New Evidence About Malignant Transformation of Endometriosis—A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources and Search Strategy
2.2. Eligibility Criteria for Articles’ Inclusion
2.3. Data Extraction
3. Results
3.1. General Observation and Characteristics
3.2. Genetic and Molecular Alterations
3.3. Correlation with ARID1A/BAF250a
3.4. Other Tools for Predicting Malignancy
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nezhat, C.; Vu, M.; Vang, N.; Ganjoo, K.; Karam, A.; Folkins, A.; Nezhat, A.; Nezhat, F. Endometriosis Malignant Transformation Review: Rhabdomyosarcoma Arising from an Endometrioma. JSLS 2019, 23, e2019.00038. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Zhu, M.; Li, W. Advances in Research on Malignant Transformation of Endometriosis-Associated Ovarian Cancer. Front. Oncol. 2024, 14, 1475231. [Google Scholar] [CrossRef] [PubMed]
- Hablase, R.; Kyrou, I.; Randeva, H.; Karteris, E.; Chatterjee, J. The “Road” to Malignant Transformation from Endometriosis to Endometriosis-Associated Ovarian Cancers (EAOCs): An mTOR-Centred Review. Cancers 2024, 16, 2160. [Google Scholar] [CrossRef]
- Giannella, L.; Marconi, C.; Di Giuseppe, J.; Delli Carpini, G.; Fichera, M.; Grelloni, C.; Giuliani, L.; Montanari, M.; Insinga, S.; Ciavattini, A. Malignant Transformation of Postmenopausal Endometriosis: A Systematic Review of the Literature. Cancers 2021, 13, 4026. [Google Scholar] [CrossRef]
- Fukunaga, M.; Nomura, K.; Ishikawa, E.; Ushigome, S. Ovarian Atypical Endometriosis: Its Close Association with Malignant Epithelial Tumours. Histopathology 1997, 30, 249–255. [Google Scholar] [CrossRef]
- Ogawa, S.; Kaku, T.; Amada, S.; Kobayashi, H.; Hirakawa, T.; Ariyoshi, K.; Kamura, T.; Nakano, H. Ovarian Endometriosis Associated with Ovarian Carcinoma: A Clinicopathological and Immunohistochemical Study. Gynecol. Oncol. 2000, 77, 298–304. [Google Scholar] [CrossRef]
- Stern, R.C.; Dash, R.; Bentley, R.C.; Snyder, M.J.; Haney, A.F.; Robboy, S.J. Malignancy in Endometriosis: Frequency and Comparison of Ovarian and Extraovarian Types. Int. J. Gynecol. Pathol. 2001, 20, 133–139. [Google Scholar] [CrossRef]
- Kobayashi, H.; Sumimoto, K.; Kitanaka, T.; Yamada, Y.; Sado, T.; Sakata, M.; Yoshida, S.; Kawaguchi, R.; Kanayama, S.; Shigetomi, H.; et al. Ovarian Endometrioma—Risk Factors of Ovarian Cancer Development. Eur. J. Obstet. Gynecol. Reprod. Biol. 2008, 138, 187–193. [Google Scholar] [CrossRef]
- Wang, C.; Wang, D.; Liu, K.; Li, Y.; Sun, C.; Guo, C.; Ren, F. Inducing Malignant Transformation of Endometriosis in Rats by Long-Term Sustaining Hyperestrogenemia and Type II Diabetes. Cancer Sci. 2015, 106, 43–50. [Google Scholar] [CrossRef]
- Scarfone, G.; Bergamini, A.; Noli, S.; Villa, A.; Cipriani, S.; Taccagni, G.; Viganò, P.; Candiani, M.; Parazzini, F.; Mangili, G. Characteristics of Clear Cell Ovarian Cancer Arising from Endometriosis: A Two Center Cohort Study. Gynecol. Oncol. 2014, 133, 480–484. [Google Scholar] [CrossRef]
