Effectiveness of Tranexamic Acid in Reducing Hidden Blood Loss During Laparoscopic Sleeve Gastrectomy: A Randomized Clinical Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Trial Design
2.2. Participants
- Age over 18;
- Qualification for SG;
- Obtained, informed consent for participating in the study.
- Use of anticoagulative agents in the perioperative period, including the following:
- ○
- Indirect thrombin inhibitors (Fondaparinux, UFH, and LMWH in therapeutic doses);
- ○
- Direct inhibitors of factor Xa (NOAC);
- ○
- Direct thrombin inhibitors (Dabigatran);
- ○
- Vitamin K antagonists (VKA: acenocoumarol, warfarin);
- ○
- Platelet aggregation inhibitors (excluding ASA in doses of 75 mg per day);
- ○
- P2Y12 receptor inhibitors.
- Known blood coagulation disorders (congenital or acquired);
- History of TXA allergy;
- Chronic kidney disease in stage ≥ G3;
- Chronic hemodialysis or history of hematuria;
- Seizures in medical history.
2.3. Interventions
2.4. Outcomes
2.5. Sample Size
2.6. Randomization
2.7. Statistical Methods
3. Results
3.1. Intention-to-Treat Analysis
3.1.1. Primary Endpoint
3.1.2. Secondary Endpoints
3.2. Subgroup Analyses
3.3. Adverse Events
3.4. Per-Protocol Analysis
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alsumali, A.; Eguale, T.; Bairdain, S.; Samnaliev, M. Cost-Effectiveness Analysis of Bariatric Surgery for Morbid Obesity. Obes. Surg. 2018, 28, 2203–2214. [Google Scholar] [CrossRef]
- Noparatayaporn, P.; Thavorncharoensap, M.; Chaikledkaew, U.; Bagepally, B.S.; Thakkinstian, A. Incremental Net Monetary Benefit of Bariatric Surgery: Systematic Review and Meta-Analysis of Cost-Effectiveness Evidences. Obes. Surg. 2021, 31, 3279–3290. [Google Scholar] [CrossRef]
- Kassir, R.; Debs, T.; Blanc, P.; Gugenheim, J.; Ben Amor, I.; Boutet, C.; Tiffet, O. Complications of bariatric surgery: Presentation and emergency management. Int. J. Surg. 2016, 27, 77–81. [Google Scholar] [CrossRef] [PubMed]
- McCarty, T.R.; Kumar, N. Revision Bariatric Procedures and Management of Complications from Bariatric Surgery. Dig. Dis. Sci. 2022, 67, 1688–1701. [Google Scholar] [CrossRef] [PubMed]
- Souche, R.; de Jong, A.; Nomine-Criqui, C.; Nedelcu, M.; Brunaud, L.; Nocca, D. Complications after bariatric surgery. Presse Med. 2018, 47, 464–470. [Google Scholar] [CrossRef] [PubMed]
- Kitahama, S.; Smith, M.D.; Rosencrantz, D.R.; Patterson, E.J. Is bariatric surgery safe in patients who refuse blood transfusion? Surg. Obes. Relat. Dis. 2013, 9, 390–394. [Google Scholar] [CrossRef] [PubMed]
- Wozniewska, P.; Diemieszczyk, I.; Hady, H.R. Complications associated with laparoscopic sleeve gastrectomy—A review. Gastroenterol. Rev. Przegląd Gastroenterol. 2021, 16, 5–9. [Google Scholar] [CrossRef]
