Concizumab, a Non-Replacement Therapy for Persons with Hemophilia with Inhibitors
Abstract
:1. Introduction
2. Unmet Needs
3. Rationale for Inhibiting TFPIs
4. Concizumab: Mechanism of Action
5. Efficacy and Safety of Concizumab in Persons with HA or HB with Inhibitors
6. Adherence to Treatment
7. Outcome Measures
8. Discussion
9. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ABR | Annualized bleeding rate |
AE | Adverse event |
aPCC | Activated prothrombin complex concentrate |
CI | Confidence interval |
ELISA | Enzyme-linked immunosorbent assay |
FIX | Factor IX |
FVIIa | Activated factor VII |
FVIII | Factor VIII |
FX | Factor X |
HA | Hemophilia A |
HB | Hemophilia B |
IQR | Interquartile range |
rFIX | Recombinant factor IX |
rFVIII | Recombinant factor VIII |
TF | Tissue factor |
TFPI | Tissue factor pathway inhibitor |
TMDD | Target-mediated drug disposition |
References
- Berntorp, E.; Fischer, K.; Hart, D.P.; Mancuso, M.E.; Stephensen, D.; Shapiro, A.D.; Blanchette, V. Haemophilia. Nat. Rev. Dis. Primers 2021, 7, 45. [Google Scholar] [CrossRef] [PubMed]
- Troisi, R.; Balasco, N.; Autiero, I.; Sica, F.; Vitagliano, L. New insight into the traditional model of the coagulation cascade and its regulation: Illustrated review of a three-dimensional view. Res. Pract. Thromb. Haemost. 2023, 7, 102160. [Google Scholar] [CrossRef] [PubMed]
- van den Berg, H.M.; Srivastava, A. Hemostasis—A Balancing Act. N. Engl. J. Med. 2023, 389, 853–856. [Google Scholar] [CrossRef]
- Leuci, A.; Dargaud, Y. Blood-Induced Arthropathy: A Major Disabling Complication of Haemophilia. J. Clin. Med. 2023, 13, 225. [Google Scholar] [CrossRef]
- Nogami, K.; Shima, M. Current and future therapies for haemophilia—Beyond factor replacement therapies. Br. J. Haematol. 2023, 200, 23–34. [Google Scholar] [CrossRef]
- Srivastava, A.; Santagostino, E.; Dougall, A.; Kitchen, S.; Sutherland, M.; Pipe, S.W.; Carcao, M.; Mahlangu, J.; Ragni, M.V.; Windyga, J.; et al. WFH Guidelines for the Management of Hemophilia, 3rd edition. Haemophilia 2020, 26 (Suppl. S6), 1–158. [Google Scholar] [CrossRef]
- Keam, S.J. Concizumab: First Approval. Drugs 2023, 83, 1053–1059. [Google Scholar] [CrossRef]
- Crescioli, S.; Kaplon, H.; Chenoweth, A.; Wang, L.; Visweswaraiah, J.; Reichert, J.M. Antibodies to watch in 2024. MAbs 2024, 16, 2297450. [Google Scholar] [CrossRef]
- Nunez, R.; Alvarez-Roman, M.T.; Bonanad, S.; Gonzalez-Porras, J.R.; De La Corte-Rodriguez, H.; Berrueco, R.; Jimenez-Yuste, V. The Limitations and Unmet Needs of the Five Cornerstones to Guarantee Lifelong Optimization of Prophylaxis in Hemophilia Patients. TH Open 2022, 6, e365–e377. [Google Scholar] [CrossRef]
- Ozelo, M.C.; Yamaguti-Hayakawa, G.G. Impact of novel hemophilia therapies around the world. Res. Pract. Thromb. Haemost. 2022, 6, e12695. [Google Scholar] [CrossRef]
- Tischer, B.; Marino, R.; Napolitano, M. Patient preferences in the treatment of hemophilia A: Impact of storage conditions on product choice. Patient Prefer. Adherence 2018, 12, 431–441. [Google Scholar] [CrossRef] [PubMed]
- Giangrande, P.L.F.; Hermans, C.; O’Mahony, B.; de Kleijn, P.; Bedford, M.; Batorova, A.; Blatny, J.; Jansone, K.; European Haemophilia Consortium (EHC); The European Association for Haemophilia and Allied Disorders. European principles of inhibitor management in patients with haemophilia. Orphanet J. Rare Dis. 2018, 13, 66. [Google Scholar] [CrossRef] [PubMed]
- Male, C.; Andersson, N.G.; Rafowicz, A.; Liesner, R.; Kurnik, K.; Fischer, K.; Platokouki, H.; Santagostino, E.; Chambost, H.; Nolan, B.; et al. Inhibitor incidence in an unselected cohort of previously untreated patients with severe haemophilia B: A PedNet study. Haematologica 2021, 106, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Puetz, J.; Soucie, J.M.; Kempton, C.L.; Monahan, P.E.; Hemophilia Treatment Center Network Investigators. Prevalent inhibitors in haemophilia B subjects enrolled in the Universal Data Collection database. Haemophilia 2014, 20, 25–31. [Google Scholar] [CrossRef]
