Mutational Landmarks in Anaplastic Thyroid Cancer: A Perspective of a New Treatment Strategy
Abstract
:1. Introduction
2. Methodology
3. Genetic Mutation Markers in ATC
3.1. MAPK/ERK Signaling Genes
3.1.1. BRAF in Anaplastic Thyroid Cancer: Role, Detection, and Targeted Therapies
Overview of BRAF
Role of BRAF in Thyroid Cancer
Detecting BRAF Mutations in ATC
Targeted Therapies for BRAF-Mutated ATC
Ongoing Clinical Trials for BRAF-Mutated ATC Patients
3.1.2. MEK in Anaplastic Thyroid Cancer: Role and Targeted Therapies
Overview of MEK
Role of MEK in Thyroid Cancer
Role of MEK in ATC
MEK-Targeted Therapies
Ongoing Clinical Trials for MEK-Mutated ATC Patients
3.1.3. RAS Mutations in Anaplastic Thyroid Cancer: Role and Detection Methods
RAS Family Mutations
Role of RAS in Thyroid Cancer
Role of RAS in ATC
Detection of RAS Mutations in ATC
3.1.4. NTRK Fusions in Anaplastic Thyroid Cancer: Role and Therapeutic Implications
Overview of the NTRK Family
Role of NTRK in Thyroid Cancer
Role of NTRK in ATC
Therapeutic Implications of TRK Inhibitors for ATC
3.2. PI3K/AKT Pathway Genes
3.2.1. PIK3CA Mutations in Anaplastic Thyroid Cancer: Role and Targeted Therapies
Overview of PIK3CA
Role of PIK3CA in Thyroid Cancer
Role of PIK3CA in ATC
Therapeutic Implications of PI3K Inhibitors for ATC
3.2.2. PTEN Mutations in Anaplastic Thyroid Cancer: Role and Associations
PTEN Function
Role of PTEN in Thyroid Cancer
Role of PTEN in ATC
Associations with PTEN
3.2.3. RET Mutations in Anaplastic Thyroid Cancer: Role and Targeted Therapies
RET Function
Role of RET in Thyroid Cancer
Role of RET in ATC
Ongoing Clinical Trials for RET-Mutated ATC Patients
3.3. Cell Cycle Regulation Genes
3.3.1. Tumor Protein p53 (TP53) Mutations in Anaplastic Thyroid Cancer: Role and Therapeutic Implications
p53 Function
Role of p53 in Thyroid Cancer
Role of p53 in ATC
Therapeutic Implications of Restoring p53 for ATC
3.3.2. CDKN2A Mutations in Anaplastic Thyroid Cancer: Role and Associations
Overview of CDKN2A
Role of CDKN2A in Thyroid Cancer
Role of CDKN2A in ATC
Associations with CDKN2A
3.4. Telomere Maintenance
3.4.1. TERT Mutations in Anaplastic Thyroid Cancer: Role and Associations
Overview of TERT
Role of TERT in Thyroid Cancer
Role of TERT in ATC
Associations with TERT
3.5. Chromatin Remodeling
3.5.1. EIF1AX Mutations in Anaplastic Thyroid Cancer: Role and Associations
Overview of EIF1AX
Role of EIF1AX in Thyroid Cancer
Role of EIF1AX in ATC
Association with RAS
3.5.2. SWI/SNF Complex Mutations in Anaplastic Thyroid Cancer
SWI/SNF Complex Function
Role of the SWI/SNF Complex in Thyroid Cancer
Role of the SWI/SNF Complex in Anaplastic Thyroid Cancer (ATC)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ATC | Anaplastic thyroid cancer |
BRAF | B-type RAF kinase |
CDKN2A | Cyclin-dependent kinase inhibitor 2A |
CDKN2B | Cyclin-dependent kinase inhibitor 2B |
EIF1AX | Eukaryotic translation initiation factor 1A X-linked |
FNAB | Fine needle aspiration biopsy |
FTC | Follicular thyroid cancer |
LOH | Loss of heterozygosity |
MEK | Mitogen-activated protein kinase |
MTC | Medullary thyroid cancer |
NIS | Sodium/iodide symporter |
PDTC | Poorly differentiated thyroid cancer |
PIK3CA | Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha |
PI3K | Phosphatidylinositol 3-kinase |
PTC | Papillary thyroid cancer |
PTEN | Phosphatase and tensin homolog |
RAI | Radioactive iodine |
RET | Rearranged during transfection |
TERT | Telomerase reverse transcriptase |
TP53 | Tumor protein 53 |
TSG | Tumor suppressor gene |
TSH | Thyroid-stimulating hormone |
WDTC | Well-differentiated thyroid cancer |
References
- Limaiem, F.; Kashyap, S.; Naing, P.T.; Mathias, P.M.; Giwa, A.O. Anaplastic Thyroid Cancer. In StatPearls; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2024. [Google Scholar]
- Shaha, A.R. Anaplastic Thyroid Cancer: Shifting Paradigms-A Ray of Hope. Thyroid 2023, 33, 402–403. [Google Scholar] [CrossRef] [PubMed]
- Alobuia; Gillis, A. ; Kebebew, E. Contemporary Management of Anaplastic Thyroid Cancer. Curr. Treat. Options Oncol. 2020, 21, 78.