- Zhou, J.; Du, R.; Wang, L.; Wang, F.; Li, D.; Tong, G.; Wang, W.; Ding, X.; Wang, D. The Application of Enhanced Recovery After Surgery (ERAS) for Patients Undergoing Bariatric Surgery: A Systematic Review and Meta-analysis. Obes. Surg. 2021, 31, 1321–1331. [Google Scholar] [CrossRef] [PubMed]
- Mocanu, V.; Dang, J.; Ladak, F.; Switzer, N.; Birch, D.W.; Karmali, S. Predictors and outcomes of bleed after sleeve gastrectomy: An analysis of the MBSAQIP data registry. Surg. Obes. Relat. Dis. 2019, 15, 1675–1681. [Google Scholar] [CrossRef]
- Straatman, J.; Verhaak, T.; Demirkiran, A.; Harlaar, N.J.; Cense, H.A.; Jonker, F.H.W.; de Brauw, L.M.; de Castro, S.M.M.; Damen, S.L.; Jonker, F.; et al. Risk factors for postoperative bleeding in bariatric surgery. Surg. Obes. Relat. Dis. 2022, 18, 1057–1065. [Google Scholar] [CrossRef]
- Doumouras, A.G.; Saleh, F.; Hong, D. 30-Day readmission after bariatric surgery in a publicly funded regionalized center of excellence system. Surg. Endosc. 2016, 30, 2066–2072. [Google Scholar] [CrossRef] [PubMed]
- Szymański, M.; Marek, I.; Hellmann, A.; Patel, A.; Bigda, J.; Kaska, Ł.; Proczko-Stepaniak, M. Endoscopic management of early GI tract bleeding in a group of bariatric patients undergoing a fast track protocol. Videosurgery Other Miniinvasive Tech. 2021, 16, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Dorman, R.B.; Miller, C.J.; Leslie, D.B.; Serrot, F.J.; Slusarek, B.; Buchwald, H.; Connett, J.E.; Ikramuddin, S. Risk for hospital readmission following bariatric surgery. PLoS ONE 2012, 7, e32506. [Google Scholar] [CrossRef] [PubMed]
- Wei, D.; Hsiao, C.; Johnston, S. Costs of Complications in Laparoscopic Bariatric Surgery. Value Health 2018, 21, S253. [Google Scholar] [CrossRef]
- Sehat, K.R.; Evans, R.; Newman, J.H. How much blood is really lost in total knee arthroplasty? Correct blood loss management should take hidden loss into account. Knee 2000, 7, 151–155. [Google Scholar] [CrossRef]
- Klaassen, R.A.; Selles, C.A.; Van Den Berg, J.W.; Poelman, M.M.; Van Der Harst, E. Tranexamic acid therapy for postoperative bleeding after bariatric surgery. BMC Obes. 2018, 5, 36. [Google Scholar] [CrossRef] [PubMed]
- Devereaux, P.J.; Marcucci, M.; Painter, T.W.; Conen, D.; Lomivorotov, V.; Sessler, D.I.; Chan, M.T.; Borges, F.K.; Martínez-Zapata, M.J.; Wang, C.Y.; et al. Tranexamic Acid in Patients Undergoing Noncardiac Surgery. N. Engl. J. Med. 2022, 386, 1986–1997. [Google Scholar] [CrossRef]
- Kim, C.; Park, S.S.H.; Roderick Davey, J. Tranexamic acid for the prevention and management of orthopedic surgical hemorrhage: Current evidence. J. Blood Med. 2015, 6, 239–244. [Google Scholar] [PubMed]
- Rivas, L.; Estroff, J.; Sparks, A.; Nahmias, J.; Allen, R.; Smith, S.R.; Kutcher, M.; Carter, K.; Grigorian, A.; Albertson, S.; et al. The incidence of venous thromboembolic events in trauma patients after tranexamic acid administration: An EAST multicenter study. Blood Coagul. Fibrinolysis 2021, 32, 37–43. [Google Scholar] [CrossRef]