- Zhou, Y.; Hua, K.Q. Ovarian Endometriosis: Risk Factor Analysis and Prediction of Malignant Transformation. Przegląd Menopauzalny 2018, 17, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Lee, B.; Choi, H.; Kim, T.; Kim, Y.; Kim, Y.B. Impact of Hormone Replacement Therapy on Risk of Ovarian Cancer in Postmenopausal Women with De Novo Endometriosis or a History of Endometriosis. Cancers 2023, 15, 1708. [Google Scholar] [CrossRef] [PubMed]
- Farolfi, A.; Gentili, N.; Testoni, S.; Rusconi, F.; Massa, I.; Danesi, V.; Altavilla, A.; Cursano, M.C.; Gurioli, G.; Burgio, S.L.; et al. Endometriosis and Endometrial Cancer: A Propensity Score-Adjusted Real-World Data Study. iScience 2024, 27, 109680. [Google Scholar] [CrossRef]
- McMullan, J.C.; Graham, M.J.; Craig, E.F.; McCluggage, W.G.; Hunter, D.H.; Feeney, L. The Malignant Transformation of Endometriosis: Is There a Left Lateral Predisposition of Ovarian Clear Cell and Endometrioid Carcinomas? Eur. J. Surg. Oncol. 2024, 50, 108247. [Google Scholar] [CrossRef]
- de la Cuesta, R.S.; Izquierdo, M.; Cañamero, M.; Granizo, J.J.; Manzarbeitia, F. Increased Prevalence of p53 Overexpression from Typical Endometriosis to Atypical Endometriosis and Ovarian Cancer Associated with Endometriosis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2004, 113, 87–93. [Google Scholar] [CrossRef]
- Amemiya, S.; Sekizawa, A.; Otsuka, J.; Tachikawa, T.; Saito, H.; Okai, T. Malignant Transformation of Endometriosis and Genetic Alterations of K-ras and Microsatellite Instability. Int. J. Gynaecol. Obstet. 2004, 86, 371–376. [Google Scholar] [CrossRef]
- Ali-Fehmi, R.; Khalifeh, I.; Bandyopadhyay, S.; Lawrence, W.D.; Silva, E.; Liao, D.; Sarkar, F.H.; Munkarah, A.R. Patterns of Loss of Heterozygosity at 10q23.3 and Microsatellite Instability in Endometriosis, Atypical Endometriosis, and Ovarian Carcinoma Arising in Association with Endometriosis. Int. J. Gynecol. Pathol. 2006, 25, 223–229. [Google Scholar] [CrossRef]
- Yamaguchi, K.; Mandai, M.; Toyokuni, S.; Hamanishi, J.; Higuchi, T.; Takakura, K.; Fujii, S. Contents of Endometriotic Cysts, Especially the High Concentration of Free Iron, Are a Possible Cause of Carcinogenesis in the Cysts through the Iron-Induced Persistent Oxidative Stress. Clin. Cancer Res. 2008, 14, 32–40. [Google Scholar] [CrossRef]
- Yamamoto, S.; Tsuda, H.; Takano, M.; Iwaya, K.; Tamai, S.; Matsubara, O. PIK3CA Mutation Is an Early Event in the Development of Endometriosis-Associated Ovarian Clear Cell Adenocarcinoma. J. Pathol. 2011, 225, 189–194. [Google Scholar] [CrossRef]
- Fuseya, C.; Horiuchi, A.; Hayashi, A.; Suzuki, A.; Miyamoto, T.; Hayashi, T.; Shiozawa, T. Involvement of Pelvic Inflammation-Related Mismatch Repair Abnormalities and Microsatellite Instability in the Malignant Transformation of Ovarian Endometriosis. Hum. Pathol. 2012, 43, 1964–1972. [Google Scholar] [CrossRef]
- Ren, F.; Wang, D.B.; Li, T.; Chen, Y.H.; Li, Y. Identification of Differentially Methylated Genes in the Malignant Transformation of Ovarian Endometriosis. J. Ovarian Res. 2014, 7, 73. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, T.; Yamazaki, M.; Takahashi, H.; Kajita, S.; Suzuki, E.; Tsuruta, T.; Saegusa, M. Distinct β-Catenin and PIK3CA Mutation Profiles in Endometriosis-Associated Ovarian Endometrioid and Clear Cell Carcinomas. Am. J. Clin. Pathol. 2015, 144, 452–463. [Google Scholar] [CrossRef] [PubMed]