- Saini, S.; Tulla, K.; Maker, A.V.; Burman, K.D.; Prabhakar, B.S. Therapeutic advances in anaplastic thyroid cancer: A current perspective. Mol. Cancer 2018, 17, 154. [Google Scholar] [CrossRef]
- Gilani, S.M.; Khan, M.; Barbieri, A.; Prasad, M.L. Anaplastic thyroid carcinoma: Diagnostic challenges, histopathologic features and ancillary testing. Diagn. Histopathol. 2021, 27, 263–271. [Google Scholar] [CrossRef]
- Rakhsh-Khorshid, H.; Samimi, H.; Torabi, S.; Sajjadi-Jazi, S.M.; Samadi, H.; Ghafouri, F.; Asgari, Y.; Haghpanah, V. Network analysis reveals essential proteins that regulate sodium-iodide symporter expression in anaplastic thyroid carcinoma. Sci. Rep. 2020, 10, 21440. [Google Scholar] [CrossRef]
- Luo, H.; Xia, X.; Kim, G.D.; Liu, Y.; Xue, Z.; Zhang, L.; Shu, Y.; Yang, T.; Chen, Y.; Zhang, S.; et al. Characterizing dedifferentiation of thyroid cancer by integrated analysis. Sci. Adv. 2021, 7, eabf3657. [Google Scholar] [CrossRef]
- Lu, L.; Wang, J.R.; Henderson, Y.C.; Bai, S.; Yang, J.; Hu, M.; Shiau, C.K.; Pan, T.; Yan, Y.; Tran, T.M.; et al. Anaplastic transformation in thyroid cancer revealed by single-cell transcriptomics. J. Clin. Investig. 2023, 133, e169653. [Google Scholar] [CrossRef]
- Xu, B.; Fuchs, T.; Dogan, S.; Landa, I.; Katabi, N.; Fagin, J.A.; Tuttle, R.M.; Sherman, E.; Gill, A.J.; Ghossein, R. Dissecting Anaplastic Thyroid Carcinoma: A Comprehensive Clinical, Histologic, Immunophenotypic, and Molecular Study of 360 Cases. Thyroid 2020, 30, 1505–1517. [Google Scholar] [CrossRef]
- Zou, Z.; Zhong, L. Anaplastic thyroid cancer: Genetic roles, targeted therapy, and immunotherapy. Genes Dis. 2024, 12, 101403. [Google Scholar] [CrossRef]
- Stenman, A.; Yang, M.; Paulsson, J.O.; Zedenius, J.; Paulsson, K.; Juhlin, C.C. Pan-Genomic Sequencing Reveals Actionable CDKN2A/2B Deletions and Kataegis in Anaplastic Thyroid Carcinoma. Cancers 2021, 13, 6340. [Google Scholar] [CrossRef]
- Ocanto, A.; Torres, L.; Couñago, F. Current status of anaplastic thyroid carcinoma. World J. Clin. Oncol. 2024, 15, 684–686. [Google Scholar] [CrossRef] [PubMed]
- Bible, K.C.; Kebebew, E.; Brierley, J.; Brito, J.P.; Cabanillas, M.E.; Clark, T.J., Jr.; Di Cristofano, A.; Foote, R.; Giordano, T.; Kasperbauer, J.; et al. 2021 American Thyroid Association Guidelines for Management of Patients with Anaplastic Thyroid Cancer. Thyroid 2021, 31, 337–386. [Google Scholar] [CrossRef]
- Śmiech, M.; Leszczyński, P.; Kono, H.; Wardell, C.; Taniguchi, H. Emerging BRAF Mutations in Cancer Progression and Their Possible Effects on Transcriptional Networks. Genes 2020, 11, 1342. [Google Scholar] [CrossRef]
- Xing, M. BRAF mutation in thyroid cancer. Endocr. Relat. Cancer 2005, 12, 245–262. [Google Scholar] [CrossRef] [PubMed]
- Ylli, D.; Patel, A.D.; Jensen, K.; Li, Z.-Z.; Mendonça-Torres, M.C.; Costello, J.; Gomes-Lima, C.J.; Wartofsky, L.; Burman, K.D.; Vasko, V. Microfluidic Droplet Digital PCR Is a Powerful Tool for Detection of BRAF and TERT Mutations in Papillary Thyroid Carcinomas. Cancers 2019, 11, 1916. [Google Scholar] [CrossRef]
