Interrelation between Neuroendocrine Disturbances and Medical Complications Encountered during Rehabilitation after TBI
Abstract
:1. Introduction
2. Neurorehabilitation
Motor Function | Strength |
Coordination | |
Dexterity | |
Velocity of movement | |
Ambulation | |
Cognitive Function | Alertness |
Attention | |
Concentration | |
Memory | |
Learning | |
Executive function | |
Behavioural and Psychosocial Function | Apathy |
Depression | |
Anxiety | |
Impulsivity | |
Irritability | |
Aggression/Agitation | |
Social communication |
Symptoms of Head Injury | Symptoms of Neuroendocrine Disturbances |
---|---|
Headache | ACTH: Headache, Nausea/vomiting/diarrhoea TSH: weight gain/constipation |
Other chronic/acute pain | TSH: Arthralgia/myalgia ACTH: Stomach pain |
TSH: Cold intolerance | |
Sleep disturbance | Melatonin: Sleep disturbance |
Visual impairment | |
Vestibular impairment | |
Dizziness | ACTH:Dizziness |
Attention and/or concentration deficits | GH, testosterone, estrogen: Attention and/or concentration deficits Osteoporosis Decreased cardiovascular endurance Decreased lean body mass |
Reduced libido | Testosterone, estrogen: Reduced libido |
Testosterone, estrogen, prolactin↑: Infertility Menstrual dysfunction Erectile dysfunction Decreased cardiovascular endurance (Osteoporosis) | |
Executive control deficits | GH: executive function deficits |
Irritability | Estrogen: Irritability |
Poor frustration tolerance | GH: Poor frustration tolerance |
Anger | GH: Anger |
Impulsivity | GH: Impulsivity |
Lack of initiative, apathy | ACTH, GH, TSH, testosterone/estrogen: Lack of initiative, apathy |
Loss of energy | ACTH, GH, TSH, testosterone/estrogen: Loss of energy |
Getting tired easily | ACTH, GH, TSH, testosterone/estrogen: Getting tired easily |
New learning and memory deficits | ACTH, GH, TSH, testosterone/estrogen: New learning and memory deficits |
Feeling anxious | ACTH, GH, TSH, testosterone/estrogen: Feeling anxious |
Feeling depressed | ACTH, GH, TSH, testosterone/estrogen: Feeling depressed |
3. Neuroendocrine Disturbances
4. Medical Complications
4.1. Hydrocephalus
Medical Complications | Symptomatology | Risk Factors | Neuroendocrine Disturbance Causing Similar Symptoms |
---|---|---|---|
Neuroendocrine disturbances | advanced age, injury severity, skull fractures | ||
Hydrocephalus |
| advanced age, injury severity, intraventricular haemorrhage, subarachnoid haemorrhage, meningitis |
|
Post-traumatic epilepsy |
| skull fractures, penetrating injury, advanced age, neurological deficit |
|
Fatigue | anxiety, depression daytime sleepiness, diminished cognitive function | gender (female)? Pituitary dysfunction? anxiety, depression, sleep disturbances, cognitive and motor disturbance, pain | Anterior pituitary insufficiency: GH, TSH, ACTH Decreased evening melatonin synthesis (sleep disturbance) |
Disorders of consciousness | Injury severity | ? | |
Paroxysmal sympathetic hyperactivity |
| injury severity diffuse axonal injury gender (male), younger age | |
Psychiatric-behavioural Symptoms (Apathy, Depression, Anxiety, Agitation/Aggression) |
|
Gender (male) |
|
4.2. Epilepsy
4.3. Fatigue
4.4. Disorders of Consciousness
4.5. Paroxysmal Sympathetic Hyperactivity
4.6. Psychiatric-Behavioural Symptoms (Apathy, Depression, Anxiety, Agitation/Aggression)
5. Gender
6. Conclusions
Conflicts of Interest
References
