Hall, R.K.; Herrington, W.G.; Hill, G.; Inker, L.A.; Kazancıoğlu, R.; et al. KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int. 2024, 105, S117–S314. [Google Scholar] [CrossRef] [PubMed]
- Imamura, T.; Narang, N.; Onoda, H.; Tanaka, S.; Ushijima, R.; Sobajima, M.; Fukuda, N.; Ueno, H.; Kinugawa, K. Negative Prognostic Impact of Mineralocorticoid Receptor Antagonist in Elderly Patients Receiving TAVR. J. Clin. Med. 2023, 12, 3742. [Google Scholar] [CrossRef] [PubMed]
- Kida, K.; Horiuchi, Y.U.; Sato, S.; Kitai, T.; Okumura, T.; Imamura, T.; Sakamoto, T.; Matsue, Y.; REGISTA-K Trial Investigators. Efficacy and Safety of Sodium Zirconium Cyclosilicate in the Management of Hyperkalemia in Patients with Heart Failure with Reduced and Mildly Reduced Ejection Fraction and Chronic Kidney Disease Treated with Spironolactone: Rationale for and Design of the REGISTA-K Trial. J. Card. Fail. 2024. [Google Scholar] [CrossRef]
- Baran, W.; Krzeminska, J.; Szlagor, M.; Wronka, M.; Mlynarska, E.; Franczyk, B.; Rysz, J. Mineralocorticoid Receptor Antagonists-Use in Chronic Kidney Disease. Int. J. Mol. Sci. 2021, 22, 9995. [Google Scholar] [CrossRef]
Total (N = 61) | SZC Continuation (N = 19) | SZC Discontinuation (N = 42) | p-Value | |
---|---|---|---|---|
Demographics | ||||
Age, years | 79 (69, 86) | 78 (66, 84) | 79 (71, 87) | 0.56 |
Male | 33 (54%) | 10 (53%) | 23 (55%) | 0.55 |
Body mass index, kg/m2 | 21.5 (19.8, 24.2) | 21.5 (20.2, 25.0) | 21.7 (19.5, 23.9) | 0.55 |
Comorbidity | ||||
Diabetes mellitus | 27 (44%) | 8 (42%) | 19 (45%) | 0.52 |
Atrial fibrillation | 18 (31%) | 7 (37%) | 11 (26%) | 0.29 |
Coronary artery disease | 32 (52%) | 11 (58%) | 21 (50%) | 0.39 |
Laboratory data | ||||
Hemoglobin, g/dL | 11.3 (9.8, 12.2) | 11.6 (9.9, 12.4) | 11.1 (9.8, 12.1) | 0.65 |
Serum albumin, g/dL | 3.3 (2.9, 4.0) | 3.7 (3.0, 4.0) | 3.2 (2.9, 4.0) | 0.38 |
Serum sodium, mEq/L | 138 (136, 141) | 138 (136, 141) | 138 (136, 141) | 0.85 |
Serum potassium, mEq/L | 5.5 (4.7, 6.1) | 5.5 (5.1, 6.2) | 5.1 (4.7, 6.0) | 0.15 |
Plasma BNP, pg/mL | 277 (176, 461) | 243 (199, 434) | 312 (145, 480) | 0.83 |
eGFR, mL/min/1.73 m2 | 28.7 (19.0, 41.0) | 27.8 (17.0, 37.5) | 29.3 (19.2, 41.5) | 0.75 |
Echocardiography data | ||||
LVDD, mm | 54 (50, 61) | 54 (50, 64) | 54 (49, 60) | 0.73 |
LVEF, % | 42 (32, 48) | 44 (37, 47) | 41 (28, 48) | 0.20 |
Left atrial diameter, mm | 42 (38, 46) | 42 (40, 49) | 41 (37, 45) | 0.43 |
MR none/trace/mild | 36/19/6 | 10/6/3 | 26/13/3 | 0.55 |
TR none/trace/mild | 46/14/1 | 12/7/0 | 1934/7/1 | 0.19 |
Medication | ||||
Beta-blockers | 53 (87%) | 18 (95%) | 35 (83%) | 0.22 |
Beta-blocker dose, mg/day | 5.0 (2.5, 10) | 10 (5, 12.5) | 5 (2.5, 10) | 0.091 |
RAS inhibitors | 60 (98%) | 19 (100%) | 41 (98%) | 0.50 |
RAS inhibitor dose, mg/day | 2.5 (2.5, 5.0) | 2.5 (2.5, 5.0) | 2.5 (2.5, 7.5) | 0.62 |
MRA | 33 (54%) | 10 (53%) | 23 (55%) | 0.55 |
MRA dose, mg/day | 6.25 (0, 12.5) | 12.5 (0, 25) | 3.75 (0, 12.5) | 0.95 |
SGLT2 inhibitors | 25 (41%) | 10 (53%) | 15 (36%) | 0.17 |
Loop diuretics | 41 (67%) | 12 (63%) | 29 (69%) | 0.43 |
Loop diuretic dose, mg/day | 20 (0, 20) | 20 (0, 20) | 20 (0, 20) | 0.87 |
Tolvaptan | 27 (44%) | 5 (26%) | 22 (52%) | 0.058 |
Tolvaptan dose, mg/day | 0 (0, 7.5) | 0 (0, 3.75) | 0 (3.75, 7.5) | 0.11 |
Univariable Analysis | Multivariable Analysis | |||
---|---|---|---|---|
Hazard Ratio (95% CI) | p-Value | Hazard Ratio (95% CI) | p-Value | |
Age, years | 0.98 (0.96–1.01) | 0.17 | 0.98 (0.96–1.01) | 0.15 |
Atrial fibrillation | 1.45 (0.61–3.47) | 0.40 | ||
Hemoglobin, g/dL | 1.04 (0.76–1.30) | 0.76 | ||