- van den Berg, H.M.; Fischer, K.; Carcao, M.; Chambost, H.; Kenet, G.; Kurnik, K.; Konigs, C.; Male, C.; Santagostino, E.; Ljung, R.; et al. Timing of inhibitor development in more than 1000 previously untreated patients with severe hemophilia A. Blood 2019, 134, 317–320. [Google Scholar] [CrossRef]
- Wight, J.; Paisley, S.; Knight, C. Immune tolerance induction in patients with haemophilia A with inhibitors: A systematic review. Haemophilia 2003, 9, 436–463. [Google Scholar] [CrossRef]
- D’Angiolella, L.S.; Cortesi, P.A.; Rocino, A.; Coppola, A.; Hassan, H.J.; Giampaolo, A.; Solimeno, L.P.; Lafranconi, A.; Micale, M.; Mangano, S.; et al. The socioeconomic burden of patients affected by hemophilia with inhibitors. Eur. J. Haematol. 2018, 101, 435–456. [Google Scholar] [CrossRef]
- Dolan, G. Partnering to change the world for people with haemophilia: 7th Haemophilia Global Summit, Madrid, Spain 22–24 September 2016. Eur. J. Haematol. 2017, 99 (Suppl. S87), 3–9. [Google Scholar] [CrossRef]
- Oladapo, A.O.; Lu, M.; Walsh, S.; O’Hara, J.; Kauf, T.L. Inhibitor clinical burden of disease: A comparative analysis of the CHESS data. Orphanet J. Rare Dis. 2018, 13, 198. [Google Scholar] [CrossRef]
- Walsh, C.E.; Soucie, J.M.; Miller, C.H.; United States Hemophilia Treatment Center Network. Impact of inhibitors on hemophilia A mortality in the United States. Am. J. Hematol. 2015, 90, 400–405. [Google Scholar] [CrossRef]
- Berntorp, E.; Hermans, C.; Solms, A.; Poulsen, L.; Mancuso, M.E. Optimising prophylaxis in haemophilia A: The ups and downs of treatment. Blood Rev. 2021, 50, 100852. [Google Scholar] [CrossRef] [PubMed]
- Brackmann, H.H.; Schramm, W.; Oldenburg, J.; Cano, V.; Turecek, P.L.; Negrier, C. Origins, Development, Current Challenges and Future Directions with Activated Prothrombin Complex Concentrate for the Treatment of Patients with Congenital Haemophilia with Inhibitors. Hamostaseologie 2020, 40, 606–620. [Google Scholar] [CrossRef] [PubMed]
- Hermans, C.; Giangrande, P.L.F.; O’Mahony, B.; de Kleijn, P.; Bedford, M.; Batorova, A.; Blatny, J.; Jansone, K.; Astermark, J.; Crato, M.; et al. European principles of inhibitor management in patients with haemophilia: Implications of new treatment options. Orphanet J. Rare Dis. 2020, 15, 219. [Google Scholar] [CrossRef] [PubMed]
- Hay, C.R.; DiMichele, D.M. The principal results of the International Immune Tolerance Study: A randomized dose comparison. Blood 2012, 119, 1335–1344. [Google Scholar] [CrossRef]
- Ljung, R.; Auerswald, G.; Benson, G.; Dolan, G.; Duffy, A.; Hermans, C.; Jimenez-Yuste, V.; Lambert, T.; Morfini, M.; Zupancic-Salek, S.; et al. Inhibitors in haemophilia A and B: Management of bleeds, inhibitor eradication and strategies for difficult-to-treat patients. Eur. J. Haematol. 2019, 102, 111–122. [Google Scholar] [CrossRef]
- Doshi, B.S.; Arruda, V.R. Gene therapy for hemophilia: What does the future hold? Ther. Adv. Hematol. 2018, 9, 273–293. [Google Scholar] [CrossRef]
- Miesbach, W.; Klamroth, R.; Oldenburg, J.; Tiede, A. Gene therapy for hemophilia—Opportunities and risks. Dtsch. Arztebl. Int. 2022, 119, 887–894. [Google Scholar] [CrossRef]
- Miesbach, W.; O’Mahony, B.; Key, N.S.; Makris, M. How to discuss gene therapy for haemophilia? A patient and physician perspective. Haemophilia 2019, 25, 545–557. [Google Scholar] [CrossRef]
- Nowrouzi, A.; Penaud-Budloo, M.; Kaeppel, C.; Appelt, U.; Le Guiner, C.; Moullier, P.; von Kalle, C.; Snyder, R.O.; Schmidt, M. Integration frequency and intermolecular recombination of rAAV vectors in non-human primate skeletal muscle and liver. Mol. Ther. 2012, 20, 1177–1186. [Google Scholar] [CrossRef]
- Mahlangu, J.; Iorio, A.; Kenet, G. Emicizumab state-of-the-art update. Haemophilia 2022, 28 (Suppl. S4), 103–110. [Google Scholar] [CrossRef]
- European Medicines Agency. Hemlibra. Summary of Product Characteristics. Available online: https://www.ema.europa.eu/en/documents/product-information/hemlibra-epar-product-information_en.pdf (accessed on 23 May 2024).