- Naoum, G.E.; Morkos, M.; Kim, B.; Arafat, W. Novel targeted therapies and immunotherapy for advanced thyroid cancers. Mol. Cancer 2018, 17, 51. [Google Scholar] [CrossRef]
- Xing, M. Clinical utility of RAS mutations in thyroid cancer: A blurred picture now emerging clearer. BMC Med. 2016, 14, 12. [Google Scholar] [CrossRef] [PubMed]
- García-Rostán, G.; Costa, A.M.; Pereira-Castro, I.; Salvatore, G.; Hernandez, R.; Hermsem, M.J.; Herrero, A.; Fusco, A.; Cameselle-Teijeiro, J.; Santoro, M. Mutation of the PIK3CA gene in anaplastic thyroid cancer. Cancer Res. 2005, 65, 10199–10207. [Google Scholar] [CrossRef]
- Manzella, L.; Stella, S.; Pennisi, M.S.; Tirrò, E.; Massimino, M.; Romano, C.; Puma, A.; Tavarelli, M.; Vigneri, P. New Insights in Thyroid Cancer and p53 Family Proteins. Int. J. Mol. Sci. 2017, 18, 1325. [Google Scholar] [CrossRef]
- Moretti, F.; Farsetti, A.; Soddu, S.; Misiti, S.; Crescenzi, M.; Filetti, S.; Andreoli, M.; Sacchi, A.; Pontecorvi, A. p53 re-expression inhibits proliferation and restores differentiation of human thyroid anaplastic carcinoma cells. Oncogene 1997, 14, 729–740. [Google Scholar] [CrossRef]
- Pozdeyev, N.; Gay, L.M.; Sokol, E.S.; Hartmaier, R.; Deaver, K.E.; Davis, S.; French, J.D.; Borre, P.V.; LaBarbera, D.V.; Tan, A.C.; et al. Genetic Analysis of 779 Advanced Differentiated and Anaplastic Thyroid Cancers. Clin. Cancer Res. 2018, 24, 3059–3068. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Bishop, J.; Shan, Y.; Pai, S.; Liu, D.; Murugan, A.K.; Sun, H.; El-Naggar, A.K.; Xing, M. Highly prevalent TERT promoter mutations in aggressive thyroid cancers. Endocr. Relat. Cancer 2013, 20, 603–610. [Google Scholar] [CrossRef]
- Landa, I.; Ganly, I.; Chan, T.A.; Mitsutake, N.; Matsuse, M.; Ibrahimpasic, T.; Ghossein, R.A.; Fagin, J.A. Frequent somatic TERT promoter mutations in thyroid cancer: Higher prevalence in advanced forms of the disease. J. Clin. Endocrinol. Metab. 2013, 98, E1562–E1566. [Google Scholar] [CrossRef] [PubMed]
- Landa, I.; Ibrahimpasic, T.; Boucai, L.; Sinha, R.; Knauf, J.A.; Shah, R.H.; Dogan, S.; Ricarte-Filho, J.C.; Krishnamoorthy, G.P.; Xu, B.; et al. Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J. Clin. Investig. 2016, 126, 1052–1066. [Google Scholar] [CrossRef] [PubMed]
- Zaman, A.; Wu, W.; Bivona, T.G. Targeting Oncogenic BRAF: Past, Present, and Future. Cancers 2019, 11, 1197. [Google Scholar] [CrossRef]
- Silver Karcioglu, A.; Iwata, A.J.; Pusztaszeri, M.; Abdelhamid Ahmed, A.H.; Randolph, G.W. The American Thyroid Association (ATA) integrates molecular testing into its framework for managing patients with anaplastic thyroid carcinoma (ATC): Update on the 2021 ATA ATC guidelines. Cancer Cytopathol. 2022, 130, 174–180. [Google Scholar] [CrossRef]
- A Phase II, Open-Label, Study in Subjects With BRAF V600E-Mutated Rare Cancers With Several Histologies to Investigate the Clinical Efficacy and Safety of the Combination Therapy of Dabrafenib and Trametinib. 2013. Available online: https://clinicaltrials.gov/study/NCT02034110 (accessed on 14 March 2025).