eGFR, mL/min/1.73 m2 | 1.00 (0.97–1.03) | 0.98 | ||
Plasma BNP, pg/mL | 1.00 (0.99–1.01) | 0.15 | 1.00 (0.99–1.01) | 0.15 |
SZC discontinuation | 2.55 (0.86–7.55) | 0.091 | 2.48 (0.84–7.37) | 0.082 |
Baseline | 1 month | 3 months | p-Value | |
---|---|---|---|---|
SZC continuation (N = 19) | ||||
Beta-blocker dose, mg/day | 10 (5, 15) | 10 (5, 15) | 10 (3.75, 15) | 0.72 |
Loop diuretics dose, mg/day | 15 (0, 20) | 10 (0, 20) | 10 (0, 20) | 0.28 |
Tolvaptan dose, mg/day | 0 (0, 3.75) | 0 (0, 3.75) | 0 (0, 3.75) | 0.37 |
SZC discontinuation (N = 42) | ||||
Beta-blocker dose, mg/day | 10 (2.5, 10) | 7.5 (5.0, 10) | 10 (3.75, 10) | 0.41 |
Loop diuretics dose, mg/day | 10 (0, 20) | 20 (0, 20) | 30 (0, 30) | 0.076 |
Tolvaptan dose, mg/day | 0 (0, 3.75) | 0 (0, 7.5) | 3.75 (0, 7.5) | 0.066 |
Univariable Analysis | Multivariable Analysis | |||
---|---|---|---|---|
Hazard Ratio (95% CI) | p-Value | Hazard Ratio (95% CI) | p-Value | |
Age, years | 0.99 (0.94–1.04) | 0.67 | ||
Hemoglobin, g/dL | 2.64 (0.70–1.42) | 0.65 | ||
eGFR, mL/min/1.73 m2 | 0.96 (0.92–1.01) | 0.084 | 0.94 (0.89–0.99) | 0.043 * |
Plasma BNP, pg/mL | 1.00 (0.99–1.01) | 0.16 | 1.01 (0.99–1.01) | 0.30 |
LVEF, % | 0.97 (0.90–1.04) | 0.37 | ||
Daily dose of MRAs | 0.98 (0.92–1.04) | 0.44 | ||
SZC discontinuation | 11.9 (2.56–55.5) | 0.002 * | 20.5 (2.93–144.2) | 0.002 * |
Univariable Analysis | Multivariable Analysis | |||
---|---|---|---|---|
Hazard Ratio (95% CI) | p-Value | Hazard Ratio (95% CI) | p-Value | |
Age, years | 0.96 (0.90–1.01) | 0.10 | 0.95 (0.88–1.02) | 0.14 |
Hemoglobin, g/dL | 0.94 (0.68–1.31) | 0.72 | ||
eGFR, mL/min/1.73 m2 | 0.98 (0.95–1.02) | 0.34 | ||
Plasma BNP, pg/mL | 1.00 (0.99–1.01) | 0.40 | ||
LVEF, % | 0.99 (0.93–1.06) | 0.80 | ||
Daily dose of RAS inhibitors | 1.01 (0.95–1.07) | 0.68 | ||
SZC discontinuation | 11.04 (2.66–45.8) | 0.001 * | 11.52 (2.57–51.7) | 0.001 * |
Baseline | 1 month | 3 months | p-Value | |
---|---|---|---|---|
SZC continuation (N = 19) | ||||
Hemoglobin, g/dL | 3.9 (3.6, 4.1) | 3.6 (3.5, 4.1) | 3.7 (3.5, 4.1) | 0.86 |
Serum albumin, g/dL | 11.7 (11.0, 12.2) | 11.3 (11.1, 11.7) | 11.3 (10.7, 11.8) | 0.20 |
Serum sodium, mEq/L | 139 (136, 141) | 140 (139, 141) | 140 (138, 141) | 0.17 |
SZC discontinuation (N = 42) | ||||
Hemoglobin, g/dL | 11.7 (10.6, 13.0) | 11.19 (10.6, 12.4) | 11.1 (10.4, 12.8) | 0.35 |
Serum albumin, g/dL | 3.5 (3.1, 4.1) | 3.6 (3.2, 4.0) | 3.7 (3.3, 4.0) | 0.34 |
Serum sodium, mEq/L | 139 (137, 141) | 140 (138, 142) | 140 (138, 141) | 0.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hida, Y.; Imamura, T.; Kinugawa, K. Prognostic Impact of Long-Term Sodium Zirconium Cyclosilicate-Integrated Medical Therapy in Patients with Systolic Heart Failure. J. Clin. Med. 2025, 14, 2836. https://doi.org/10.3390/jcm14082836
Hida Y, Imamura T, Kinugawa K. Prognostic Impact of Long-Term Sodium Zirconium Cyclosilicate-Integrated Medical Therapy in Patients with Systolic Heart Failure. Journal of Clinical Medicine. 2025; 14(8):2836. https://doi.org/10.3390/jcm14082836
Chicago/Turabian StyleHida, Yuki, Teruhiko Imamura, and Koichiro Kinugawa. 2025. "Prognostic Impact of Long-Term Sodium Zirconium Cyclosilicate-Integrated Medical Therapy in Patients with Systolic Heart Failure" Journal of Clinical Medicine 14, no. 8: 2836. https://doi.org/10.3390/jcm14082836
APA StyleHida, Y., Imamura, T., & Kinugawa, K. (2025). Prognostic Impact of Long-Term Sodium Zirconium Cyclosilicate-Integrated Medical Therapy in Patients with Systolic Heart Failure. Journal of Clinical Medicine, 14(8), 2836. https://doi.org/10.3390/jcm14082836