Clinical Implications of Molecular and Genetic Biomarkers in Cushing’s Disease: A Literature Review
Abstract
:1. Introduction
2. Aim and Methods
3. Genetic Mutations
3.1. USP8 Mutations
3.2. USP48 Mutations
3.3. X-Linked Ubiquitin-Specific Peptidase 11 (USP11)
3.4. BRAF Mutations
3.5. TP53 and ATRX Mutations
3.6. CABLES1 Mutations
4. Immunohistochemical Biomarkers
4.1. Granulation Pattern: Densely vs. Sparsely Granulated Corticotroph Tumors
4.2. E-Cadherin
4.3. Ki-67 Index
4.4. Somatostatin Receptor Type 5 (SSTR5)
4.5. Dopamine Receptor Type 2 (D2)
4.6. Filamin A (FLNA)
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CD | Cushing’s disease |
ACTH | Adrenocorticotropic hormone |
USP8 | Ubiquitin-specific protease 8 |
CABLES1 | Cdk5 and Abl enzyme substrate 1 |
SSTR5 | Somatostatin receptor subtype 5 |
WHO | World Health Organization |
EGFR | Epidermal growth factor receptor |
USP48 | Ubiquitin-specific protease 48 |
IHC | Immunohistochemistry |
POMC | Pro-opiomelanocortin |
CRH | Corticotropin-releasing hormone |
MGMT | Methylguanine-DNA–methyltransferase |
MAPK | Mitogen-activated protein kinase |
DG | Densely granulated |
SG | Sparsely granulated |
PAS | Periodic acid–Schiff |
MRI | Magnetic resonance imaging |
EMT | Epithelial–mesenchymal transition |
GH | Growth hormone |
D2 | Dopamine receptor D2 |
FLNA | Filamin A |
References
- Fleseriu, M.; Auchus, R.; Bancos, I.; Ben-Shlomo, A.; Bertherat, J.; Biermasz, N.R.; Boguszewski, C.L.; Bronstein, M.D.; Buchfelder, M.; Carmichael, J.D.; et al. Consensus on diagnosis and management of Cushing’s disease: A guideline update. Lancet Diabetes Endocrinol. 2021, 9, 847–875. [Google Scholar] [CrossRef] [PubMed]
- Savas, M.; Mehta, S.; Agrawal, N.; van Rossum, E.F.C.; A Feelders, R. Approach to the Patient: Diagnosis of Cushing Syndrome. J. Clin. Endocrinol. Metabolism. 2022, 107, 3162–3174. [Google Scholar] [CrossRef] [PubMed]
- Giuffrida, G.; Crisafulli, S.; Ferraù, F.; Fontana, A.; Alessi, Y.; Calapai, F.; Ragonese, M.; Luxi, N.; Cannavò, S.; Trifirò, G. Global Cushing’s disease epidemiology: A systematic review and meta-analysis of observational studies. J. Endocrinol. Investig. 2022, 45, 1235–1246. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Ramírez, L.C. Determinants of Clinical Behavior and Prognosis in Cushing’s Disease: A Quest for Useful Biomarkers. Rev. Investig. Clin. 2022, 74, 244–257. [Google Scholar] [CrossRef]
- Braun, L.T.; Rubinstein, G.; Zopp, S.; Vogel, F.; Schmid-Tannwald, C.; Escudero, M.P.; Honegger, J.; Ladurner, R.; Reincke, M. Recurrence after pituitary surgery in adult Cushing’s disease: A systematic review on diagnosis and treatment. Endocrine 2020, 70, 218–231. [Google Scholar] [CrossRef]
- Capatina, C.; Hinojosa-Amaya, J.M.; Poiana, C.; Fleseriu, M. Management of patients with persistent or recurrent Cushing’s disease after initial pituitary surgery. Expert. Rev. Endocrinol. Metab. 2020, 15, 321–339. [Google Scholar] [CrossRef]
- Bolanowski, M.; Kałużny, M.; Witek, P.; Jawiarczyk-Przybyłowska, A. Pasireotide—A novel somatostatin receptor ligand after 20 years of use. Rev. Endocr. Metab. Disord. 2022, 23, 601–620. [Google Scholar] [CrossRef]
- Mizuno, T.; Inoshita, N.; Fukuhara, N.; Tatsushima, K.; Takeshita, A.; Yamada, S.; Nishioka, H.; Takeuchi, Y. Pasireotide-resistant Refractory Cushing’s Disease without Somatostatin Receptor 5 Expression. Intern. Med. 2022, 61, 679–685. [Google Scholar] [CrossRef]
- Şahin, S.; Karimova, G.; Özcan, Ş.G.; Durcan, E.; Özkaya, H.M.; Kadioğlu, P. Pasireotide treatment in Cushing’s disease: A single tertiary center’s experience. Turk. J. Med. Sci. 2022, 52, 467–476. [Google Scholar] [CrossRef]