- Worley, M.J., Jr.; Liu, S.; Hua, Y.; Kwok, J.S.; Samuel, A.; Hou, L.; Shoni, M.; Lu, S.; Sandberg, E.M.; Keryan, A.; et al. Molecular Changes in Endometriosis-Associated Ovarian Clear Cell Carcinoma. Eur. J. Cancer 2015, 51, 1831–1842. [Google Scholar] [CrossRef]
- Iwabuchi, T.; Yoshimoto, C.; Shigetomi, H.; Kobayashi, H. Cyst Fluid Hemoglobin Species in Endometriosis and Its Malignant Transformation: The Role of Metallobiology. Oncol. Lett. 2016, 11, 3384–3388. [Google Scholar] [CrossRef]
- Rockfield, S.; Flores, I.; Nanjundan, M. Expression and Function of Nuclear Receptor Coactivator 4 Isoforms in Transformed Endometriotic and Malignant Ovarian Cells. Oncotarget 2017, 9, 5344–5367. [Google Scholar] [CrossRef]
- Anglesio, M.S.; Papadopoulos, N.; Ayhan, A.; Nazeran, T.M.; Noë, M.; Horlings, H.M.; Lum, A.; Jones, S.; Senz, J.; Seckin, T.; et al. Cancer-Associated Mutations in Endometriosis without Cancer. N. Engl. J. Med. 2017, 376, 1835–1848. [Google Scholar] [CrossRef]
- Suda, K.; Nakaoka, H.; Yoshihara, K.; Ishiguro, T.; Tamura, R.; Mori, Y.; Yamawaki, K.; Adachi, S.; Takahashi, T.; Kase, H.; et al. Clonal Expansion and Diversification of Cancer-Associated Mutations in Endometriosis and Normal Endometrium. Cell Rep. 2018, 24, 1777–1789. [Google Scholar] [CrossRef]
- Wang, D.; Guo, C.; Li, Y.; Zhou, M.; Wang, H.; Liu, J.; Chen, P. Oestrogen Up-Regulates DNMT1 and Leads to the Hypermethylation of RUNX3 in the Malignant Transformation of Ovarian Endometriosis. Reprod. Biomed. Online 2022, 44, 27–37. [Google Scholar] [CrossRef]
- Szubert, M.; Nowak-Glück, A.; Domańska-Senderowska, D.; Szymańska, B.; Sowa, P.; Rycerz, A.; Wilczyński, J.R. miRNA Expression Profiles in Ovarian Endometriosis and Two Types of Ovarian Cancer-Endometriosis-Associated Ovarian Cancer and High-Grade Ovarian Cancer. Int. J. Mol. Sci. 2023, 24, 17470. [Google Scholar] [CrossRef]
- Collins, K.E.; Wang, X.; Klymenko, Y.; Davis, N.B.; Martinez, M.C.; Zhang, C.; So, K.; Buechlein, A.; Rusch, D.B.; Creighton, C.J.; et al. Transcriptomic Analyses of Ovarian Clear-Cell Carcinoma with Concurrent Endometriosis. Front. Endocrinol. 2023, 14, 1162786. [Google Scholar] [CrossRef]
- Liu, C.; Chen, P.; Yang, Z.; Zhang, K.; Chen, F.; Zhu, Y.; Liu, J.; Liu, L.; Wang, D.; Wang, D. New Insights into Molecular Mechanisms Underlying Malignant Transformation of Endometriosis: BANCR Promotes miR-612/CPNE3 Pathway Activity. Reprod. BioMed. Online 2024, 49, 104326. [Google Scholar] [CrossRef] [PubMed]
- Istrate-Ofiţeru, A.M.; Mogoantă, C.A.; Zorilă, G.L.; Roşu, G.C.; Drăguşin, R.C.; Berbecaru, E.I.; Zorilă, M.V.; Comănescu, C.M.; Mogoantă, S.Ș.; Vaduva, C.C.; et al. Clinical Characteristics and Local Histopathological Modulators of Endometriosis and Its Progression. Int. J. Mol. Sci. 2024, 25, 1789. [Google Scholar] [CrossRef] [PubMed]