- Roozenbee, B.; Maas, A.I.R.; Menon, D.K. Changing patterns in the epidemiology of traumatic brain injury. Nat. Rev. Neurol. 2013, 9, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Tagliaferri, F.; Compagnone, C.; Korsic, M.; Servadei, F.; Kraus, J. A systematic review of brain injury epidemiology in Europe. Acta Neurochir. 2006, 148, 255–268. [Google Scholar] [CrossRef] [PubMed]
- Corrigan, J.D.; Bogner, J.; Pretz, C.; Mellick, D.; Kreider, S.; Whiteneck, G.G.; Harrison-Felix, C.; Dijkers, M.P.; Heinemann, A.W. Use of neighborhood characteristics to improve prediction of psychosocial outcomes: A traumatic brain injury model systems investigation. Arch. Phys. Med. Rehabil. 2012, 93, 1350–1358. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.T.; Pettigrew, L.E.; Teasdale, G.M. Structured interviews for the Glasgow Outcome Scale and the extended Glasgow Outcome Scale: Guidelines for their use. J. Neurotrauma 1998, 15, 573–585. [Google Scholar] [CrossRef] [PubMed]
- Teasdale, G.; Jennett, B. Assessment of coma and impaired consciousness. A practical scale. Lancet 1974, 2, 81–84. [Google Scholar] [CrossRef]
- Maas, A.I.R.; Murray, G.D.; Roozenbeek, B.; Lingsma, H.F.; Butcher, I.; McHugh, G.S.; Weir, J.; Lu, J.; Steyerberg, E.W.; International Mission on Prognosis Analysis of Clinical Trials in Traumatic Brain Injury (IMPACT) Study Group. Advancing care for traumatic brain injury: Findings from the IMPACT studies and perspectives on future research. Lancet Neurol. 2013, 12, 1200–1210. [Google Scholar] [CrossRef]
- Roozenbeek, B.; Chiu, Y.L.; Lingsma, H.F.; Gerber, L.M.; Steyerberg, E.W.; Ghajar, J.; Maas, A.I. Predicting 14-day mortality after severe traumatic brain injury: Application of the IMPACT models in the brain trauma foundation TBI-trac® New York State database. J. Neurotrauma 2012, 29, 1306–1312. [Google Scholar] [CrossRef] [PubMed]
- Willemse-van Son, A.H.P.; Ribbers, G.M.; Verhagen, A.P.; Stam, H.J. Prognostic factors of long-term functioning and productivity after traumatic brain injury: A systematic review of prospective cohort studies. Clin. Rehabil. 2007, 21, 1024–1037. [Google Scholar] [CrossRef] [PubMed]
- Schönberger, M.; Ponsford, J.; Olver, J.; Ponsford, M.; Wirtz, M. Prediction of functional and employment outcome 1 year after traumatic brain injury: A structural equation modelling approach. J. Neurol. Neurosurg. Psychiatry 2011, 82, 936–941. [Google Scholar] [CrossRef] [PubMed]
- Jourdan, C.; Bosserelle, V.; Azerad, S.; Ghout, I.; Bayen, E.; Aegerter, P.; Weiss, J.J.; Mateo, J.; Lescot, T.; Vigué, B.; et al. Predictive factors for 1-year outcome of a cohort of patients with severe traumatic brain injury (TBI): Results from the PariS-TBI study. Brain Inj. 2013, 27, 1000–1007. [Google Scholar] [CrossRef] [PubMed]
- Liou, A.K.; Clark, R.S.; Henshall, D.C.; Yin, X.M.; Chen, J. To die or not to die for neurons in ischemia, traumatic brain injury and epilepsy: A review on the stress-activated signaling pathways and apoptotic pathways. Prog. Neurobiol. 2003, 69, 103–142. [Google Scholar] [CrossRef]
- Werner, C.; Engelhard, K. Pathophysiology of traumatic brain injury. Br. J. Anaesth. 2007, 99, 4–9. [Google Scholar] [CrossRef] [PubMed]
- Eapen, B.C.; Allred, D.B.; O’Rourke, J.; Cifu, D.X. Rehabilitation of Moderate-to-Severe Traumatic Brain Injury. Semin. Neurol. 2015, 35, e1–e13. [Google Scholar] [PubMed]
- Chen, Z.Y.; Patel, P.D.; Sant, G.; Meng, C.X.; Teng, K.K.; Hempstead, B.L.; Lee, F.S. Variant brain-derived neurotrophic factor (BDNF) (Met66) alters the intracellular trafficking and activity-dependent secretion of wild-type BDNF in neurosecretory cells and cortical neurons. J. Neurosci. 2004, 24, 4401–4411. [Google Scholar] [CrossRef] [PubMed]