- Kageyama, K.; Asari, Y.; Sugimoto, Y.; Niioka, K.; Daimon, M. Ubiquitin-Specific Protease 8 Inhibitor Suppresses Adrenocorticotropic Hormone Production and Corticotroph Tumor Cell Proliferation. Endocr. J. 2020, 67, 177–184. [Google Scholar] [CrossRef]
- De Bruin, C.; Feelders, R.A.; Lamberts, S.W.J.; Hofland, L.J. Somatostatin and dopamine receptors as targets for medical treatment of Cushing’s Syndrome. Rev. Endocr. Metab. Disord. 2009, 10, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Fleseriu, M.; Biller, B.M.K. Treatment of Cushing’s syndrome with osilodrostat: Practical applications of recent studies with case examples. Pituitary 2022, 25, 795–809. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, M.; Nakao, T.; Ogawa, W.; Fukuoka, H. Aggressive Cushing’s Disease: Molecular Pathology and Its Therapeutic Approach. Front. Endocrinol. 2021, 12, 650791. [Google Scholar] [CrossRef] [PubMed]
- Asa, S.L.; Mete, O.; Perry, A.; Osamura, R.Y. Overview of the 2022 WHO Classification of Pituitary Tumors. Endocr. Pathol. 2022, 33, 6–26. [Google Scholar] [CrossRef]
- Rak, B.; Maksymowicz, M.; Pękul, M.; Zieliński, G. Clinical, Biological, Radiological Pathological and Immediate Post-Operative Remission of Sparsely and Densely Granulated Corticotroph Pituitary Tumors: A Retrospective Study of a Cohort of 277 Patients With Cushing’s Disease. Front. Endocrinol. 2021, 12, 672178. [Google Scholar] [CrossRef]
- Seltzer, J.; Ashton, C.E.; Scotton, T.C.; Pangal, D.; Carmichael, J.D.; Zada, G. Gene and protein expression in pituitary corticotroph adenomas: A systematic review of the literature. Neurosurg. Focus 2015, 38, E17. [Google Scholar] [CrossRef]
- Hernández-Ramírez, L.C.; Pankratz, N.; Lane, J.; Faucz, F.R.; Chittiboina, P.; Kay, D.M.; Beethem, Z.; Mills, J.L.; Stratakis, C.A. Genetic drivers of Cushing’s disease: Frequency and associated phenotypes. Genet. Med. 2022, 24, 2516–2525. [Google Scholar] [CrossRef]
- Villa, C.; Baussart, B.; Assié, G.; Raverot, G.; Roncaroli, F. The World Health Organization classifications of pituitary neuroendocrine tumours: A clinico-pathological appraisal. Endocr. Relat. Cancer 2023, 30, e230021. [Google Scholar] [CrossRef]
- Albani, A.; Perez-Rivas, L.G.; Reincke, M.; Theodoropoulou, M. Pathogenesis of cushing disease: An update on the genetics of corticotropinomas. Endocr. Pract. 2018, 24, 907–914. [Google Scholar] [CrossRef]
- Castellnou, S.; Vasiljevic, A.; Lapras, V.; Raverot, V.; Alix, E.; Borson-Chazot, F.; Jouanneau, E.; Raverot, G.; Lasolle, H. Sst5 expression and usp8 mutation in functioning and silent corticotroph pituitary tumors. Endocr. Connect. 2020, 9, 243–253. [Google Scholar] [CrossRef]
- Perez-Rivas, L.G.; Simon, J.; Albani, A.; Tang, S.; Roeber, S.; Assié, G.; Deutschbein, T.; Fassnacht, M.; Gadelha, M.R.; Hermus, A.R.; et al. TP53 mutations in functional corticotroph tumors are linked to invasion and worse clinical outcome. Acta Neuropathol. Commun. 2022, 10, 139. [Google Scholar] [CrossRef] [PubMed]
- Van Roy, F.; Berx, G. The cell-cell adhesion molecule E-cadherin. Cell. Mol. Life Sci. 2008, 65, 3756–3788. [Google Scholar] [CrossRef] [PubMed]
- Evang, J.A.; Berg, J.P.; Casar-Borota, O.; Lekva, T.; Kringen, M.K.; Ramm-Pettersen, J.; Bollerslev, J. Reduced levels of E-cadherin correlate with progression of corticotroph pituitary tumours. Clin. Endocrinol. 2011, 75, 811–818. [Google Scholar] [CrossRef] [PubMed]
- Salehi, F.; Agur, A.; Scheithauer, B.W.; Kovacs, K.; Lloyd, R.V.; Cusimano, M. KI-67 in pituitary neoplasms: A review—Part I. Neurosurgery 2009, 65, 429–437. [Google Scholar] [CrossRef]