- Linder, A.; Westbom-Fremer, S.; Mateoiu, C.; Olsson Widjaja, A.; Österlund, T.; Veerla, S.; Ståhlberg, A.; Ulfenborg, B.; Hedenfalk, I.; Sundfeldt, K. Genomic Alterations in Ovarian Endometriosis and Subsequently Diagnosed Ovarian Carcinoma. Hum. Reprod. 2024, 39, 1141–1154. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Deng, Y.; Dong, Y.; Ma, Y.; Yang, L. Identification and Validation of Prognostic Markers for Endometriosis-Associated Ovarian Cancer. Int. J. Med. Sci. 2024, 21, 1903–1914. [Google Scholar] [CrossRef]
- Ma, R.; Zheng, Y.; Wang, J.; Xu, H.; Zhang, R.; Xie, Z.; Zhang, L.; Zhao, R. Identification of Key Genes Associated with Endometriosis and Endometrial Cancer by Bioinformatics Analysis. Front. Oncol. 2024, 14, 1387860. [Google Scholar] [CrossRef]
- Wiegand, K.C.; Shah, S.P.; Al-Agha, O.M.; Zhao, Y.; Tse, K.; Zeng, T.; Senz, J.; McConechy, M.K.; Anglesio, M.S.; Kalloger, S.E.; et al. ARID1A Mutations in Endometriosis-Associated Ovarian Carcinomas. N. Engl. J. Med. 2010, 363, 1532–1543. [Google Scholar] [CrossRef]
- Xiao, W.; Awadallah, A.; Xin, W. Loss of ARID1A/BAF250a Expression in Ovarian Endometriosis and Clear Cell Carcinoma. Int. J. Clin. Exp. Pathol. 2012, 5, 642–650. [Google Scholar]
- Samartzis, E.P.; Samartzis, N.; Noske, A.; Fedier, A.; Caduff, R.; Dedes, K.J.; Fink, D.; Imesch, P. Loss of ARID1A/BAF250a-Expression in Endometriosis: A Biomarker for Risk of Carcinogenic Transformation? Mod. Pathol. 2012, 25, 885–892. [Google Scholar] [CrossRef]
- Ayhan, A.; Mao, T.-L.; Seckin, T.; Wu, C.-H.; Guan, B.; Ogawa, H.; Futagami, M.; Mizukami, H.; Yokoyama, Y.; Kurman, R.J.; et al. Loss of ARID1A Expression Is an Early Molecular Event in Tumor Progression from Ovarian Endometriotic Cyst to Clear Cell and Endometrioid Carcinoma. Int. J. Gynecol. Cancer 2012, 22, 1310–1315. [Google Scholar] [CrossRef]
- Chene, G.; Ouellet, V.; Rahimi, K.; Barres, V.; Provencher, D.; Mes-Masson, A.M. The ARID1A Pathway in Ovarian Clear Cell and Endometrioid Carcinoma, Contiguous Endometriosis, and Benign Endometriosis. Int. J. Gynaecol. Obstet. 2015, 130, 27–30. [Google Scholar] [CrossRef]
- Winarto, H.; Tan, M.I.; Sadikin, M.; Wanandi, S.I. ARID1A Expression is Down-Regulated by Oxidative Stress in Endometriosis and Endometriosis-Associated Ovarian Cancer. Transl. Oncogenomics 2017, 9, 1177272716689818. [Google Scholar] [CrossRef] [PubMed]
- Borrelli, G.M.; Abrão, M.S.; Taube, E.T.; Darb-Esfahani, S.; Köhler, C.; Chiantera, V.; Mechsner, S. (Partial) Loss of BAF250a (ARID1A) in Rectovaginal Deep-Infiltrating Endometriosis, Endometriomas and Involved Pelvic Sentinel Lymph Nodes. Mol. Hum. Reprod. 2016, 22, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Zhou, J.Y.; Guo, J.B.; Wang, L.Q.; Luo, Y.; Zhang, Z.Y.; Liu, F.Y.; Tan, J.; Wang, F.; Huang, O.P. The Presence of KRAS, PPP2R1A and ARID1A Mutations in 101 Chinese Samples with Ovarian Endometriosis. Mutat. Res. 2018, 809, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Dyatlova, A.S.; Lin’kova, N.S.; Polyakova, V.O.; Samoshkin, N.G.; Kvetnoi, I.M. ARID1A, Prostaglandin E2, and Its Receptor as Possible Predictors of Malignant Transformation of the Endometrium in Endometriosis. Bull. Exp. Biol. Med. 2019, 167, 504–507. [Google Scholar] [CrossRef]