- Abbattista, M.; Ciavarella, A.; Noone, D.; Peyvandi, F. Hemorrhagic and thrombotic adverse events associated with emicizumab and extended half-life factor VIII replacement drugs: EudraVigilance data of 2021. J. Thromb. Haemost. 2023, 21, 546–552. [Google Scholar] [CrossRef] [PubMed]
- Arcudi, S.; Gualtierotti, R.; Scalambrino, E.; Clerici, M.; Hassan, S.; Begnozzi, V.; Boccalandro, E.A.; Novembrino, C.; Valsecchi, C.; Palla, R.; et al. Predictive parameters for spontaneous joint bleeding during emicizumab prophylaxis. Blood Adv. 2024, 8, 2901–2907. [Google Scholar] [CrossRef] [PubMed]
- Batsuli, G.; Wheeler, A.P.; Weyand, A.C.; Sidonio, R.F., Jr.; Young, G. Severe muscle bleeds in children and young adults with hemophilia A on emicizumab prophylaxis: Real-world retrospective multi-institutional cohort. Am. J. Hematol. 2023, 98, E285–E287. [Google Scholar] [CrossRef] [PubMed]
- Levy-Mendelovich, S.; Brutman-Barazani, T.; Budnik, I.; Avishai, E.; Barg, A.A.; Levy, T.; Misgav, M.; Livnat, T.; Kenet, G. Real-World Data on Bleeding Patterns of Hemophilia A Patients Treated with Emicizumab. J. Clin. Med. 2021, 10, 4303. [Google Scholar] [CrossRef]
- Warren, B.B.; Chan, A.; Manco-Johnson, M.; Branchford, B.R.; Buckner, T.W.; Moyer, G.; Gibson, E.; Thornhill, D.; Wang, M.; Ng, C.J. Emicizumab initiation and bleeding outcomes in people with hemophilia A with and without inhibitors: A single-center report. Res. Pract. Thromb. Haemost. 2021, 5, e12571. [Google Scholar] [CrossRef]
- Kizilocak, H.; Guerrera, M.F.; Young, G. Neutralizing antidrug antibody to emicizumab in patients with severe hemophilia A: Case report of a first noninhibitor patient and review of the literature. Res. Pract. Thromb. Haemost. 2023, 7, 102194. [Google Scholar] [CrossRef]
- Chaudhry, R.; Usama, S.M.; Babiker, H.M. Physiology, Coagulation Pathways. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Zaidi, A.; Green, L. Physiology of haemostasis. Anaesth. Intensive Care Med. 2022, 23, 111–117. [Google Scholar] [CrossRef]
- Mehic, D.; Colling, M.; Pabinger, I.; Gebhart, J. Natural anticoagulants: A missing link in mild to moderate bleeding tendencies. Haemophilia 2021, 27, 701–709. [Google Scholar] [CrossRef]
- Shetty, S.; Vora, S.; Kulkarni, B.; Mota, L.; Vijapurkar, M.; Quadros, L.; Ghosh, K. Contribution of natural anticoagulant and fibrinolytic factors in modulating the clinical severity of haemophilia patients. Br. J. Haematol. 2007, 138, 541–544. [Google Scholar] [CrossRef]
- Lane, D.A. Correcting the hemophilic imbalance. Blood 2017, 129, 10–11. [Google Scholar] [CrossRef]
- Kato, H. Tissue factor pathway inhibitor; its structure, function and clinical significance. Pol. J. Pharmacol. 1996, 48, 67–72. [Google Scholar] [PubMed]
- Chowdary, P. Anti-tissue factor pathway inhibitor (TFPI) therapy: A novel approach to the treatment of haemophilia. Int. J. Hematol. 2020, 111, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Chowdary, P. Inhibition of Tissue Factor Pathway Inhibitor (TFPI) as a Treatment for Haemophilia: Rationale with Focus on Concizumab. Drugs 2018, 78, 881–890. [Google Scholar] [CrossRef]
- Hilden, I.; Lauritzen, B.; Sorensen, B.B.; Clausen, J.T.; Jespersgaard, C.; Krogh, B.O.; Bowler, A.N.; Breinholt, J.; Gruhler, A.; Svensson, L.A.; et al. Hemostatic effect of a monoclonal antibody mAb 2021 blocking the interaction between FXa and TFPI in a rabbit hemophilia model. Blood 2012, 119, 5871–5878. [Google Scholar] [CrossRef]