- Theodoropoulou, M.; Reincke, M.; Fassnacht, M.; Komada, M. Decoding the genetic basis of cushing’s disease: Usp8 in the spotlight. Eur. J. Endocrinol. 2015, 173, M73–M83. [Google Scholar] [CrossRef]
- Sesta, A.; Cassarino, M.F.; Terreni, M.; Ambrogio, A.G.; Libera, L.; Bardelli, D.; Lasio, G.; Losa, M.; Giraldi, F.P. Ubiquitin-Specific Protease 8 Mutant Corticotrope Adenomas Present Unique Secretory and Molecular Features and Shed Light on the Role of Ubiquitylation on ACTH Processing. Neuroendocrinology 2020, 110, 119–129. [Google Scholar] [CrossRef]
- Ma, Z.-Y.; Song, Z.-J.; Chen, J.-H.; Wang, Y.-F.; Li, S.-Q.; Zhou, L.-F.; Mao, Y.; Li, Y.-M.; Hu, R.-G.; Zhang, Z.-Y.; et al. Recurrent gain-of-function USP8 mutations in Cushing’s disease. Cell Res. 2015, 25, 306–317. [Google Scholar] [CrossRef]
- Wanichi, I.Q.; Mariani, B.M.d.P.; Frassetto, F.P.; Siqueira, S.A.C.; Musolino, N.R.d.C.; Cunha-Neto, M.B.C.; Ochman, G.; Cescato, V.A.S.; Machado, M.C.; Trarbach, E.B.; et al. Cushing’s disease due to somatic USP8 mutations: A systematic review and meta-analysis. Pituitary 2019, 22, 435–442. [Google Scholar] [CrossRef]
- Shichi, H.; Fukuoka, H.; Kanzawa, M.; Yamamoto, M.; Yamamoto, N.; Suzuki, M.; Urai, S.; Matsumoto, R.; Kanie, K.; Fujita, Y.; et al. Responsiveness to DDAVP in Cushing’s disease is associated with USP8 mutations through enhancing AVPR1B promoter activity. Pituitary 2022, 25, 496–507. [Google Scholar] [CrossRef]
- Rebollar-Vega, R.G.; Zuarth-Vázquez, J.M.; Hernández-Ramírez, L.C. Clinical Spectrum of USP8 Pathogenic Variants in Cushing’s Disease. Arch. Med. Res. 2023, 54, 102899. [Google Scholar] [CrossRef]
- Perez-Rivas, L.G.; Theodoropoulou, M.; Ferraù, F.; Nusser, C.; Kawaguchi, K.; Stratakis, C.A.; Faucz, F.R.; Wildemberg, L.E.; Assié, G.; Beschorner, R.; et al. The gene of the ubiquitin-specific protease 8 is frequently mutated in adenomas causing cushing’s disease. J. Clin. Endocrinol. Metabolism. 2015, 100, E997–E1004. [Google Scholar] [CrossRef] [PubMed]
- Reincke, M.; Sbiera, S.; Hayakawa, A.; Theodoropoulou, M.; Osswald, A.; Beuschlein, F.; Meitinger, T.; Mizuno-Yamasaki, E.; Kawaguchi, K.; Saeki, Y.; et al. Mutations in the deubiquitinase gene USP8 cause Cushing’s disease. Nat. Genet. 2015, 47, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Locantore, P.; Paragliola, R.M.; Cera, G.; Novizio, R.; Maggio, E.; Ramunno, V.; Corsello, A.; Corsello, S.M. Genetic Basis of ACTH-Secreting Adenomas. Int. J. Mol. Sci. 2022, 23, 6824. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, K.; Inoshita, N.; Kawaguchi, K.; Ardisasmita, A.I.; Suzuki, H.; Fukuhara, N.; Okada, M.; Nishioka, H.; Takeuchi, Y.; Komada, M.; et al. The USP8 Mutational Status May Predict Drug Susceptibility in Corticotroph Adenomas of Cushing’s Disease. Eur. J. Endocrinol. 2015, 174, 213–226. [Google Scholar] [CrossRef]
- Albani, A.; Perez-Rivas, L.G.; Tang, S.; Simon, J.; Lucia, K.E.; Colón-Bolea, P.; Schopohl, J.; Roeber, S.; Buchfelder, M.; Rotermund, R.; et al. Improved pasireotide response in USP8 mutant corticotroph tumours in vitro. Endocr. Relat. Cancer 2022, 29, 503–511. [Google Scholar] [CrossRef]
- Treppiedi, D.; Marra, G.; Di Muro, G.; Esposito, E.; Barbieri, A.M.; Catalano, R.; Mangili, F.; Bravi, F.; Locatelli, M.; Lania, A.G.; et al. P720R USP8 Mutation Is Associated with a Better Responsiveness to Pasireotide in ACTH-Secreting PitNETs. Cancers 2022, 14, 2455. [Google Scholar] [CrossRef]