- Pavlidis, E.T.; Galanis, I.N.; Pavlidis, T.E. Update on current diagnosis and management of anaplastic thyroid carcinoma. World J. Clin. Oncol. 2023, 14, 570–583. [Google Scholar] [CrossRef]
- A Phase I Trial of Concurrent Intensity Modulated Radiation Therapy (IMRT) and Dabrafenib/Trametinib in BRAF Mutated Anaplastic Thyroid Cancer; I. National Cancer, Editor. 2019. Available online: https://clinicaltrials.gov/study/NCT03975231 (accessed on 14 March 2025).
- Xu, H.; Zhou, S.; Xia, H.; Yu, H.; Tang, Q.; Bi, F. MEK nuclear localization promotes YAP stability via sequestering β-TrCP in KRAS mutant cancer cells. Cell Death Differ. 2019, 26, 2400–2415. [Google Scholar] [CrossRef]
- Duan, S.L.; Wu, M.; Zhang, Z.J.; Chang, S. The potential role of reprogrammed glucose metabolism: An emerging actionable codependent target in thyroid cancer. J. Transl. Med. 2023, 21, 735. [Google Scholar] [CrossRef]
- Nikitski, A.V.; Condello, V.; Divakaran, S.S.; Nikiforov, Y.E. Inhibition of ALK-Signaling Overcomes STRN-ALK-Induced Downregulation of the Sodium Iodine Symporter and Restores Radioiodine Uptake in Thyroid Cells. Thyroid 2023, 33, 464–473. [Google Scholar] [CrossRef]
- Fagin, J.A.; Krishnamoorthy, G.P.; Landa, I. Pathogenesis of cancers derived from thyroid follicular cells. Nat. Rev. Cancer 2023, 23, 631–650. [Google Scholar] [CrossRef]
- Tubita, A.; Lombardi, Z.; Tusa, I.; Lazzeretti, A.; Sgrignani, G.; Papini, D.; Menconi, A.; Gagliardi, S.; Lulli, M.; Dello Sbarba, P.; et al. Inhibition of ERK5 Elicits Cellular Senescence in Melanoma via the Cyclin-Dependent Kinase Inhibitor p21. Cancer Res. 2022, 82, 447–457. [Google Scholar] [CrossRef] [PubMed]
- Iyer, P.C.; Dadu, R.; Ferrarotto, R.; Busaidy, N.L.; Habra, M.A.; Zafereo, M.; Gross, N.; Hess, K.R.; Gule-Monroe, M.; Williams, M.D.; et al. Real-World Experience with Targeted Therapy for the Treatment of Anaplastic Thyroid Carcinoma. Thyroid 2018, 28, 79–87. [Google Scholar] [CrossRef]
- Hartwich, T.M.P.; Mansolf, M.; Demirkiran, C.; Greenman, M.; Bellone, S.; McNamara, B.; Nandi, S.P.; Alexandrov, L.B.; Yang-Hartwich, Y.; Coma, S.; et al. Preclinical evaluation of avutometinib and defactinib in high-grade endometrioid endometrial cancer. Cancer Med. 2024, 13, e70210. [Google Scholar] [CrossRef]
- Phase II of Avutometinib (VS-6766) and Defactinib In RAF Dimer-Driven RAI-Refractory Differentiated and Anaplastic Thyroid Cancer Patients; I. Verastem, Editor. 2023. Available online: https://clinicaltrials.gov/study/NCT06007924 (accessed on 14 March 2025).