- Chowdary, P.; Lethagen, S.; Friedrich, U.; Brand, B.; Hay, C.; Abdul Karim, F.; Klamroth, R.; Knoebl, P.; Laffan, M.; Mahlangu, J.; et al. Safety and pharmacokinetics of anti-TFPI antibody (concizumab) in healthy volunteers and patients with hemophilia: A randomized first human dose trial. J. Thromb. Haemost. 2015, 13, 743–754. [Google Scholar] [CrossRef]
- An, G. Concept of Pharmacologic Target-Mediated Drug Disposition in Large-Molecule and Small-Molecule Compounds. J. Clin. Pharmacol. 2020, 60, 149–163. [Google Scholar] [CrossRef]
- Agerso, H.; Overgaard, R.V.; Petersen, M.B.; Hansen, L.; Hermit, M.B.; Sorensen, M.H.; Petersen, L.C.; Hilden, I. Pharmacokinetics of an anti-TFPI monoclonal antibody (concizumab) blocking the TFPI interaction with the active site of FXa in Cynomolgus monkeys after iv and sc administration. Eur. J. Pharm. Sci. 2014, 56, 65–69. [Google Scholar] [CrossRef]
- Novo Nordisk Canada. AlhemoTM (Concizumab Injection): Product Monograph. Available online: https://www.novonordisk.ca/content/dam/nncorp/ca/en/products/alhemo-en-product-monograph.pdf (accessed on 23 May 2024).
- Favresse, J.; Lippi, G.; Roy, P.M.; Chatelain, B.; Jacqmin, H.; Ten Cate, H.; Mullier, F. D-dimer: Preanalytical, analytical, postanalytical variables, and clinical applications. Crit. Rev. Clin. Lab. Sci. 2018, 55, 548–577. [Google Scholar] [CrossRef]
- Capecchi, M.; Scalambrino, E.; Griffini, S.; Grovetti, E.; Clerici, M.; Merati, G.; Chantarangkul, V.; Cugno, M.; Peyvandi, F.; Tripodi, A. Relationship between thrombin generation parameters and prothrombin fragment 1 + 2 plasma levels. Int. J. Lab. Hematol. 2021, 43, e248–e251. [Google Scholar] [CrossRef]
- Matsushita, T.; Shapiro, A.; Abraham, A.; Angchaisuksiri, P.; Castaman, G.; Cepo, K.; d’Oiron, R.; Frei-Jones, M.; Goh, A.S.; Haaning, J.; et al. Phase 3 Trial of Concizumab in Hemophilia with Inhibitors. New Engl. J. Med. 2023, 389, 783–794. [Google Scholar] [CrossRef]
- Shapiro, A.D.; Angchaisuksiri, P.; Astermark, J.; Benson, G.; Castaman, G.; Eichler, H.; Jimenez-Yuste, V.; Kavakli, K.; Matsushita, T.; Poulsen, L.H.; et al. Long-term efficacy and safety of subcutaneous concizumab prophylaxis in hemophilia A and hemophilia A/B with inhibitors. Blood Adv. 2022, 6, 3422–3432. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, A.D. Concizumab: A novel anti-TFPI therapeutic for hemophilia. Blood Adv. 2021, 5, 279. [Google Scholar] [CrossRef] [PubMed]
- Kjalke, M.; Kjelgaard-Hansen, M.; Andersen, S.; Hilden, I. Thrombin generation potential in the presence of concizumab and rFVIIa, APCC, rFVIII, or rFIX: In vitro and ex vivo analyses. J. Thromb. Haemost. 2021, 19, 1687–1696. [Google Scholar] [CrossRef]
- Young, G. Nonfactor Therapies for Hemophilia. HemaSphere 2023, 7, e911. [Google Scholar] [CrossRef]
- Anandani, G.; Patel, T.; Parmar, R. The Implication of New Developments in Hemophilia Treatment on Its Laboratory Evaluation. Cureus 2022, 14, e30212. [Google Scholar] [CrossRef]
- Shapiro, A.D.; Angchaisuksiri, P.; Astermark, J.; Benson, G.; Castaman, G.; Chowdary, P.; Eichler, H.; Jimenez-Yuste, V.; Kavakli, K.; Matsushita, T.; et al. Subcutaneous concizumab prophylaxis in hemophilia A and hemophilia A/B with inhibitors: Phase 2 trial results. Blood 2019, 134, 1973–1982. [Google Scholar] [CrossRef]
- Castaman, G.; Abraham, A.; Angchaisuksiri, P.; Villarreal Martinez, L.; Nogami, K.; Sathar, J.; Shen, C.; Thaung Zaw, J.J.; Young, G. The Effect of Concizumab Prophylaxis on Target Joints, Resolution and Joint Bleeds in Patients With Hemophilia A or B With or Without Inhibitors in Phase 3 Clinical Trials. Blood 2023, 142, 284. [Google Scholar] [CrossRef]