- Chen, J.; Jian, X.; Deng, S.; Ma, Z.; Shou, X.; Shen, Y.; Zhang, Q.; Song, Z.; Li, Z.; Peng, H.; et al. Identification of recurrent USP48 and BRAF mutations in Cushing’s disease. Nat. Commun. 2018, 9, 3171. [Google Scholar] [CrossRef]
- Ghanem, A.; Schweitzer, K.; Naumann, M. Catalytic domain of deubiquitinylase USP48 directs interaction with Rel homology domain of nuclear factor kappaB transcription factor RelA. Mol. Biol. Rep. 2019, 46, 1369–1375. [Google Scholar] [CrossRef]
- Sbiera, S.; Perez-Rivas, L.G.; Taranets, L.; Weigand, I.; Flitsch, J.; Graf, E.; Monoranu, C.-M.; Saeger, W.; Hagel, C.; Honegger, J.; et al. Driver mutations in USP8 wild-type Cushing’s disease. Neuro Oncol. 2019, 21, 1273–1283. [Google Scholar] [CrossRef]
- Zhang, T.; Liu, Y.; Liu, F.; Guo, K.; Tang, R.; Ye, J.; Xue, L.; Su, Z.; Wu, Z.B. X-linked ubiquitin-specific peptidase 11 (USP11) increases susceptibility to Cushing’s disease in women. Acta Neuropathol. Commun. 2025, 13, 22. [Google Scholar] [CrossRef]
- Abraham, A.P.; Pai, R.; Beno, D.L.; Chacko, G.; Asha, H.S.; Rajaratnam, S.; Kapoor, N.; Thomas, N.; Chacko, A.G. USP8, USP48, and BRAF mutations differ in their genotype-phenotype correlation in Asian Indian patients with Cushing’s disease. Endocrine 2022, 75, 549–559. [Google Scholar] [CrossRef] [PubMed]
- Rivlin, N.; Brosh, R.; Oren, M.; Rotter, V. Mutations in the p53 tumor suppressor gene: Important milestones at the various steps of tumorigenesis. Genes. Cancer 2011, 2, 466–474. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhang, T.; Su, W.; Dou, Z.; Zhao, D.; Jin, X.; Lei, H.; Wang, J.; Xie, X.; Cheng, B.; et al. Mutant p53 in cancer: From molecular mechanism to therapeutic modulation. Cell Death Dis. 2022, 13, 974. [Google Scholar] [CrossRef] [PubMed]
- Tanizaki, Y.; Jin, L.; Scheithauer, B.W.; Kovacs, K.; Roncaroli, F.; Lloyd, R.V. P53 gene mutations in pituitary carcinomas. Endocr. Pathol. 2007, 18, 217–222. [Google Scholar] [CrossRef]
- Uzilov, A.V.; Taik, P.; Cheesman, K.C.; Javanmard, P.; Ying, K.; Roehnelt, A.; Wang, H.; Fink, M.Y.; Lau, C.Y.; Moe, A.S.; et al. USP8 and TP53 Drivers are Associated with CNV in a Corticotroph Adenoma Cohort Enriched for Aggressive Tumors. J. Clin. Endocrinol. Metabolism. 2021, 106, 826–842. [Google Scholar] [CrossRef]
- Pękul, M.; Szczepaniak, M.; Kober, P.; Rusetska, N.; Mossakowska, B.J.; Baluszek, S.; Kowalik, A.; Maksymowicz, M.; Zieliński, G.; Kunicki, J.; et al. Relevance of mutations in protein deubiquitinases genes and TP53 in corticotroph pituitary tumors. Front. Endocrinol. 2024, 15, 1302667. [Google Scholar] [CrossRef]
- Casar-Borota, O.; Boldt, H.B.; Engström, B.E.; Andersen, M.S.; Baussart, B.; Bengtsson, D.; Berinder, K.; Ekman, B.; Feldt-Rasmussen, U.; Höybye, C.; et al. Corticotroph Aggressive Pituitary Tumors and Carcinomas Frequently Harbor ATRX Mutations. J. Clin. Endocrinol. Metabolism. 2021, 106, 1183–1194. [Google Scholar] [CrossRef]
- Lasolle, H.; Vasiljevic, A.; Jouanneau, E.; MD, I.; Raverot, G. Aggressive corticotroph tumors and carcinomas. J. Neuroendocrinol. 2022, 34, e13169. [Google Scholar] [CrossRef]
- Casar-Borota, O.; Burman, P.; Lopes, M.B. The 2022 WHO classification of tumors of the pituitary gland: An update on aggressive and metastatic pituitary neuroendocrine tumors. Brain Pathol. 2024, 35, e13302. [Google Scholar] [CrossRef]
- Sumislawski, P.; Rotermund, R.; Klose, S.; Lautenbach, A.; Wefers, A.K.; Soltwedel, C.; Mohammadi, B.; Jacobsen, F.; Mawrin, C.; Flitsch, J.; et al. ACTH-secreting pituitary carcinoma with TP53, NF1, ATRX and PTEN mutations Case report and review of the literature. Endocrine 2022, 76, 228–236. [Google Scholar] [CrossRef]