- Zingg, J.; Kalaitzopoulos, D.R.; Karol, A.A.; Samartzis, N.; Stancl, P.; Hutmacher, J.; Karlic, R.; Noske, A.; Choschzick, M.; Witzel, I.; et al. Expression Patterns of HDAC6 in Correlation to ARID1A Status in Different Subtypes of Endometriosis: A Retrospective Tissue Microarray Analysis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2024, 302, 73–80. [Google Scholar] [CrossRef]
- Yoshimoto, C.; Takahama, J.; Iwabuchi, T.; Uchikoshi, M.; Shigetomi, H.; Kobayashi, H. Transverse Relaxation Rate of Cyst Fluid Can Predict Malignant Transformation of Ovarian Endometriosis. Magn. Reson. Med. Sci. 2017, 16, 137–145. [Google Scholar] [CrossRef]
- Chao, X.; Wang, S.; Lang, J.; Leng, J.; Fan, Q. The Application of Risk Models Based on Machine Learning to Predict Endometriosis-Associated Ovarian Cancer in Patients with Endometriosis. Acta Obstet. Gynecol. Scand. 2022, 101, 1440–1449. [Google Scholar] [CrossRef]
Author | Year | Patients’ Age (Mean Age in Years) | Sample Size | Type of Malignancy | Result |
---|---|---|---|---|---|
Fukunaga et al. [5]. | 1996 | 45.3 | 255 | Ovarian malignant epithelial tumors | Atypical endometriosis has precancerous potential, mainly associated with CC and EC |
Ogawa et al. [6]. | 2000 | 51.4 | 127 | OC | Atypical endometriosis is a premalignant lesion, particularly for CC and endometrioid adenocarcinomas |
Stern et al. [7] | 2001 | NS | 1000 | All types of malignancy | Stronger association of endometriosis with CC and EC than serous and mucinous tumors (p < 0.01) |
Kobayashi et al. [8]. | 2007 | OC: 50 ± 9, without OC: 39 ± 7 | 6398 | OC | Higher predisposition to CC and endometrioid OC; advancing age and large endometriomas are predictive factors |
Wang et al. [9]. | 2014 | 8–12 weeks (rats) | 90 adult female rats | Malignant transformation in rats | Endometriosis patients may suffer a higher risk of canceration than eutopic endometria |
Scarfone et al. [10] | 2014 | Arising from E: 51.4 ± 10.0, No E: 58.4 ± 11.2 | 73 | OCCC | Endometriosis-associated tumors had ascites less frequently and were often unilateral; endometriosis did not impact on tumor stage or prognosis in OCCC |
Zhou et al. [11] | 2018 | EAOC: 49.57 ± 9.47, EC: 42.53 ± 10.47 | 208 | EAOC | Malignant transformation rate of ovarian endometriosis: 1.61%. Risk factors: age, 40–60 years; pregnancy history; tumor size; uterine myoma; and multiple foci of endometriosis |
Lee et al. [12] | 2023 | 55.0 ± 4.6 | 20.608 | OC | HRT did not significantly raise the risk for ovarian cancer, except for estrogen alone, which had a higher risk (HR 2.898, p = 0.013) |
Farolfi et al. [13] | 2024 | E: 40.2 ± 11.1, Control: 40.1 ± 11.1, E-related endometrial cancer: 52.1 ± 11.4, Non-E related endometrial cancer: 51.6 ± 11.8 | 6,652,752 | Endometrial cancer | Increased risk of endometrial cancer (HR 1.56, p < 0.001). Higher odds of developing invasive endometrioid (OR 1.53, p = 0.005), and CC endometrial cancer (OR 3.0, p < 0.001). Overall survival did not differ |