- Chan, A.K.; Barnes, C.; Mathias, M.; Linari, S.; Lopez Jaime, F.J.; Hvitfeldt Poulsen, L.; Bovet, J.; Odgaard-Jensen, J.; Matsushita, T. Surgical procedures and hemostatic outcome in patients with hemophilia receiving concizumab prophylaxis during the phase 3 explorer7 and explorer8 trials. Blood 2023, 142, 30. [Google Scholar] [CrossRef]
- Eichler, H.; Angchaisuksiri, P.; Kavakli, K.; Knoebl, P.; Windyga, J.; Jimenez-Yuste, V.; Hyseni, A.; Friedrich, U.; Chowdary, P. A randomized trial of safety, pharmacokinetics and pharmacodynamics of concizumab in people with hemophilia A. J. Thromb. Haemost. 2018, 16, 2184–2195. [Google Scholar] [CrossRef]
- Waters, E.K.; Sigh, J.; Friedrich, U.; Hilden, I.; Sorensen, B.B. Concizumab, an anti-tissue factor pathway inhibitor antibody, induces increased thrombin generation in plasma from haemophilia patients and healthy subjects measured by the thrombin generation assay. Haemophilia 2017, 23, 769–776. [Google Scholar] [CrossRef]
- Seremetis, S.V.; Cepo, K.; Skovgaard Rasmussen, J.; Høyer Rose, T.; Tamer, S.; Porstmann, T.; Haaning, J. Risk Mitigation Strategy for Concizumab Clinical Trials after Pause Due to Non-Fatal Thrombotic Events. Blood 2020, 136, 40. [Google Scholar] [CrossRef]
- Peyvandi, F.; Garagiola, I.; Mannucci, P.M. Post-authorization pharmacovigilance for hemophilia in Europe and the USA: Independence and transparency are keys. Blood Rev. 2021, 49, 100828. [Google Scholar] [CrossRef] [PubMed]
- Thornburg, C.D.; Duncan, N.A. Treatment adherence in hemophilia. Patient Prefer. Adherence 2017, 11, 1677–1686. [Google Scholar] [CrossRef] [PubMed]
- Hermans, C.; Noone, D.; Benson, G.; Dolan, G.; Eichler, H.; Jimenez-Yuste, V.; Konigs, C.; Lobet, S.; Pollard, D.; Zupancic-Salek, S.; et al. Hemophilia treatment in 2021: Choosing the”optimal” treatment using an integrative, patient-oriented approach to shared decision-making between patients and clinicians. Blood Rev. 2022, 52, 100890. [Google Scholar] [CrossRef]
- Johnston, K.; Stoffman, J.M.; Mickle, A.T.; Klaassen, R.J.; Diles, D.; Olatunde, S.; Eliasson, L.; Bahar, R. Preferences and Health-Related Quality-of-Life Related to Disease and Treatment Features for Patients with Hemophilia A in a Canadian General Population Sample. Patient Prefer. Adherence 2021, 15, 1407–1417. [Google Scholar] [CrossRef]
- Coleman, C.I.; Limone, B.; Sobieraj, D.M.; Lee, S.; Roberts, M.S.; Kaur, R.; Alam, T. Dosing frequency and medication adherence in chronic disease. J. Manag. Care Pharm. 2012, 18, 527–539. [Google Scholar] [CrossRef]
- Coyne, M.; Rinaldi, A.; Brigham, K.; Hawthorne, J.; Katsaros, D.; Perich, M.; Carrara, N.; Pericaud, F.; Franzese, C.; Jones, G. Impact of Routines and Rituals on Burden of Treatment, Patient Training, Cognitive Load, and Anxiety in Self-Injected Biologic Therapy. Patient Prefer. Adherence 2022, 16, 2593–2607. [Google Scholar] [CrossRef]
- Hampton, K.; Knoebl, P.; Neergaard, J.S.; Odgaard-Jensen, J.; Stasyshyn, O.; Thaung Zaw, J.J.; Zulfikar, B. Treatment burden and patient preference in patients with haemophilia A and B with inhibitors on concizumab prophylaxis: Results from the phase 3 exlorer7 study. Haemophilia 2023, 29, 24–202. [Google Scholar]
- Kahr Rasmussen, N.; Berg, B.; Christiansen, A.S.L.; Neergaard, J.S.; Ter-Borch, G.; Hildebrand, E.A.; Gonczi, M.; Sparre, T. The Concizumab Pen-Injector is Easy to Use and Preferred by Hemophilia Patients and Caregivers: A Usability Study Assessing Pen-Injector Handling and Preference. Patient Prefer. Adherence 2024, 18, 1713–1727. [Google Scholar] [CrossRef]