- Failla, M.D.; Kumar, R.G.; Peitzman, A.B.; Conley, Y.P.; Ferrell, R.E.; Wagner, A.K. Variation in the BDNF gene interacts with age to predict mortality in a prospective, longitudinal cohort with severe TBI. Neurorehabil. Neural Repair 2015, 29, 234–246. [Google Scholar] [CrossRef] [PubMed]
- Garcia, A.N.; Shah, M.A.; Dixon, C.E.; Wagner, A.K.; Kline, A.E. Biologic and plastic effects of experimental traumatic brain injury treatment paradigms and their relevance to clinical rehabilitation. PM&R 2011, 3 (Suppl. 1), S18–S27. [Google Scholar]
- Webb, N.E.; Little, B.; Loupee-Wilson, S.; Power, E.M. Traumatic brain injury and neuro-endocrine disruption: Medical and psychosocial rehabilitation. NeuroRehabilitation 2014, 34, 625–636. [Google Scholar] [PubMed]
- Bondanelli, M.; Ambrosio, M.R.; Cavazzini, L.; Bertocchi, A.; Zatelli, M.C.; Carli, A.; Valle, D.; Basaglia, N.; Uberti, E.C. Anterior pituitary function may predict functional and cognitive outcome in patients with traumatic brain injury undergoing rehabilitation. J. Neurotrauma 2007, 24, 1687–1697. [Google Scholar] [CrossRef] [PubMed]
- McHugh, G.S.; Engel, D.C.; Butcher, I.; Steyerberg, E.W.; Lu, J.; Mushkudiani, N.; Hernandez, A.V.; Marmarou, A.; Maas, A.I.R.; Murray, G.D. Prognostic value of secondary insults in traumatic brain injury: Results from the IMPACT study. J. Neurotrauma 2007, 24, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Stulemeijer, M.; van der Werf, S.; Borm, G.F.; Vos, P.E. Early prediction of favourable recovery 6 months after mild traumatic brain injury. J. Neurol. Neurosurg. Psych. 2008, 79, 936–942. [Google Scholar]
- Bazarian, J.J.; Blyth, B.; Mookerjee, S.; He, H.; McDermott, M.P. Sex differences in outcome after mild traumatic brain injury. J. Neurotrauma. 2010, 27, 527–539. [Google Scholar] [CrossRef] [PubMed]
- Renner, C.; Hummelsheim, H.; Kopczak, A.; Steube, D.; Schneider, H.J.; Schneider, M.; Kreitschmann-Andermahr, I.; Jordan, M.; Uhl, E.; Stalla, G.K. The influence of gender on the injury severity, course and outcome of traumatic brain injury. Brain Inj. 2012, 26, 1360–1371. [Google Scholar] [CrossRef] [PubMed]
- Susman, M.; DiRusso, S.M.; Sullivan, T.; Risucci, D.; Nealon, P.; Cuff, S.; Haider, A.; Benzil, D. Traumatic brain injury in the elderly: Increased mortality and worse functional outcome at discharge despite lower injury severity. J. Trauma. 2002, 53, 219–223. [Google Scholar] [CrossRef] [PubMed]
- Wagner, A.K.; Bayir, H.; Ren, D.; Puccio, A.; Zafonte, R.D.; Kochanek, P.M. Relationships between cerebrospinal fluid markers of excitotoxicity, ischemia, and oxidative damage after severe TBI: The impact of gender, age, and hypothermia. J. Neurotrauma 2004, 21, 125–136. [Google Scholar] [CrossRef] [PubMed]
- Onyszchuk, G.; He, Y.Y.; Berman, N.E.J.; Brooks, W.M. Detrimental effects of aging on outcome from traumatic brain injury: A behavioral, magnetic resonance imaging, and histological study in mice. J. Neurotrauma 2008, 25, 153–171. [Google Scholar] [CrossRef] [PubMed]
- Kraus, J.F.; Peek-Asa, C.; McArthur, D.L. The independent effect of gender on outcomes following traumatic brain injury: A preliminary investigation. Neurosurg. Focus 2000, 8, e5. [Google Scholar] [CrossRef] [PubMed]
- Farace, E.; Alves, W.M. Do women fare worse: A metaanalysis of gender differences in traumatic brain injury outcome. J. Neurosurg. 2000, 93, 539–545. [Google Scholar] [CrossRef] [PubMed]
- Farin, A.; Deutsch, R.; Biegon, A.; Marshall, L.F. Sex-related differences in patients with severe head injury: Greater susceptibility to brain swelling in female patients 50 years of age and younger. J. Neurosurg. 2003, 98, 32–36. [Google Scholar] [CrossRef] [PubMed]