- Pennington, Z.; Ehresman, J.; Schilling, A.; Feghali, J.; Hersh, A.M.; Hung, B.; Kalivas, E.N.; Lubelski, D.; Sciubba, D.M. Influence of tranexamic acid use on venous thromboembolism risk in patients undergoing surgery for spine tumors. J. Neurosurg. Spine 2021, 35, 663–673. [Google Scholar] [CrossRef]
- Peng, H.; Wang, L.; Weng, X.; Zhai, J.; Lin, J.; Jin, J.; Qian, W.; Gao, N. Effect of tranexamic acid on symptomatic venous thromboembolism in patients undergoing primary total knee arthroplasty. Arch. Med. Sci. 2020, 16, 603–612. [Google Scholar] [CrossRef]
- Myers, S.P.; Kutcher, M.E.; Rosengart, M.R.; Sperry, J.L.; Peitzman, A.B.; Brown, J.B.; Neal, M.D. Tranexamic acid administration is associated with an increased risk of posttraumatic venous thromboembolism. J. Trauma Acute Care Surg. 2019, 86, 20–27. [Google Scholar] [CrossRef]
- Carvalho, L.; Almeida, R.F.; Nora, M.; Guimarães, M. Thromboembolic Complications After Bariatric Surgery: Is the High Risk Real? Cureus 2023, 15, e33444. [Google Scholar] [CrossRef] [PubMed]
- Szeliga, J.; Wyleżoł, M.; Major, P.; Budzyński, A.; Binda, A.; Proczko-Stepaniak, M.; Boniecka, I.; Matłok, M.; Sekuła, M.; Kaska, Ł.; et al. Metabolic and Bariatric Surgery Chapter of the Association of Polish Surgeons. Bariatric and metabolic surgery care standards. Videosurgery Other Miniinvasive Tech. 2020, 15, 391–394. [Google Scholar] [CrossRef]
- Eisenberg, D.; Shikora, S.A.; Aarts, E.; Aminian, A.; Angrisani, L.; Cohen, R.V.; De Luca, M.; Faria, S.L.; Goodpaster, K.P.; Haddad, A.; et al. 2022 American Society for Metabolic and Bariatric Surgery (ASMBS) and International Federation for the Surgery of Obesity and Metabolic Disorders (IFSO): Indications for Metabolic and Bariatric Surgery. Surg. Obes. Relat. Dis. 2022, 18, 1345–1356. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Hopewell, S.; Schulz, K.F.; Montori, V.; Gøtzsche, P.C.; Devereaux, P.J.; Elbourne, D.; Egger, M.; Altman, D.G. CONSORT 2010 Explanation and Elaboration: Updated guidelines for reporting parallel group randomised trials. Bmj 2010, 340, c869. [Google Scholar] [CrossRef]
- Dindo, D.; Demartines, N.; Clavien, P.A. Classification of surgical complications: A new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann. Surg. 2004, 240, 205–213. [Google Scholar] [CrossRef]
- Nadler, S.B.; Hidalgo, J.U.; Bloch, T. Prediction of blood volume in normal human adults. Surgery 1962, 51, 224–232. [Google Scholar]
- Shen, S.N.; Wu, D.X.; Lv, S.J.; Tong, P.J. Hidden blood loss of total knee arthroplasty in hemophilia arthritis: An analysis of influencing factors. BMC Musculoskelet. Disord. 2022, 23, 587. [Google Scholar] [CrossRef]
- Ye, M.; Zhou, J.; Chen, J.; Yan, L.; Zhu, X. Analysis of hidden blood loss and its influential factors in myomectomy. J. Int. Med. Res. 2020, 48, 0300060520920417. [Google Scholar] [CrossRef]