- Cox, D.; Mohr, D.C. Managing difficulties with adherence to injectable medications due to blood, injection, and injury phobia and self-injection anxiety. Am. J. Drug Deliv. 2003, 1, 215–221. [Google Scholar] [CrossRef]
- Young, G. The dosing conundrum of emicizumab: To waste product or not? Res. Pract. Thromb. Haemost. 2023, 7, 100087. [Google Scholar] [CrossRef] [PubMed]
- Castaman, G.; Jimenez-Yuste, V.; Gouw, S.; D’Oiron, R. Outcomes and outcome measures. Haemophilia 2024, 30 (Suppl. S3), 112–119. [Google Scholar] [CrossRef] [PubMed]
- Di Minno, M.N.D.; Martinoli, C.; Pasta, G.; la Corte-Rodriguez, H.; Samy, I.; Stephensen, D.; Timmer, M.A.; Winburn, I. How to assess, detect, and manage joint involvement in the era of transformational therapies: Role of point-of-care ultrasound. Haemophilia 2023, 29, 1–10. [Google Scholar] [CrossRef] [PubMed]
- duTreil, S. Physical and psychosocial challenges in adult hemophilia patients with inhibitors. J. Blood Med. 2014, 5, 115–122. [Google Scholar] [CrossRef]
- Brod, M.; Bushnell, D.M.; Neergaard, J.S.; Waldman, L.T.; Busk, A.K. Understanding treatment burden in hemophilia: Development and validation of the Hemophilia Treatment Experience Measure (Hemo-TEM). J. Patient Rep. Outcomes 2023, 7, 17. [Google Scholar] [CrossRef]
- Thachil, J.; Connors, J.M.; Mahlangu, J.; Sholzberg, M. Reclassifying hemophilia to include the definition of outcomes and phenotype as new targets. J. Thromb. Haemost. 2023, 21, 1737–1740. [Google Scholar] [CrossRef]
- Tran, H.; von Mackensen, S.; Abraham, A.; Castaman, G.; Hampton, K.; Knoebl, P.; Linari, S.; Odgaard-Jensen, J.; Neergaard, J.S.; Stasyshyn, O.; et al. Concizumab prophylaxis in persons with hemophilia A or B with inhibitors: Patient-reported outcome results from the phase 3 explorer7 study. Res. Pract. Thromb. Haemost. 2024, 8, 102476. [Google Scholar] [CrossRef]
- Mannucci, P.M. Hemophilia treatment innovation: 50 years of progress and more to come. J. Thromb. Haemost. 2023, 21, 403–412. [Google Scholar] [CrossRef]
- Palmier, M.O.; Hall, L.J.; Reisch, C.M.; Baldwin, M.K.; Wilson, A.G.; Wun, T.C. Clearance of recombinant tissue factor pathway inhibitor (TFPI) in rabbits. Thromb. Haemost. 1992, 68, 33–36. [Google Scholar] [CrossRef]
- Wood, J.P.; Ellery, P.E.; Maroney, S.A.; Mast, A.E. Biology of tissue factor pathway inhibitor. Blood 2014, 123, 2934–2943. [Google Scholar] [CrossRef]
- Binder, N.B.; Depasse, F.; Mueller, J.; Wissel, T.; Schwers, S.; Germer, M.; Hermes, B.; Turecek, P.L. Clinical use of thrombin generation assays. J. Thromb. Haemost. 2021, 19, 2918–2929. [Google Scholar] [CrossRef] [PubMed]
- Depasse, F.; Binder, N.B.; Mueller, J.; Wissel, T.; Schwers, S.; Germer, M.; Hermes, B.; Turecek, P.L. Thrombin generation assays are versatile tools in blood coagulation analysis: A review of technical features, and applications from research to laboratory routine. J. Thromb. Haemost. 2021, 19, 2907–2917. [Google Scholar] [CrossRef] [PubMed]
- Augustsson, C.; Strandberg, K.; Kjalke, M. Minimal interference of concizumab with standard clinical coagulation laboratory assays—An in vitro study. Haemophilia 2024, 30, 1059–1066. [Google Scholar] [CrossRef] [PubMed]
- Arruda, V.R.; Samelson-Jones, B.J. Gene therapy for immune tolerance induction in hemophilia with inhibitors. J. Thromb. Haemost. 2016, 14, 1121–1134. [Google Scholar] [CrossRef]