- Davis, D.P.; Douglas, D.J.; Smith, W.; Sise, M.J.; Vilke, G.M.; Holbrook, T.L.; Kennedy, F.; Eastman, A.B.; Velky, T.; Hoyt, D.B. Traumatic brain injury outcomes in pre- and post-menopausal females versus age-matched males. J. Neurotrauma 2006, 23, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Kirkness, C.J.; Burr, R.L.; Mitchell, P.H.; Newell, D.W. Is there a sex difference in the course following traumatic brain injury? Biol. Res. Nurs. 2004, 5, 299–310. [Google Scholar] [CrossRef] [PubMed]
- Bayir, H.; Marion, D.W.; Puccio, A.M.; Wisniewski, S.R.; Janesko, K.L.; Clark, R.S.; Kochanek, P.M. Marked gender effect on lipid peroxidation after severe traumatic brain injury in adult patients. J. Neurotrauma 2004, 21, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ley, E.J.; Short, S.S.; Liou, D.Z.; Singer, M.B.; Mirocha, J.; Melo, N.; Bukur, M.; Salim, A. Gender impacts mortality after traumatic brain injury in teenagers. J. Trauma Acute Care Surg. 2013, 75, 682–686. [Google Scholar] [CrossRef] [PubMed]
- Slewa-Younan, S.; van den Berg, S.; Baguley, I.J.; Nott, M.; Cameron, I.D. Towards an understanding of sex differences in functional outcome following moderate to severe traumatic brain injury: A systematic review. J. Neurol. Neurosurg. Psychiatry 2008, 79, 1197–1201. [Google Scholar] [CrossRef] [PubMed]
- Mushkudiani, N.A.; Englel, D.C.; Steyerberg, E.W.; Butcher, I.; Lu, J.; Marmarou, A.; Slieker, F.; McHugh, G.S.; Murray, G.D.; Maas, A.I. Prognostic value of demographic characteristics intraumatic brain injury: Results from the IMPACT study. J. Neurotrauma 2007, 24, 259–256. [Google Scholar] [CrossRef] [PubMed]
- Van den Berghe, G. Novel insights into the neuroendocrinology of critical illness. Eur. J. Endocrinol. 2000, 143, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Aimaretti, G.; Ambrosio, M.R.; di Somma, C.; Fusco, A.; Cannavo, S.; Gasperi, M.; Scaroni, C.; de Marinis, L.; Benvenga, S.; degli Uberti, E.C.; et al. Traumatic brain injury and subarachnoid haemorrhage are conditions at high risk for hypopituitarism: Screeningstudy at 3 months after the brain injury. Clin. Endocrinol. (Oxf.) 2004, 61, 320–326. [Google Scholar] [CrossRef] [PubMed]
- Ghigo, E.; Masel, B.; Aimaretti, G.; Leon-Carrion, J.; Casanueva, F.F.; Dominguez-Morales, M.R.; Elovic, E.; Perrone, K.; Stalla, G.; Thompson, C.; et al. Consensus guidelines on screening for hypopituitarism following traumatic brain injury. Brain Inj. 2005, 19, 711–724. [Google Scholar] [CrossRef] [PubMed]
- Schneider, H.J.; Schneider, M.; Kreitschmann-Andermahr, I.; Tuschy, U.; Wallaschofski, H.; Fleck, S.; Faust, M.; Renner, C.I.; Kopczak, A.; Saller, B.; Buchfelder, M.; et al. Structured assessment of hypopituitarism after traumatic brain injury and aneurysmal subarachnoid hemorrhage in 1242 patients: The German interdisciplinary database. J. Neurotrauma 2011, 28, 1693–1698. [Google Scholar] [CrossRef] [PubMed]
- Lauzier, F.; Turgeon, A.F.; Boutin, A.; Shemilt, M.; Cote, I.; Lachance, O.; Archambault, P.M.; Lamontagne, F.; Moore, L.; Bernard, F.; Gagnon, C.; Cook, D. Clinical outcomes, predictors, and prevalence of anterior pituitary disorders following traumatic brain injury: A systematic review. Crit. Care Med. 2014, 42, 712–721. [Google Scholar] [CrossRef] [PubMed]