- Casar-Borota, O.; Burman, P.; Lopes, M.B. The emerging role of cables1 in cancer and other diseases. Mol. Pharmacol. 2017, 92, 240–245. [Google Scholar] [CrossRef]
- Roussel-Gervais, A.; Couture, C.; Langlais, D.; Takayasu, S.; Balsalobre, A.; Rueda, B.R.; Zukerberg, L.R.; Figarella-Branger, D.; Brue, T.; Drouin, J. The cables1 gene in glucocorticoid regulation of pituitary corticotrope growth and cushing disease. J. Clin. Endocrinol. Metabolism. 2016, 101, 513–522. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Ramírez, L.C.; Gam, R.; Valdés, N.; Lodish, M.B.; Pankratz, N.; Balsalobre, A.; Gauthier, Y.; Faucz, F.R.; Trivellin, G.; Chittiboina, P.; et al. Loss-of-function mutations in the CABLES1 gene are a novel cause of Cushing’s disease. Endocr. Relat. Cancer 2017, 24, 379–392. [Google Scholar] [CrossRef]
- Çiftçi Doğanşen, S.; Bilgiç, B.; Yenidünya Yalin, G.; Tanrikulu, S.; Yarman, S. Clinical significance of granulation pattern in corticotroph pituitary adenomas. Turk. Patoloji Derg. 2019, 35, 9–14. [Google Scholar] [CrossRef]
- Durmuş, E.T.; Kefeli, M.; Mete, O.; Çalışkan, S.; Aslan, K.; Onar, M.A.; Çolak, R.; Durmuş, B.; Cokluk, C.; Atmaca, A. Granulation Patterns of Functional Corticotroph Tumors Correlate with Tumor Size, Proliferative Activity, T2 Intensity-to-White Matter Ratio, and Postsurgical Early Biochemical Remission. Endocr. Pathol. 2024, 35, 185–193. [Google Scholar] [CrossRef]
- Gliga, M.C.; Chinezu, L.; Pascanu, I.M. Predicting Response to Medical Treatment in Acromegaly via Granulation Pattern, Expression of Somatostatin Receptors Type 2 and 5 and E-Cadherin. Int. J. Mol. Sci. 2024, 25, 8663. [Google Scholar] [CrossRef]
- Gliga, M.C.; Tătăranu, L.G.; Popescu, M.; Chinezu, L.; Paşcanu, M.I. Immunohistochemical evaluation of biomarkers with predictive role in acromegaly: A literature review. Rom. J. Morphol. Embryol. 2023, 64, 25–33. [Google Scholar] [CrossRef]
- Mayr, B.; Buslei, R.; Theodoropoulou, M.; Stalla, G.K.; Buchfelder, M.; Schöfl, C. Molecular and functional properties of densely and sparsely granulated GH-producing pituitary adenomas. Eur. J. Endocrinol. 2013, 169, 391–400. [Google Scholar] [CrossRef]
- Mendes, G.; Haag, T.; Trott, G.; Rech, C.; Ferreira, N.; Oliveira, M.; Kohek, M.; Pereira-Lima, J. Expression of E-cadherin, Slug and NCAM and its relationship to tumor invasiveness in patients with acromegaly. Braz. J. Med. Biol. Res. 2018, 51, e6808. [Google Scholar] [CrossRef]
- Venegas-Moreno, E.; Flores-Martinez, A.; Dios, E.; Vazquez-Borrego, M.C.; Ibañez-Costa, A.; Madrazo-Atutxa, A.; Japón, M.A.; Castaño, J.P.; Luque, R.M.; Cano, D.A.; et al. E-cadherin expression is associated with somatostatin analogue response in acromegaly. J. Cell Mol. Med. 2019, 23, 3088–3096. [Google Scholar] [CrossRef]
- Fougner, S.L.; Lekva, T.; Borota, O.C.; Hald, J.K.; Bollerslev, J.; Berg, J.P. The expression of E-cadherin in somatotroph pituitary adenomas is related to tumor size, invasiveness, and somatostatin analog response. J. Clin. Endocrinol. Metabolism. 2010, 95, 2334–2342. [Google Scholar] [CrossRef] [PubMed]
- Kiseljak-Vassiliades, K.; Lipe, K.; Turin, C.G.; Fishbein, L.; Costello, J.C.; Kerr, J.M.; Holmstoen, T.B.; Youssef, A.S.; O Lillehei, K.; Kleinschmidt-DeMasters, B.K.; et al. E-cadherin expression and gene expression profiles in corticotroph pituitary neuroendocrine tumor subtypes. J. Neuropathol. Exp. Neurol. 2024, 83, 586–595. [Google Scholar] [CrossRef] [PubMed]