McMullan et al. [14] | 2024 | 57.65 | 158 | Ovarian CCC and EC | Left-sided predominance was significant for EC (p = 0.002) but not for CCC |
Sáinz de la Cuesta et al. [15] | 2003 | NS | 47 | EAOC | Overexpression of p53 in atypical endometriosis and cancer associated with endometriosis |
Amemiya et al. [16] | 2004 | NS | 27 | Ovarian EC | K-ras mutation and microsatellite instability are late events in malignant transformation from atypical endometriosis to ovarian EC |
Ali-Fehmi et al. [17] | 2006 | NS | 32 | OC | LOH at D10S608 |
Yamaguchi et al. [18] | 2008 | NS | 36 | OC | Free iron in endometriotic cysts was strongly associated with greater oxidative stress and frequent DNA mutations |
Yamamoto et al. [19] | 2011 | NS | 79 | CCA | PIK3CA mutations, particularly the H1047R variant, are early events in the tumorigenesis of endometriosis-associated ovarian CCA |
Fuseya et al. [20] | 2012 | NS | 64 | OC | Inflammation-related MMR defects may play a role |
Ren et al. [21] | 2014 | EAOC:44.19 ± 9.86, E: 43.12 ± 4.20, NE: 43.52 ± 5.16 | 83 | EAOC | Epigenetic inactivation through the promoter hypermethylation of RASSF2 |
Matsumoto et al. [22] | 2015 | 54.1 | 112 | Ovarian EC and OCCC | β-catenin mutations were present in ovarian EC, while PIK3CA mutations are more frequently identified in OCCC |
Worley Jr. et al. [23] | 2015 | NS | NS | OCCC | Loss of PTEN expression is an early event in the development of endometriosis, while loss of ER and polycomb-mediated transcriptional reprogramming for pluripotency may play major roles in the malignant transformation to OCCC |
Iwabuchi et al. [24] | 2016 | benign cysts: 40.0, EAOC: 49.5 | 43 | EAOC | metHb was predominant in benign cysts and the 620/580 nm ratio had high specificity and a positive predictive value for detecting malignant transformation |
Rockfield et al. [25] | 2017 | NS | 100 | OC | NCOA4 may play a role |
Anglesio et al. [26] | 2017 | 37 | 39 | Gene mutations | Alterations of KRAS, PIK3CA, ARID1A, and PPP2R1A genes in deep infiltrating endometriosis |
Suda et al. [27] | 2018 | NS | 189 | Tissue without cancer | Mutant allele frequencies of KRAS and PIK3CA were significantly higher in the endometriotic epithelium (p < 0.05) |
Wang et al. [28] | 2022 | NS | 139 | EAOC | RUNX3 methylation by upregulating DNMT1 |
Szubert et al. [29] | 2023 | Endometrial cyst: 38.92 ± 13.51, EAOC: 56.80 ± 12.46, HGSOC: 64.31 ± 1.28, CG: 58.10 ± 12.52 | 135 | EAOC, HGSOC | High expression of miR-31-3p in normal ovarian tissue and miR-200b-3p at the lowest level in ovarian cancer tissues. miR-125b-1-3p and miR-503-5p were highly upregulated in EAOC |
Collins et al. [30] | 2023 | Benign: 30.5, Malignant: 53 | 35 | OCCC | miR-10a-5p deserves further studies |
Liu et al. [31] | 2024 | EOAC: 47.9 ± 4.4, E: 45.0 ± 5.2, CG:47.3 ± 6.5 | 52 | EAOC | BANCR expression increased during the malignant transformation of endometriosis; expression levels of CPNE3 were remarkably upregulated, while those of miR-612 were downregulated (p < 0.05) |