- Schneider, H.J.; Schneider, M.; Saller, B.; Petersenn, S.; Uhr, M.; Husemann, B.; von Rosen, F.; Stalla, G.K. Prevalence of anterior pituitary insufficiency 3 and 12 months after traumatic brain injury. Eur. J. Endocrinol. 2006, 154, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Greenwald, B.D.; Rigg, J.L. Neurorehabilitation in traumatic brain injury: Does it make a difference? Mt. Sinai. J. Med. 2009, 76, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Shaw, C.A.; McEachern, J.C. Toward a Theory of Neuroplasticity; Psychology Press: Philadelphia, PA, USA, 2001. [Google Scholar]
- Kolb, B.; Muhammad, A. Harnessing the power of neuroplasticity for intervention. Front. Hum. Neurosci. 2014, 8, 377. [Google Scholar] [CrossRef] [PubMed]
- Bondanelli, M.; Ambrosio, M.R.; Zatelli, M.C.; de Marinis, L.; degli Uberti, E.C. Hypopituitarism after traumatic brain injury. Eur. J. Endocrinol. 2005, 152, 679–691. [Google Scholar] [CrossRef] [PubMed]
- Bondanelli, M.; Zatelli, M.C.; Ambrosio, M.R.; degli Uberti, E.C. Systemic illness. Pituitary 2008, 11, 187–207. [Google Scholar] [CrossRef] [PubMed]
- Porter, R.J.; Miller, R.A. Diabetes insipidus following closed head injury. J. Neurol. Neurosurg. Psychiatry 1946, 11, 528–562. [Google Scholar] [CrossRef]
- Escamila, R.F.; Rugman, D.R.; Payne, N.S.; Tindall, G.T. Hypothalamic hypothyroidism and hypogonadism in prolonged trauma coma. J. Neurosurg. 1978, 49, 65–96. [Google Scholar]
- Bevenga, S.; Campenni, A.; Ruggieri, R.M.; Trimarchi, F. Hypopituitarism secondary to head trauma. J. Clin. Endocrinol. Metab. 2000, 85, 1352–1361. [Google Scholar]
- Aimaretti, G.; Ghigo, E. Traumatic brain injury and hypopituitarism. Sci. World J. 2005, 5, 777–781. [Google Scholar]
- Daniel, P.M.; Prichard, M.M.; Treip, C.S. Traumatic infarction of the anterior lobe of the pituitary gland. Lancet 1959, 2, 927–931. [Google Scholar] [CrossRef]
- Kornblum, R.N.; Fisher, R.S. Pituitary lesions in craniocerebral injuries. Arch. Pathol. 1969, 88, 242–248. [Google Scholar] [PubMed]
- Kelestimur, F.; Tranriverdi, F.; Atmaca, H.; Unluchizarci, K.; Selcuklu, A.; Casanueva, F.F. Boxing as a sport activity associated with isolated GH deficiency. J. Endocrinol. Investig. 2004, 27, RC28–RC32. [Google Scholar] [CrossRef] [PubMed]
- Dimopoulou, I.; Tsagarakis, S.; Theodorakopoulou, M.; Douka, E.; Zervou, M.; Kouyialis, A.T.; Thalassinos, N.; Roussos, L. Endocrine abnormalities in critical care patients with moderate-to-severe head trauma: Incidence, pattern and predisposing factors. Intensive Care Med. 2004, 30, 1051–1057. [Google Scholar] [CrossRef] [PubMed]
- Agha, A.; Rogers, B.; Mylotte, D.; Taleb, F.; Tormey, W.; Phillips, J.; Thompson, C.J. Neuroendocrine dysfunction in the acute phase of traumatic brain injury. Clin. Endocrinol. 2004, 60, 584–591. [Google Scholar] [CrossRef] [PubMed]
- Tanriverdi, F.; de Bellis, A.; Ulutabanca, H.; Bizzarro, A.; Sinisi, A.A.; Bellastella, G.; Paglionico, V.A.; Mora, L.D.; Selcuklu, A.; Unluhizarci, K.; et al. A five year prospective investigation of anterior pituitary function after traumatic brain injury: Is hypopituitarism long-term after head trauma associated with autoimmunity? J. Neurotrauma 2013, 30, 1426–1433. [Google Scholar] [CrossRef] [PubMed]
- Schneider, H.J.; Kreitschmann-Andermahr, I.; Ghigo, E.; Stalla, G.; Agha, A. Hypothalamopituitary Dysfunction Following Traumatic Brain Injury and Aneurysmal Subarachnoid Hemorrhage A Systematic Review. JAMA 2007, 298, 1429–1438. [Google Scholar] [CrossRef] [PubMed]
- Popovic, V. GH deficiency as the most common pituitary defect after TBI: Clinical implications. Pituitary 2005, 8, 239–243. [Google Scholar] [CrossRef] [PubMed]