- Zhang, C.; Fan, H.W.; Yi, W.W.; Zheng, Z.Q. Hidden blood loss and its influential factors after laparoscopy-Assisted gastrectomy for gastric cancer. J. Laparoendosc. Adv. Surg. Tech. 2018, 28, 237–241. [Google Scholar] [CrossRef]
- Wan, R.R.; Wang, Y.L.; Wu, X.C.; Qian, H.; Tan, Z.H.; Xiao, R.Y.; Xie, P. Hidden blood loss and the influencing factors after laparoscopic cholecystectomy. ANZ J. Surg. 2020, 90, 103–108. [Google Scholar] [CrossRef]
- Li, S.; Liang, A. The hidden blood loss and its factors in patients undergoing minimally invasive knee arthroscopy. Front. Surg. 2022, 9, 944481. [Google Scholar] [CrossRef]
- Nijland, L.M.G.; de Castro, S.M.M.; van Veen, R.N. Risk Factors Associated with Prolonged Hospital Stay and Readmission in Patients After Primary Bariatric Surgery. Obes. Surg. 2020, 30, 2395–2402. [Google Scholar] [CrossRef]
- Major, P.; Wysocki, M.; Pędziwiatr, M.; Pisarska, M.; Dworak, J.; Małczak, P.; Budzyński, A. Risk factors for complications of laparoscopic sleeve gastrectomy and laparoscopic Roux-en-Y gastric bypass. Int. J. Surg. 2017, 37, 71–78. [Google Scholar] [CrossRef]
- Deneuvy, A.; Slim, K.; Sodji, M.; Blanc, P.; Gallet, D.; Blanchet, M.C. Implementation of enhanced recovery programs for bariatric surgery. Results from the Francophone large-scale database. Surg. Obes. Relat. Dis. 2018, 14, 99–105. [Google Scholar] [CrossRef]
- Tian, S.; Shen, Z.; Liu, Y.; Zhang, Y.; Peng, A. The effect of tranexamic acid on hidden bleeding in older intertrochanteric fracture patients treated with PFNA. Injury 2018, 49, 680–684. [Google Scholar] [CrossRef]
- Nishida, T.; Kinoshita, T.; Yamakawa, K. Tranexamic acid and trauma-induced coagulopathy. J. Intensive Care 2017, 5, 5. [Google Scholar] [CrossRef]
- Mocanu, V.; Wilson, H.; Verhoeff, K.; Kung, J.; Walsh, C.; Koloszvari, N.; Neville, A.; Karmali, S. Role of Tranexamic Acid (TXA) in Preventing Bleeding Following Sleeve Gastrectomy: A Systematic Review and Meta-analysis. Obes. Surg. 2023, 33, 1571–1579. [Google Scholar] [CrossRef]
- ‘t Hart, J.W.H.; Noordman, B.J.; Wijnand, J.M.A.; Biter, L.U.; Verbrugge, S.J.C.; Birnie, E.; Dunkelgrun, M.; Huisbrink, J.; Apers, J.A. Peroperative administration of tranexamic acid in sleeve gastrectomy to reduce hemorrhage: A double-blind randomized controlled trial. Surg. Endosc. 2023, 37, 7455–7463. [Google Scholar] [CrossRef]
- Eisinger, E.C.; Forsythe, L.; Joergensen, S.; Murali, S.; Cannon, J.W.; Reilly, P.M.; Kim, P.K.; Kaufman, E.J. Thromboembolic Complications Following Perioperative Tranexamic Acid Administration. J. Surg. Res. 2024, 293, 676–684. [Google Scholar] [CrossRef]
- Leverett, G.D.; Marriott, A. Intravenous tranexamic acid and thromboembolic events in hip fracture surgery: A systematic review and meta-analysis. Orthop. Traumatol. Surg. Res. 2023, 109, 103337. [Google Scholar] [CrossRef] [PubMed]