- Baas, L.; van der Graaf, R.; van Hoorn, E.S.; Bredenoord, A.L.; Meijer, K. The ethics of gene therapy for hemophilia: A narrative review. J. Thromb. Haemost. 2023, 21, 413–420. [Google Scholar] [CrossRef]
- Dolan, G.; Iorio, A.; Jokela, V.; Juusola, K.; Lassila, R. Haemophilia in a real-world setting: The value of clinical experience in data collection. Eur. J. Haematol. 2016, 96 (Suppl. S82), 3–9. [Google Scholar] [CrossRef]
- Spadarella, G.; Di Minno, A.; Milan, G.; Franco, N.; Polimeno, M.; Castaldo, F.; Di Minno, G. Paradigm shift for the treatment of hereditary haemophilia: Towards precision medicine. Blood Rev. 2020, 39, 100618. [Google Scholar] [CrossRef]
- Haute Autorite de Sante. ALHEMO (Concizumab)—Hemophilia A and B with Inhibitors—Early Access Decision. Posted on 6 Oct 2023. Available online: https://www.has-sante.fr/jcms/p_3466237/fr/alhemo-concizumab-hemophilie-a-et-b-avec-inhibiteurs (accessed on 2 October 2024). (In French).
- Pharmaceutical Evaluation Division Pharmaceutical Safety and Environmental Health Bureau. Report on the Deliberation Results—Alhemo. Available online: https://www.pmda.go.jp/files/000268789.pdf (accessed on 2 October 2024).
- Swissmedic. Alhemo® (Active Substance: Concizumab). Available online: https://www.swissmedic.ch/swissmedic/en/home/about-us/publications/public-summary-swiss-par/public-summary-swiss-par-alhemo.html (accessed on 2 October 2024).
- Therapeutic Goods Administration. Alhemo. Available online: https://www.tga.gov.au/resources/auspmd/alhemo (accessed on 2 October 2024).
Characteristic | Description |
---|---|
Mechanism of action [45] | Concizumab binds to the Kunitz-2 domain of the TFPI protein and prevents TFPI from binding to FXa and to the TF/FVIIa complex; the inhibition of TFPI increases thrombin generation |
Administration [50] | Subcutaneous using a prefilled multidose pen |
Half-life [50] | 38 h a |
Frequency of administration [50] | Once daily |
Dose calculation [50] | Patient bodyweight (kg) × dose (1.00, 0.15, 0.20 or 0.25 mg/kg) = total amount (mg) of concizumab to be administered in a single daily injection |
Antidote [57] | None, but quick washout |
Laboratory monitoring b [58] | Monitoring drug concentration: Measurement of TFPI levels using ELISA Measurement of residual TFPI activity using specific activity assays, e.g., diluted PT-based assay or TF-dependent chromogenic assays Monitoring drug efficacy: thrombin generation, thromboelastography, clot waveform analysis before and after treatment commencement |
Breakthrough bleed treatment | No concizumab dose adjustment needed Bypassing agents (rFVIIa, aPCC, plasma-derived FVIIa/FX), factor concentrates |
Laboratory monitoring during concomitant treatment with concizumab and bypassing agents | Thrombin generation |
Treatment management during surgery | Minor surgery: no concizumab dose adjustment needed Major surgery: concizumab should be paused 4 days prior to surgery and resumed at the normal daily maintenance dose (either 0.15, 0.20, or 0.25 mg/kg) 10–14 days after surgery, considering each patient’s overall clinical picture c |
Immunogenicity [54] | In the explorer4 and 5 trials [54], 25% of patients developed mostly low-titer and transient neutralizing anti-concizumab antibodies |
AEs (frequency in the explorer7 trial) [53] | Common AEs (occurring in ≥5% of patients): injection-site reactions (22.8%), arthralgia (11.4%), upper respiratory tract infections (7.0%), headache (5.3%), pyrexia (5.3%) Less common AEs: hypersensitivity (2.6%), thromboembolic events (0.9%), pruritus (0.9%) |