- Fusco, A.; Zatelli, M.C.; Bianchi, A.; Cimino, V.; Tilaro, L.; Veltri, F.; Angelini, F.; Lauriola, L.; Vellone, V.; Doglietto, F.; et al. Prognostic significance of the Ki-67 labeling index in growth hormone-secreting pituitary adenomas. J. Clin. Endocrinol. Metabolism. 2008, 93, 2746–2750. [Google Scholar] [CrossRef] [PubMed]
- Garbicz, F.; Mehlich, D.; Rak, B.; Sajjad, E.; Maksymowicz, M.; Paskal, W.; Zieliński, G.; Włodarski, P.K. Increased expression of the microRNA 106b~25 cluster and its host gene MCM7 in corticotroph pituitary adenomas is associated with tumor invasion and Crooke’s cell morphology. Pituitary 2017, 20, 450–463. [Google Scholar] [CrossRef]
- Raverot, G.; Burman, P.; McCormack, A.; Heaney, A.; Petersenn, S.; Popovic, V.; Trouillas, J.; Dekkers, O.M. European society of endocrinology clinical practice guidelines for the management of aggressive pituitary tumours and carcinomas. Eur. J. Endocrinol. 2018, 178, G1–G24. [Google Scholar] [CrossRef]
- Ünal, M.; Selek, A.; Sözen, M.; Gezer, E.; Köksalan, D.; Canturk, Z.; Cetinarslan, B.; Çabuk, B.; Anık, I.; Ceylan, S. Recurrent Cushing’s Disease in Adults: Predictors and Long-Term Follow-Up. Horm. Metab. Res. 2023, 55, 520–527. [Google Scholar] [CrossRef]
- Witek, P.; Zieliński, G.; Szamotulska, K.; Maksymowicz, M.; Kamiński, G. Clinicopathological predictive factors in the early remission of corticotroph pituitary macroadenomas in a tertiary referral centre. Eur. J. Endocrinol. 2016, 174, 539–549. [Google Scholar] [CrossRef]
- Venegas-Moreno, E.; Vazquez-Borrego, M.C.; Dios, E.; Gros-Herguido, N.; Flores-Martinez, A.; Rivero-Cortés, E.; Madrazo-Atutxa, A.; Japón, M.A.; Luque, R.M.; Castaño, J.P.; et al. Association between dopamine and somatostatin receptor expression and pharmacological response to somatostatin analogues in acromegaly. J. Cell Mol. Med. 2018, 22, 1640–1649. [Google Scholar] [CrossRef]
- Gadelha, M.R.; Wildemberg, L.E.; Kasuki, L. The Future of Somatostatin Receptor Ligands in Acromegaly. J. Clin. Endocrinol. Metabolism. 2022, 107, 297–308. [Google Scholar] [CrossRef]
- van der Hoek, J.; Waaijers, M.; van Koetsveld, P.M.; Sprij-Mooij, D.; Feelders, R.A.; Schmid, H.A.; Schoeffter, P.; Hoyer, D.; Cervia, D.; Taylor, J.E.; et al. Distinct functional properties of native somatostatin receptor subtype 5 compared with subtype 2 in the regulation of ACTH release by corticotroph tumor cells. Am. J. Physiol. Endocrinol. Metab. 2005, 289, 278–287. [Google Scholar] [CrossRef]
- Hofland, L.J.; van der Hoek, J.; Feelders, R.; O van Aken, M.; van Koetsveld, P.M.; Waaijers, M.; Sprij-Mooij, D.; Bruns, C.; Weckbecker, G.; de Herder, W.W.; et al. The multi-ligand somatostatin analogue SOM230 inhibits ACTH secretion by cultured human corticotroph adenomas via somatostatin receptor type 5. Eur. J. Endocrinol. 2005, 152, 645–654. [Google Scholar] [CrossRef] [PubMed]
- Iacovazzo, D.; Carlsen, E.; Lugli, F.; Chiloiro, S.; Piacentini, S.; Bianchi, A.; Giampietro, A.; Mormando, M.; Clear, A.J.; Doglietto, F.; et al. Factors predicting pasireotide responsiveness in somatotroph pituitary adenomas resistant to first-generation somatostatin analogues: An immunohistochemical study. Eur. J. Endocrinol. 2016, 174, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Puig-Domingo, M.; Bernabéu, I.; Picó, A.; Biagetti, B.; Gil, J.; Alvarez-Escolá, C.; Jordà, M.; Marques-Pamies, M.; Soldevila, B.; Gálvez, M.-A.; et al. Pasireotide in the Personalized Treatment of Acromegaly. Front. Endocrinol. 2021, 12, 648411. [Google Scholar] [CrossRef]