- Nikiforov, Y.E. Molecular analysis of thyroid tumors. Mod. Pathol. 2011, 24 (Suppl. S2), S34–S43. [Google Scholar] [CrossRef]
- Pylayeva-Gupta, Y.; Grabocka, E.; Bar-Sagi, D. RAS oncogenes: Weaving a tumorigenic web. Nat. Rev. Cancer 2011, 11, 761–774. [Google Scholar] [CrossRef] [PubMed]
- Howell, G.M.; Hodak, S.P.; Yip, L. RAS mutations in thyroid cancer. Oncologist 2013, 18, 926–932. [Google Scholar] [CrossRef] [PubMed]
- Nikiforova, M.N.; Lynch, R.A.; Biddinger, P.W.; Alexander, E.K.; Dorn, G.W., 2nd; Tallini, G.; Kroll, T.G.; Nikiforov, Y.E. RAS point mutations and PAX8-PPAR gamma rearrangement in thyroid tumors: Evidence for distinct molecular pathways in thyroid follicular carcinoma. J. Clin. Endocrinol. Metab. 2003, 88, 2318–2326. [Google Scholar] [CrossRef]
- Kunstman, J.W.; Juhlin, C.C.; Goh, G.; Brown, T.C.; Stenman, A.; Healy, J.M.; Rubinstein, J.C.; Choi, M.; Kiss, N.; Nelson-Williams, C.; et al. Characterization of the mutational landscape of anaplastic thyroid cancer via whole-exome sequencing. Hum. Mol. Genet. 2015, 24, 2318–2329. [Google Scholar] [CrossRef]
- Haroon Al Rasheed, M.R.; Xu, B. Molecular Alterations in Thyroid Carcinoma. Surg. Pathol. Clin. 2019, 12, 921–930. [Google Scholar] [CrossRef]
- Guerra, A.; Di Crescenzo, V.; Garzi, A.; Cinelli, M.; Carlomagno, C.; Tonacchera, M.; Zeppa, P.; Vitale, M. Genetic mutations in the treatment of anaplastic thyroid cancer: A systematic review. BMC Surg. 2013, 13 (Suppl. S2), S44. [Google Scholar] [CrossRef] [PubMed]
- Nikiforov, Y.E.; Ohori, N.P.; Hodak, S.P.; Carty, S.E.; LeBeau, S.O.; Ferris, R.L.; Yip, L.; Seethala, R.R.; Tublin, M.E.; Stang, M.T.; et al. Impact of mutational testing on the diagnosis and management of patients with cytologically indeterminate thyroid nodules: A prospective analysis of 1056 FNA samples. J. Clin. Endocrinol. Metab. 2011, 96, 3390–3397. [Google Scholar] [CrossRef]
- Eszlinger, M.; Piana, S.; Moll, A.; Bösenberg, E.; Bisagni, A.; Ciarrocchi, A.; Ragazzi, M.; Paschke, R. Molecular testing of thyroid fine-needle aspirations improves presurgical diagnosis and supports the histologic identification of minimally invasive follicular thyroid carcinomas. Thyroid 2015, 25, 401–409. [Google Scholar] [CrossRef] [PubMed]
- Manea, C.A.; Badiu, D.C.; Ploscaru, I.C.; Zgura, A.; Bacinschi, X.; Smarandache, C.G.; Serban, D.; Popescu, C.G.; Grigorean, V.T.; Botnarciuc, V. A review of NTRK fusions in cancer. Ann. Med. Surg. 2022, 79, 103893. [Google Scholar] [CrossRef]
- Xia, H.; Xue, X.; Ding, H.; Ou, Q.; Wu, X.; Nagasaka, M.; Shao, Y.W.; Hu, X.; Ou, S.I. Evidence of NTRK1 Fusion as Resistance Mechanism to EGFR TKI in EGFR+ NSCLC: Results From a Large-Scale Survey of NTRK1 Fusions in Chinese Patients With Lung Cancer. Clin. Lung Cancer 2020, 21, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Pekova, B.; Sykorova, V.; Mastnikova, K.; Vaclavikova, E.; Moravcova, J.; Vlcek, P.; Lastuvka, P.; Taudy, M.; Katra, R.; Bavor, P.; et al. NTRK Fusion Genes in Thyroid Carcinomas: Clinicopathological Characteristics and Their Impacts on Prognosis. Cancers 2021, 13, 1932. [Google Scholar] [CrossRef]
- Marczyk, V.R.; Fazeli, S.; Dadu, R.; Busaidy, N.L.; Iyer, P.; Hu, M.I.; Sherman, S.I.; Hamidi, S.; Hosseini, S.M.; Williams, M.D.; et al. NTRK Fusion-Positive Thyroid Carcinoma: From Diagnosis to Targeted Therapy. JCO Precis. Oncol. 2025, 9, e2400321. [Google Scholar] [CrossRef]
- Harada, G.; Drilon, A. TRK inhibitor activity and resistance in TRK fusion-positive cancers in adults. Cancer Genet. 2022, 264–265, 33–39. [Google Scholar] [CrossRef]