Trial ID | Study Type | Intervention | Number of Participants | Findings |
---|---|---|---|---|
explorer1 (NCT01228669) Phase 1 | A multicenter, randomized, double-blind, placebo-controlled, single-dose, dose-escalation trial investigating safety, PK and PD of NNC 0172-0000-2021 administered intravenously, and SC to healthy male subjects and persons with HA or HB | Concizumab or placebo | 52 (28 healthy volunteers, 24 persons with HA or HB) | Primary endpoint: safety 76 AEs (75% mild) |
explorer2 (NCT01631942) Phase 1 | A multicenter, open-label, multiple-dosing trial investigating safety, PK and PD of NNC 0172-2021, administered SC to healthy male subjects and persons with HA or HB | Low, medium, or high dose of concizumab | 22 (4 healthy volunteers, 18 persons with HA or HB) | Primary endpoint: safety No severe or unexpected AEs Increased thrombin generation with concizumab in thrombin generation assay ex vivo and in vivo |
explorer3 (NCT02490787) Phase 1b | A multicenter, randomized, placebo-controlled, double-blind, multiple-dose trial investigating safety, PK, and PD of concizumab, administered SC to persons with HA | Placebo, or five escalating doses of concizumab | 24 | 56 AEs in 19 persons (54 mild and 2 moderate); 91 bleeds (almost all mild) |
explorer4 (NCT03196284) Phase 2 | A multicenter, randomized, open-label, controlled trial evaluating the efficacy and safety of prophylactic administration of concizumab in persons with HA or HB with inhibitors | Concizumab (main and extension phases), with eptacog alfa administered on-demand during bleeding episodes | 26 | Estimated ABR 4.5 (95% CI: 3.2–6.4) in the concizumab arm vs. 20.4 (95% CI: 14.4–29.1) in the rFVIIa on-demand arm Low AE rates, no severe AEs reported, no AE-related withdrawals, no thromboembolic events, and no deaths |
explorer6 (NCT03741881) Phase 3 | A prospective, multinational, non-interventional study in persons with HA or HB with or without inhibitors treated according to routine clinical practice | No treatment given | 231 * | No published results |
explorer7 (NCT04083781) Phase 3 | Efficacy and safety of concizumab prophylaxis in persons with HA or HB with inhibitors | No prophylaxis for ≥24 weeks (group 1), prophylaxis with concizumab for ≥32 weeks (group 2), or nonrandomly assigned to prophylaxis with concizumab for ≥24 weeks (groups 3 and 4) | 133 (19 in group 1; 33 in group 2; 21 in group; and 60 in group 4) | Median ABR was 9.8 (IQR 6.5–20.2) in group 1 vs. 0.0 (IQR 0.0–3.3) in group 2 Overall median ABR in the concizumab groups was 0.0 No thromboembolic events after resuming the therapy |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castaman, G.; Jimenez-Yuste, V.; Mahlangu, J. Concizumab, a Non-Replacement Therapy for Persons with Hemophilia with Inhibitors. J. Clin. Med. 2025, 14, 2961. https://doi.org/10.3390/jcm14092961
Castaman G, Jimenez-Yuste V, Mahlangu J. Concizumab, a Non-Replacement Therapy for Persons with Hemophilia with Inhibitors. Journal of Clinical Medicine. 2025; 14(9):2961. https://doi.org/10.3390/jcm14092961
Chicago/Turabian StyleCastaman, Giancarlo, Victor Jimenez-Yuste, and Johnny Mahlangu. 2025. "Concizumab, a Non-Replacement Therapy for Persons with Hemophilia with Inhibitors" Journal of Clinical Medicine 14, no. 9: 2961. https://doi.org/10.3390/jcm14092961
APA StyleCastaman, G., Jimenez-Yuste, V., & Mahlangu, J. (2025). Concizumab, a Non-Replacement Therapy for Persons with Hemophilia with Inhibitors. Journal of Clinical Medicine, 14(9), 2961. https://doi.org/10.3390/jcm14092961