- Neto, L.V.; Wildemberg, L.E.; Moraes, A.B.; Colli, L.M.; Kasuki, L.; Marques, N.V.; Gasparetto, E.L.; de Castro, M.; Takiya, C.M.; Gadelha, M.R. Dopamine receptor subtype 2 expression profile in nonfunctioning pituitary adenomas and in vivo response to cabergoline therapy. Clin. Endocrinol. 2015, 82, 739–746. [Google Scholar] [CrossRef]
- Pivonello, C.; Patalano, R.; Negri, M.; Pirchio, R.; Colao, A.; Pivonello, R.; Auriemma, R.S. Resistance to Dopamine Agonists in Pituitary Tumors: Molecular Mechanisms. Front. Endocrinol. 2022, 12, 648411. [Google Scholar] [CrossRef]
- Boschetti, M.; Gatto, F.; Arvigo, M.; Esposito, D.; Rebora, A.; Talco, M.; Albertelli, M.; Nazzari, E.; Goglia, U.; Minuto, F.; et al. Role of dopamine receptors in normal and tumoral pituitary corticotropic cells and adrenal cells. Neuroendocrinology 2010, 92, 17–22. [Google Scholar] [CrossRef]
- Auriemma, R.S.; Pirchio, R.; Pivonello, C.; Garifalos, F.; Colao, A.; Pivonello, R. Approach to the Patient With Prolactinoma. J. Clin. Endocrinol. Metabolism. 2023, 108, 2400–2423. [Google Scholar] [CrossRef]
- Feelders, R.A.; Fleseriu, M.; Kadioglu, P.; Bex, M.; González-Devia, D.; Boguszewski, C.L.; Yavuz, D.G.; Patino, H.; Pedroncelli, A.M.; Maamari, R.; et al. Long-term efficacy and safety of subcutaneous pasireotide alone or in combination with cabergoline in Cushing’s disease. Front. Endocrinol. 2023, 14, 1165681. [Google Scholar] [CrossRef]
- Pivonello, R.; Ferone, D.; de Herder, W.W.; Kros, J.M.; Caro, M.L.D.B.D.; Arvigo, M.; Annunziato, L.; Lombardi, G.; Colao, A.; Hofland, L.J.; et al. Dopamine Receptor Expression and Function in Corticotroph Pituitary Tumors. J. Clin. Endocrinol. Metabolism. 2004, 89, 2452–2462. [Google Scholar] [CrossRef]
- Godbout, A.; Manavela, M.; Danilowicz, K.; Beauregard, H.; Bruno, O.D.; Lacroix, A. Cabergoline monotherapy in the long-term treatment of Cushing’s disease. Eur. J. Endocrinol. 2010, 163, 709–716. [Google Scholar] [CrossRef]
- Hur, K.Y.; Kim, J.H.; Kim, B.J.; Kim, M.S.; Lee, E.J.; Kim, S.W. Clinical guidelines for the diagnosis and treatment of Cushing’s disease in Korea. Endocrinol. Metabolism. 2015, 30, 7–18. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Kang, X.; An, H.; Lv, Y.; Liu, X. The function and pathogenic mechanism of filamin A. Gene 2021, 784, 145575. [Google Scholar] [CrossRef] [PubMed]
- Shao, Q.-Q.; Zhang, T.-P.; Zhao, W.-J.; Liu, Z.-W.; You, L.; Zhou, L.; Guo, J.-C.; Zhao, Y.-P. Filamin A: Insights into its Exact Role in Cancers. Pathol. Oncol. Res. 2016, 22, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Treppiedi, D.; Catalano, R.; Mangili, F.; Mantovani, G.; Peverelli, E. Role of filamin A in the pathogenesis of neuroendocrine tumors and adrenal cancer. Endocr. Oncol. 2022, 2, R143–R152. [Google Scholar] [CrossRef]
- Coelho, M.C.A.; Vasquez, M.L.; Wildemberg, L.E.; Vázquez-Borrego, M.C.; Bitana, L.; Camacho, A.H.d.S.; Silva, D.; Ogino, L.L.; Ventura, N.; Sánchez-Sánchez, R.; et al. Clinical significance of filamin A in patients with acromegaly and its association with somatostatin and dopamine receptor profiles. Sci. Rep. 2019, 9, 1122. [Google Scholar] [CrossRef]
- Treppiedi, D.; Di Muro, G.; Mangili, F.; Catalano, R.; Giardino, E.; Barbieri, A.M.; Locatelli, M.; Arosio, M.; Spada, A.; Peverelli, E.; et al. Filamin A is required for somatostatin receptor type 5 expression and pasireotide-mediated signaling in pituitary corticotroph tumor cells. Mol. Cell. Endocrinol. 2021, 524, 111159. [Google Scholar] [CrossRef]
- Sickler, T.; Trarbach, E.B.; Frassetto, F.P.; Dettoni, J.B.; Alves, V.A.F.; Fragoso, M.C.B.V.; Machado, M.C.; Cardoso, E.F.; Bronstein, M.D.; Glezer, A. Filamin A and DRD2 expression in corticotrophinomas. Pituitary 2019, 22, 163–169. [Google Scholar] [CrossRef]