- Kummar, S.; Lassen, U.N. TRK Inhibition: A New Tumor-Agnostic Treatment Strategy. Target. Oncol. 2018, 13, 545–556. [Google Scholar] [CrossRef]
- Xing, M. Genetic alterations in the phosphatidylinositol-3 kinase/Akt pathway in thyroid cancer. Thyroid 2010, 20, 697–706. [Google Scholar] [CrossRef]
- Nozhat, Z.; Hedayati, M. PI3K/AKT Pathway and Its Mediators in Thyroid Carcinomas. Mol. Diagn. Ther. 2016, 20, 13–26. [Google Scholar] [CrossRef]
- Jin, S.; Borkhuu, O.; Bao, W.; Yang, Y.T. Signaling Pathways in Thyroid Cancer and Their Therapeutic Implications. J. Clin. Med. Res 2016, 8, 284–296. [Google Scholar] [CrossRef]
- Rajabi, S.; Alix-Panabières, C.; Alaei, A.S.; Abooshahab, R.; Shakib, H.; Ashrafi, M.R. Looking at Thyroid Cancer from the Tumor-Suppressor Genes Point of View. Cancers 2022, 14, 2461. [Google Scholar] [CrossRef]
- Xiong, X.; Huang, B.; Gan, Z.; Liu, W.; Xie, Y.; Zhong, J.; Zeng, X. Ubiquitin-modifying enzymes in thyroid cancer: Mechanisms and functions. Heliyon 2024, 10, e34032. [Google Scholar] [CrossRef] [PubMed]
- Boufraqech, M.; Nilubol, N. Multi-omics Signatures and Translational Potential to Improve Thyroid Cancer Patient Outcome. Cancers 2019, 11, 1988. [Google Scholar] [CrossRef] [PubMed]
- Leandro-García, L.J.; Landa, I. Mechanistic Insights of Thyroid Cancer Progression. Endocrinology 2023, 164, bqad118. [Google Scholar] [CrossRef] [PubMed]
- Segall, G.; Singh, R.; Jen, M.H.; Sanderson, I.; Rider, A.; Lewis, K.; Kiiskinen, U. Real-world clinical profile, RET mutation testing, treatments, and PROs for MTC in Europe. Eur. Thyroid. J. 2024, 13, e230172. [Google Scholar] [CrossRef]
- Regua, A.T.; Najjar, M.; Lo, H.W. RET signaling pathway and RET inhibitors in human cancer. Front. Oncol. 2022, 12, 932353. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, N.; Zhang, D.; Jia, Y.; Kong, F. A comprehensive overview of the relationship between RET gene and tumor occurrence. Front. Oncol. 2023, 13, 1090757. [Google Scholar] [CrossRef]
- Lenvatinib in Combination with Pembrolizumab for Stage IVB Locally Advanced and Unresectable or Stage IVC Metastatic Anaplastic Thyroid Cancer; I. National Cancer, Editor. 2019. Available online: https://clinicaltrials.gov/study/NCT04171622 (accessed on 14 March 2025).
- Suyama, K.; Iwase, H. Lenvatinib: A Promising Molecular Targeted Agent for Multiple Cancers. Cancer Control 2018, 25, 1073274818789361. [Google Scholar] [CrossRef]
- Zou, M.; Baitei, E.Y.; Al-Rijjal, R.A.; Parhar, R.S.; Al-Mohanna, F.A.; Kimura, S.; Pritchard, C.; Binessa, H.A.; Alzahrani, A.S.; Al-Khalaf, H.H.; et al. TSH overcomes Braf(V600E)-induced senescence to promote tumor progression via downregulation of p53 expression in papillary thyroid cancer. Oncogene 2016, 35, 1909–1918. [Google Scholar] [CrossRef] [PubMed]
- Fagin, J.A.; Matsuo, K.; Karmakar, A.; Chen, D.L.; Tang, S.H.; Koeffler, H.P. High prevalence of mutations of the p53 gene in poorly differentiated human thyroid carcinomas. J. Clin. Investig. 1993, 91, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Zhu, K.L.; Su, F.; Yang, J.R.; Xiao, R.W.; Wu, R.Y.; Cao, M.Y.; Ling, X.L.; Zhang, T. TP53 to mediate immune escape in tumor microenvironment: An overview of the research progress. Mol. Biol. Rep. 2024, 51, 205. [Google Scholar] [CrossRef] [PubMed]