- Ockerman, A.; Vanassche, T.; Garip, M.; Vandenbriele, C.; Engelen, M.M.; Martens, J.; Politis, C.; Jacobs, R.; Verhamme, P. Tranexamic acid for the prevention and treatment of bleeding in surgery, trauma and bleeding disorders: A narrative review. Thromb. J. 2021, 19, 54. [Google Scholar] [CrossRef] [PubMed]
- Liao, L.; Chen, Y.; Tang, Q.; Chen, Y.Y.; Wang, W.C. Tranexamic acid plus drain-clamping can reduce blood loss in total knee arthroplasty: A systematic review and meta-analysis. Int. J. Surg. 2018, 52, 334–341. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.W.; Wang, B.H. Efficacy of tranexamic acid plus drain-clamping to reduce blood loss in total knee arthroplasty: A meta-analysis. Medicine 2017, 96, e7363. [Google Scholar] [CrossRef] [PubMed]
- Safran, T.; Vorstenbosch, J.; Viezel-Mathieu, A.; Davison, P.; Dionisopoulos, T. Topical Tranexamic Acid in Breast Reconstruction: A Double-Blind Randomized Controlled Trial. Plast. Reconstr. Surg. 2023, 152, 699–706. [Google Scholar] [CrossRef]
- Peng, L.; Zeng, J.; Zeng, Y.; Wu, Y.; Yang, J.; Shen, B. Effect of an Elevated Preoperative International Normalized Ratio on Transfusion and Complications in Primary Total Hip Arthroplasty with the Enhanced Recovery after Surgery Protocol. Orthop. Surg. 2022, 14, 18–26. [Google Scholar] [CrossRef]
- Shakur, H.; Fawole, B.; Kuti, M.; Olayemi, O.O.; Bello, A.; Ogunbode, O.; Kotila, T.; Aimakhu, C.O.; Huque, S.; Gregg, M.; et al. Effect of tranexamic acid on coagulation and fibrinolysis in women with postpartum haemorrhage (WOMAN-ETAC): Protocol and statistical analysis plan for a randomized controlled trial. Wellcome Open Res. 2016, 1, 31. [Google Scholar] [CrossRef]
- Liu, F.; Xu, D.; Zhang, K.; Zhang, J. Effects of tranexamic acid on coagulation indexes of patients undergoing heart valve replacement surgery under cardiopulmonary bypass. Int. J. Immunopathol. Pharmacol. 2016, 29, 753–758. [Google Scholar] [CrossRef]
- Froehling, D.A.; Daniels, P.R.; Mauck, K.F.; Collazo-Clavell, M.L.; Ashrani, A.A.; Sarr, M.G.; Petterson, T.M.; Bailey, K.R.; Heit, J.A. Incidence of venous thromboembolism after bariatric surgery: A population-based cohort study. Obes. Surg. 2013, 23, 1874–1879. [Google Scholar] [CrossRef]
- Hany, M.; Abouelnasr, A.A.; Agayby, A.S.S.; Abdelsattar, A.; Torensma, B. Towards Zero Thromboembolic Events After Bariatric Metabolic Surgery. Obes. Surg. 2023, 33, 1606–1612. [Google Scholar] [CrossRef] [PubMed]
- Lech, P.; Michalik, M.; Waczyński, K.; Osowiecka, K.; Dowgiałło-Gornowicz, N. Effectiveness of prophylactic doses of tranexamic acid in reducing hemorrhagic events in sleeve gastrectomy. Langenbeck’s Arch. Surg. 2022, 407, 2733–2737. [Google Scholar] [CrossRef] [PubMed]