- Peverelli, E.; Mantovani, G.; Vitali, E.; Elli, F.M.; Olgiati, L.; Ferrero, S.; Laws, E.R.; Della Mina, P.; Villa, A.; Beck-Peccoz, P.; et al. Filamin-A is essential for dopamine D2 receptor expression and signaling in tumorous lactotrophs. J. Clin. Endocrinol. Metabolism. 2012, 97, 967–977. [Google Scholar] [CrossRef]
Gene | Prevalence | Associations | Clinical Implications | References |
---|---|---|---|---|
USP8 | 30–60% | Microadenomas, female predominance, less invasiveness | Higher remission rates post-surgery, ↑ SSTR5 expression, potential predictive marker for Pasireotide response | [25,26,27,28,29,30,31,32,33,34,35,36] |
USP4 | 10–23% (in USP8-wild-type tumors) | Smaller tumors, female tendency | Potential role in ACTH overproduction, CRH sensitivity, therapeutic target in USP8-WT tumors | [37,38,39] |
USP11 | - | Female predominance | A promising therapeutic target for novel treatments | [40] |
BRAF | ~10–16% (mostly Asian cohorts) | ↑POMC/ACTH secretion | Rare; possible target for MAPK/ERK inhibitors | [33,37,39,41] |
TP53 | ~10% | Macroadenomas, ↑Ki-67, cavernous sinus invasion | Aggressive behavior, recurrence, poor prognosis, invasive growth | [21,42,43,44,45,46] |
ATRX | ~19–32% (in aggressive forms) | Carcinomas or highly aggressive tumors | Associated with metastasis and resistance to therapy | [47,48,49] |
CABLES1 | Rare (mainly pediatric macroadenomas) | Macroadenomas, loss of feedback inhibition | May explain glucocorticoid resistance; potential tumor suppressor marker | [48,51,52,53] |
Biomarker | Function | Clinical Implications | References |
---|---|---|---|
SSTR5 | Somatostatin receptor subtype 5—target of somatostatin ligands | ↑ in USP8-mutated tumors → better response to Pasireotide | [20,33,70,71,72,73] |
D2 | Dopamine D2 receptor—target of dopamine agonists | Variably expressed; may predict responsiveness to Cabergoline | [79,80,81] |
FLNA | Cytoskeleton actin-binding scaffolding protein | Stabilizes SSTR5; may be involved in Pasireotide signaling and response;some data support associations with invasiveness | [86,87,88] |
Ki-67 | Cell proliferation index | ↑ in aggressive tumors (TP53, SG subtype); associated with recurrence, invasiveness | [63,64,66,67] |
E-Cadherin | Cell adhesion molecule | ↓ linked with tumor dedifferentiation and invasiveness, poor prognosis | [23,56,59,60,61] |
Granulation pattern | Secretory granule density pattern | SG subtype = larger, invasive tumors, worse prognosis | [14,15,54,55,56,57,58] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chinezu, L.; Gliga, M.C.; Borz, M.B.; Gliga, C.; Pascanu, I.M. Clinical Implications of Molecular and Genetic Biomarkers in Cushing’s Disease: A Literature Review. J. Clin. Med. 2025, 14, 3000. https://doi.org/10.3390/jcm14093000
Chinezu L, Gliga MC, Borz MB, Gliga C, Pascanu IM. Clinical Implications of Molecular and Genetic Biomarkers in Cushing’s Disease: A Literature Review. Journal of Clinical Medicine. 2025; 14(9):3000. https://doi.org/10.3390/jcm14093000
Chicago/Turabian StyleChinezu, Laura, Maximilian Cosma Gliga, Mihnea Bogdan Borz, Camelia Gliga, and Ionela Maria Pascanu. 2025. "Clinical Implications of Molecular and Genetic Biomarkers in Cushing’s Disease: A Literature Review" Journal of Clinical Medicine 14, no. 9: 3000. https://doi.org/10.3390/jcm14093000
APA StyleChinezu, L., Gliga, M. C., Borz, M. B., Gliga, C., & Pascanu, I. M. (2025). Clinical Implications of Molecular and Genetic Biomarkers in Cushing’s Disease: A Literature Review. Journal of Clinical Medicine, 14(9), 3000. https://doi.org/10.3390/jcm14093000