- Alvarado-Ortiz, E.; de la Cruz-López, K.G.; Becerril-Rico, J.; Sarabia-Sánchez, M.A.; Ortiz-Sánchez, E.; García-Carrancá, A. Mutant p53 Gain-of-Function: Role in Cancer Development, Progression, and Therapeutic Approaches. Front. Cell Dev. Biol. 2020, 8, 607670. [Google Scholar] [CrossRef]
- Brown, V.L.; Harwood, C.A.; Crook, T.; Cronin, J.G.; Kelsell, D.P.; Proby, C.M. p16INK4a and p14ARF tumor suppressor genes are commonly inactivated in cutaneous squamous cell carcinoma. J. Invest. Dermatol. 2004, 122, 1284–1292. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Mahato, R.K.; Singh, S.; Bhatti, G.K.; Mastana, S.S.; Bhatti, J.S. Advances and challenges in thyroid cancer: The interplay of genetic modulators, targeted therapies, and AI-driven approaches. Life Sci. 2023, 332, 122110. [Google Scholar] [CrossRef]
- Serrano, M.; Lee, H.; Chin, L.; Cordon-Cardo, C.; Beach, D.; DePinho, R.A. Role of the INK4a locus in tumor suppression and cell mortality. Cell 1996, 85, 27–37. [Google Scholar] [CrossRef]
- Barriga, F.M.; Tsanov, K.M.; Ho, Y.J.; Sohail, N.; Zhang, A.; Baslan, T.; Wuest, A.N.; Del Priore, I.; Meškauskaitė, B.; Livshits, G.; et al. MACHETE identifies interferon-encompassing chromosome 9p21.3 deletions as mediators of immune evasion and metastasis. Nat. Cancer 2022, 3, 1367–1385. [Google Scholar] [CrossRef]
- Yoo, S.K.; Song, Y.S.; Lee, E.K.; Hwang, J.; Kim, H.H.; Jung, G.; Kim, Y.A.; Kim, S.J.; Cho, S.W.; Won, J.K.; et al. Integrative analysis of genomic and transcriptomic characteristics associated with progression of aggressive thyroid cancer. Nat. Commun. 2019, 10, 2764. [Google Scholar] [CrossRef]
- Dratwa, M.; Wysoczańska, B.; Łacina, P.; Kubik, T.; Bogunia-Kubik, K. TERT-Regulation and Roles in Cancer Formation. Front. Immunol. 2020, 11, 589929. [Google Scholar] [CrossRef]
- McKelvey, B.A.; Gilpatrick, T.; Wang, Y.; Timp, W.; Umbricht, C.B.; Zeiger, M.A. Characterization of Allele-Specific Regulation of Telomerase Reverse Transcriptase in Promoter Mutant Thyroid Cancer Cell Lines. Thyroid 2020, 30, 1470–1481. [Google Scholar] [CrossRef] [PubMed]
- Oishi, N.; Kondo, T.; Ebina, A.; Sato, Y.; Akaishi, J.; Hino, R.; Yamamoto, N.; Mochizuki, K.; Nakazawa, T.; Yokomichi, H.; et al. Molecular alterations of coexisting thyroid papillary carcinoma and anaplastic carcinoma: Identification of TERT mutation as an independent risk factor for transformation. Mod. Pathol. 2017, 30, 1527–1537. [Google Scholar] [CrossRef]
- Matsuse, M.; Mitsutake, N. TERT promoter mutations in thyroid cancer. Endocr. J. 2023, 70, 1035–1049. [Google Scholar] [CrossRef]
- Krishnamoorthy, G.P.; Davidson, N.R.; Leach, S.D.; Zhao, Z.; Lowe, S.W.; Lee, G.; Landa, I.; Nagarajah, J.; Saqcena, M.; Singh, K.; et al. EIF1AX and RAS Mutations Cooperate to Drive Thyroid Tumorigenesis through ATF4 and c-MYC. Cancer Discov. 2019, 9, 264–281. [Google Scholar] [CrossRef] [PubMed]
- Elsherbini, N.; Kim, D.H.; Payne, R.J.; Hudson, T.; Forest, V.I.; Hier, M.P.; Payne, A.E.; Pusztaszeri, M.P. EIF1AX mutation in thyroid tumors: A retrospective analysis of cytology, histopathology and co-mutation profiles. J. Otolaryngol. Head Neck Surg. 2022, 51, 43. [Google Scholar] [CrossRef]
- Chen, K.; Yuan, J.; Sia, Y.; Chen, Z. Mechanism of action of the SWI/SNF family complexes. Nucleus 2023, 14, 2165604. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Morris, L.G. Genetic alterations in thyroid cancer mediating both resistance to BRAF inhibition and anaplastic transformation. Oncotarget 2024, 15, 36–48. [Google Scholar] [CrossRef]