- Aminian, A.; Andalib, A.; Khorgami, Z.; Cetin, D.; Burguera, B.; Bartholomew, J.; Brethauer, S.A.; Schauer, P.R. Who Should Get Extended Thromboprophylaxis After Bariatric Surgery? Ann. Surg. 2017, 265, 143–150. [Google Scholar] [CrossRef]
- Paciullo, F.; Bury, L.; Noris, P.; Falcinelli, E.; Melazzini, F.; Orsini, S.; Zaninetti, C.; Abdul-Kadir, R.; Obeng-Tuudah, D.; Heller, P.G.; et al. Antithrombotic prophylaxis for surgery-associated venous thromboembolism risk disorders. In patients the SPATA-DVT with inherited Study platelet. Haematologica 2020, 105, 1948–1956. [Google Scholar] [CrossRef] [PubMed]
Intention-to-Treat | Per-Protocol | |||||
---|---|---|---|---|---|---|
CG (n = 123) | TG (n = 115) | p-Value for Group Comparison | CG (n = 102) | TG (n = 136) | p-Value for Group Comparison | |
Age (years) | 41 [39.5–43.1] | 41.4 [39.7–43.1] | 0.926 1 | 41.2 [39.4–43.1] | 41.4 [39.7–43.2] | 0.852 1 |
Female gender | 79 (64%) | 77 (67%) | 0.658 3 | 63 (62%) | 93 (68%) | 0.288 3 |
Height (m) | 1.72 [1.71–1.74] | 1.70 [1.58–1.90] * | 0.753 2 | 1.73 [1.71–1.74] | 1.70 [1.58–1.90] * | 0.112 2 |
Preoperative weight (kg) | 119 [90–172] | 111 [86–175] * | 0.097 2 | 121 [91–172] * | 111 [86–175] * | 0.075 2 |
Preoperative body mass index (kg/m2) | 40 [33–53.1] * | 38.9 [30.8–49.5] * | 0.261 2 | 39.9 [33.3–53.1] * | 38.6 [31.4–49.8] * | 0.167 2 |
Maximal weight (kg) | 135 [102–196] * | 127 [94–190] * | 0.046 2 | 135 [104–196] * | 127 [94–190] * | 0.047 2 |
Maximal body mass index (kg/m2) | 45 [36.7–59.9] * | 44.3 [35.9–56.8] * | 0.089 2 | 45.5 [37.8–59.9] * | 44.1 [35.4–58.3] * | 0.163 2 |
Diabetes mellitus | 21 (17%) | 20 (17%) | 0.948 3 | 18 (18%) | 23 (17%) | 0.882 3 |
Hypertension | 54 (44%) | 51 (44%) | 0.945 3 | 46 (45%) | 59 (43%) | 0.792 3 |
Dyslipidemia | 87 (71%) | 77 (67%) | 0.530 3 | 76 (74.51%) | 88 (65%) | 0.106 3 |
Previous abdominal surgeries | 40 (33%) | 43 (37.39%) | 0.431 3 | 31 (30%) | 52 (38%) | 0.209 3 |
Preoperative lab tests | ||||||
Hemoglobin concentration (g/dL) | 14 [13.9–14.4] | 14 [13.8–14.3] | 0.495 1 | 14.5 [11.5–16.1] * | 14 [13.8–14.2] | 0.790 2 |
Hematocrit (%) | 43 [41.9–43.4] | 42.3 [41.7–42.9] | 0.481 1 | 42.8 [42–43.6] | 42.3 [41.7–42.9] | 0.277 1 |
Platelet count (103/μL) | 251 [174–394] * | 263 [252.5–272.5] | 0.746 2 | 255 [174–388] * | 263 [176–355] * | 0.982 2 |
White blood cell count (103/μL) | 8 [5–12] * | 7.8 [7.4–8.1] | 0.206 2 | 7.8 [5–11.3] * | 7.6 [4.9–11.4] * | 0.396 2 |
Hemoglobin mass (g) | 875 [628–1261] * | 843 [626–1280] * | 0.206 2 | 898 [628–1261] * | 830 [626–1280] * | 0.056 2 |
Intention-to-Treat | Per-Protocol | |||||
---|---|---|---|---|---|---|
CG (n = 123) | TG (n = 115) | p-Value for Group Comparison | CG (n = 102) | TG (n = 136) | p-Value for Group Comparison | |
Procedure time (min) | 55 [40–90] * | 54 [39–91] * | 0.880 2 | 55 [40–88] * | 55 [40–95] * | 0.408 2 |
Postoperative lab tests from peripheral blood sample | ||||||