Istrate-Ofiteru et al. [32] | 2024 | NS | 243 | EC, CC adenocarcinoma | Neovascularization (increased expression of CD34+), high infiltration of inflammatory cells (CD3+ T-lymphocytes, CD20+ B-lymphocytes, CD68+ macrophages, and tryptase+ mast cells), and oncogenic markers, such as Ki67, p53, BCL-2, and PTEN, in cases with atypia and malignancy |
Linder et al. [33] | 2024 | NS | NS | EAOC | Specific cancer-associated mutations present in the endometriosis did not appear in the subsequent carcinomas |
Yang et al. [34] | 2024 | NS | 247 | EAOC | ADAMTS19 expression was elevated, TUBB expression was reduced in EAOC |
Ma et al. [35] | 2024 | NS | 164 | Endometrial cancer | There are 10 central genes: APOE, FGF9, TIMP1, BGN, C1QB, MX1, SIGLEC1, BST2, ICAM1, MME. APOE and BGN show significant correlation |
Wiegand et al. [36] | 2010 | NS | 683 | OC | ARID1A mutation and loss of BAF250a |
Xiao et al. [37] | 2012 | NS | 86 | CCC and PSC | Loss of ARID1A/BAF250a expression |
Samartzis EP et al. [38] | 2012 | NS | 240 | OC | Loss of ARID1A/BAF250a-expression |
Ayhan et al. [39] | 2012 | 52 | 47 | OCCC and ovarian EC | loss of ARID1A |
Chene et al. [40] | 2015 | NS | 179 | OCCC and ovarian EC | ARID1A loss, along with PI3K/AKT pathway activation, may be an early event in EAOC development |
Winarto et al. [41] | 2016 | NS | 23 | EAOC | ARID1A mRNA expression and MnSOD was lower in ET and EAOC |
Borrelli et al. [42] | 2016 | NS | 90 | - | Partial loss of BAF250a protein expression |
Zou et al. [43] | 2018 | 32 | 248 | Gene mutations | Cancer-driver gene mutations in ovarian endometriosis (KRAS, PPP2R1A and ARID1A) |
Dyatlova et al. [44] | 2019 | 22–35 | 58 | NS | ARID1A, PgE2 synthase, and PgE2-Receptor potential markers |
Zingg et al. [45] | 2024 | Non E: 40.5, E: 34.1 | 241 | NS | There is a complex interaction between ARID1A loss and HDAC6 |
Yoshimoto et al. [46] | 2016 | NS | 82 | EAOC | MR relaxometry can discriminate between EAOC and OE |
Chao et al. [47] | 2022 | 36.4 ± 8.4 | 6809 | EAOC | Risk model for predicting EAOC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ioannidou, A.; Sakellariou, M.; Sarli, V.; Panagopoulos, P.; Machairiotis, N. New Evidence About Malignant Transformation of Endometriosis—A Systematic Review. J. Clin. Med. 2025, 14, 2975. https://doi.org/10.3390/jcm14092975
Ioannidou A, Sakellariou M, Sarli V, Panagopoulos P, Machairiotis N. New Evidence About Malignant Transformation of Endometriosis—A Systematic Review. Journal of Clinical Medicine. 2025; 14(9):2975. https://doi.org/10.3390/jcm14092975
Chicago/Turabian StyleIoannidou, Alexandra, Maria Sakellariou, Vaia Sarli, Periklis Panagopoulos, and Nikolaos Machairiotis. 2025. "New Evidence About Malignant Transformation of Endometriosis—A Systematic Review" Journal of Clinical Medicine 14, no. 9: 2975. https://doi.org/10.3390/jcm14092975
APA StyleIoannidou, A., Sakellariou, M., Sarli, V., Panagopoulos, P., & Machairiotis, N. (2025). New Evidence About Malignant Transformation of Endometriosis—A Systematic Review. Journal of Clinical Medicine, 14(9), 2975. https://doi.org/10.3390/jcm14092975