- Niederst, M.J.; Engelman, J.A. Bypass mechanisms of resistance to receptor tyrosine kinase inhibition in lung cancer. Sci. Signal 2013, 6, re6. [Google Scholar] [CrossRef]
- Brauner, E.; Gunda, V.; Vanden Borre, P.; Zurakowski, D.; Kim, Y.S.; Dennett, K.V.; Amin, S.; Freeman, G.J.; Parangi, S. Combining BRAF inhibitor and anti PD-L1 antibody dramatically improves tumor regression and anti tumor immunity in an immunocompetent murine model of anaplastic thyroid cancer. Oncotarget 2016, 7, 17194–17211. [Google Scholar] [CrossRef]
- Gupta, R.G.; Li, F.; Roszik, J.; Lizée, G. Exploiting Tumor Neoantigens to Target Cancer Evolution: Current Challenges and Promising Therapeutic Approaches. Cancer Discov. 2021, 11, 1024–1039. [Google Scholar] [CrossRef]
Functional Pathway | Gene Mutation | Mutation Prevalence (By Study) | Associated Therapies for ATC (Approved/Experimental) |
MAPK/ERK Signaling | BRAF | 24% (n = 94 [Total from 29 studies]); Xing [15], Ylli, Patel [16] | BRAF/MEK Inhibition with Dabrafenib & Trametinib (Phase II Clinical Trial [NCT02034110]; Approved) |
BRAF/MEK Inhibition with Dabrafenib & Trametinib and IMRT (Phase I Clinical Trial] [NCT03975231]; Experimental) | |||
MEK | 4% (STRN-ALK Fusion mutations associated with MEK activation); Naoum, Morkos [17] | BRAF/MEK Inhibition with Dabrafenib & Trametinib (PHASE II Clinical Trial [NCT02034110]; Approved) | |
BRAF/MEK Inhibition with Dabrafenib & Trametinib and IMRT (Phase I Clinical Trial] [NCT03975231]; Experimental) | |||
Avutometinib and Defactinib (Phase II Clinical Trial [NCT06007924]; Experimental) | |||
RAS | 10–20%; Xing [18] | - | |
NTRK | 3% (n = 102; Xu, Fuchs [9]) | - | |
PI3K/AKT Pathway | PIK3CA | 23% (n = 70); García-Rostán, Costa [19] | PI3K Inhibitors (Experimental) |
PTEN | 10–15%; Bible, Kebebew [13] | - | |
RET | 2% (n = 102); Xu, Fuchs [9] | Lenvatinib and Pembrolizumab for Stages IVB and IVC Anaplastic thyroid cancer (Phase II Clinical Trial [NCT04171622]; Experimental) | |
Cell Cycle Regulation | TP53 | 50–80%; Manzella, Stella [20] | Restoring wild-type p53 in human thyroid cancer cells (Experimental) Moretti, Farsetti [21] |
CDKN2A | 22%; n = 196; Pozdeyev, Gay [22] | - | |
Telomere Maintenance | TERT | 40.1% (n = 54); Liu, Bishop [23] 70%; Landa, Ganly [24] | - |
Chromatin Remodeling | EIF1AX | 9% (n = 33); Landa, Ibrahimpasic [25] | - |
SWI/SNF Complex | 36% (n = 33); Landa, Ibrahimpasic [25] | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pakkianathan, J.; Yamauchi, C.R.; Barseghyan, L.; Cruz, J.; Simental, A.A.; Khan, S. Mutational Landmarks in Anaplastic Thyroid Cancer: A Perspective of a New Treatment Strategy. J. Clin. Med. 2025, 14, 2898. https://doi.org/10.3390/jcm14092898
Pakkianathan J, Yamauchi CR, Barseghyan L, Cruz J, Simental AA, Khan S. Mutational Landmarks in Anaplastic Thyroid Cancer: A Perspective of a New Treatment Strategy. Journal of Clinical Medicine. 2025; 14(9):2898. https://doi.org/10.3390/jcm14092898
Chicago/Turabian StylePakkianathan, Janice, Celina R. Yamauchi, Luiza Barseghyan, Joseph Cruz, Alfred A. Simental, and Salma Khan. 2025. "Mutational Landmarks in Anaplastic Thyroid Cancer: A Perspective of a New Treatment Strategy" Journal of Clinical Medicine 14, no. 9: 2898. https://doi.org/10.3390/jcm14092898
APA StylePakkianathan, J., Yamauchi, C. R., Barseghyan, L., Cruz, J., Simental, A. A., & Khan, S. (2025). Mutational Landmarks in Anaplastic Thyroid Cancer: A Perspective of a New Treatment Strategy. Journal of Clinical Medicine, 14(9), 2898. https://doi.org/10.3390/jcm14092898