Hemoglobin concentration (g/dL) | 13.5 [13.2–13.7] | 13.5 [13.3–13.8] | 0.751 1 | 13.8 [10.9–15.4] * | 13.5 [13.3–13.7] | 0.407 2 |
Hematocrit (%) | 40.6 [39.9–41.4] | 40.9 [40.3–41.5] | 0.613 1 | 40.7 [39.9–41.5] | 40.8 [40.2–41.4] | 0.873 1 |
Platelet count (103/μL) | 255 [171–383] * | 258 [247.4–268.6] | 0.888 2 | 257.5 [171–371] * | 257 [162–346] * | 0.913 2 |
WBC count (103/μL) | 10.9 [10.4–11.4] | 11.1 [10.6–11.5] | 0.703 1 | 10.9 [10.4–11.4] | 11.1 [10.7–11.6] | 0.437 1 |
Difference in hemoglobin concentration (g/dL) | 0.7 [0.5–0.9] | 0.5 [0.4–0.7] | 0.103 1 | 0.7 [0.5–0.9] | 0.5 [0.4–0.7] | 0.089 1 |
Difference in hematocrit (%) | 2 [1.5–2.5] | 1.4 [1–1.9] | 0.072 1 | 2.1 [1.6–2.6] | 1.5 [1.1–1.9] | 0.065 1 |
Difference in platelet count (103/μL) | 1.5 [−4.1–7.1] | 7 [−51–47] * | 0.340 2 | 3 [−2.9–8.9] | 6 [−52–47] * | 0.771 2 |
Difference in WBC count (103/μL) | −2.9 [−3.4–−2.5] | −3.3 [−3.7–−2.9] | 0.245 1 | −3 [−3.4–−2.5] | −3.2 [−3.6–−2.8] | 0.428 1 |
Postoperative lab tests from drainage sample | ||||||
Drainage volume (mL) | 40 [10–140] * | 40 [5–101] * | 0.187 2 | 40 [5–160] * | 40 [5–101] * | 0.520 2 |
Hemoglobin concentration (g/dL) | 1.4 [0.1–7.1] * | 0.7 [0.1–6.1] * | 0.011 2 | 1.7 [0.1–7.7] * | 0.7 [0.1–6.1] * | 0.001 2 |
Hematocrit (%) | 4 [0.1–22.9] * | 1.8 [0.1–19.4] * | 0.029 2 | 5 [0.1–23.4] * | 1.8 [0.1–19.4] * | 0.003 2 |
Hemoglobin mass (volume × concentration) (g) | 0.4 [0–5.6] * | 0.2 [0–3.4] * | 0.005 2 | 0.6 [0–9.6] * | 0.2 [0–3.5] * | 0.006 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bieniaszewski, K.; Proczko-Stepaniak, M.; Wilczyński, M.; Nowicki, P.; Bigda, J.; Szymański, M. Effectiveness of Tranexamic Acid in Reducing Hidden Blood Loss During Laparoscopic Sleeve Gastrectomy: A Randomized Clinical Trial. J. Clin. Med. 2025, 14, 3010. https://doi.org/10.3390/jcm14093010
Bieniaszewski K, Proczko-Stepaniak M, Wilczyński M, Nowicki P, Bigda J, Szymański M. Effectiveness of Tranexamic Acid in Reducing Hidden Blood Loss During Laparoscopic Sleeve Gastrectomy: A Randomized Clinical Trial. Journal of Clinical Medicine. 2025; 14(9):3010. https://doi.org/10.3390/jcm14093010
Chicago/Turabian StyleBieniaszewski, Ksawery, Monika Proczko-Stepaniak, Maciej Wilczyński, Piotr Nowicki, Justyna Bigda, and Michał Szymański. 2025. "Effectiveness of Tranexamic Acid in Reducing Hidden Blood Loss During Laparoscopic Sleeve Gastrectomy: A Randomized Clinical Trial" Journal of Clinical Medicine 14, no. 9: 3010. https://doi.org/10.3390/jcm14093010
APA StyleBieniaszewski, K., Proczko-Stepaniak, M., Wilczyński, M., Nowicki, P., Bigda, J., & Szymański, M. (2025). Effectiveness of Tranexamic Acid in Reducing Hidden Blood Loss During Laparoscopic Sleeve Gastrectomy: A Randomized Clinical Trial. Journal of Clinical Medicine, 14(9), 3010. https://doi.org/10.3390/jcm14093010