- Masel, B.E.; Urban, R. Chronic Endocrinopathies in Traumatic Brain Injury Disease. J. Neurotrauma 2015. [Google Scholar] [CrossRef] [PubMed]
- National Research Council. Gulf War and Health, Volume 7: Long-Term Consequences of Traumatic Brain Injury; The National Academies Press: Washington, DC, USA, 2008. [Google Scholar]
- Licata, C.; Cristofori, L.; Gambin, R.; Vivenza, C.; Turazzi, S. Post-traumatic hydrocephalus. J. Neurosurg. Sci. 2001, 45, 141–149. [Google Scholar] [PubMed]
- Mazzini, L.; Campini, R.; Angelino, E.; Rognone, F.; Pastore, I.; Oliveri, G. Posttraumatic hydrocephalus: A clinical, neuroradiologic, and neuropsychologic assessment of long-term outcome. Arch. Phys. Med. Rehabil. 2003, 84, 1637–1641. [Google Scholar] [CrossRef]
- Tian, H.L.; Xu, T.; Hu, J.; Cui, Y.H.; Chen, H.; Zhou, L.F. Risk factors related to hydrocephalus after traumatic subarachnoid hemorrhage. Surg. Neurol. 2008, 69, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Kammersgaard, L.P.; Linnemann, M.; Tibæk, M. Hydrocephalus following severe traumatic brain injury in adults. Incidence, timing, and clinical predictors during rehabilitation. NeuroRehabilitation 2013, 33, 473–480. [Google Scholar] [PubMed]
- Rekate, H.L. A contemporary definition and classification of hydrocephalus. Semin. Pediatr. Neurol. 2009, 16, 9–15. [Google Scholar] [CrossRef]
- Ding, J.; Guo, Y.; Tian, H. The influence of decompressive craniectomy on the development of hydrocephalus: A review. Arq. Neuropsiquiatr. 2014, 72, 715–720. [Google Scholar] [CrossRef] [PubMed]
- Zollman, F.S. Manual of Traumatic Brain Injury Management; Demos Medical: New York, NY, USA, 2011. [Google Scholar]
- Denes, Z.; Barsi, P.; Szel, I.; Boros, E.; Fazekas, G. Complication during postacute rehabilitation: Patients with posttraumatic hydrocephalus. Int. J. Rehabil. Res. 2011, 34, 222–226. [Google Scholar] [CrossRef] [PubMed]
- Annegers, J.F.; Hauser, W.A.; Coan, S.P.; Rocca, W.A. A population-based study of seizures after traumatic brain injuries. N. Engl. J. Med. 1998, 338, 20–24. [Google Scholar] [CrossRef] [PubMed]
- Chang, B.S.; Lowenstein, D.H. Quality Standards Subcommittee of the American Academy of Neurology. Practice parameter: Antiepileptic drug prophylaxis in severe traumatic brain injury: Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 2003, 60, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Asikainen, I.; Kaste, M.; Sarna, S. Early and late posttraumatic seizures in traumatic brain injury rehabilitation patients: Brain injury factors causing late seizures and influence of seizures on long-term outcome. Epilepsia 1999, 40, 584–589. [Google Scholar] [CrossRef] [PubMed]
- Temkin, N.R. Preventing and treating posttraumatic seizures: The human experience. Epilepsia 2009, 50 (Suppl. 2), 10–13. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, W.M.; Rowe, A.S. Long-term comparison of GOS-E scores in patients treated with phenytoin or levetiracetam for posttraumatic seizure prophylaxis after traumatic brain injury. Ann. Pharmacother. 2014, 48, 1440–1444. [Google Scholar] [CrossRef] [PubMed]
- Bhullar, I.S.; Johnson, D.; Paul, J.P.; Kerwin, A.J.; Tepas, J.J.; Frykberg, E.R. More harm than good: Antiseizure prophylaxis after traumatic brain injury does not decrease seizure rates but may inhibit functional recovery. J. Trauma Acute Care Surg. 2014, J76, 54–60; discussion 60–61. [Google Scholar] [CrossRef] [PubMed]
- Torbic, H.; Forni, A.A.; Anger, K.E.; Degrado, J.R.; Greenwood, B.C. Use of antiepileptics for seizure prophylaxis after traumatic brain injury. Am. J. Health Syst. Pharm. 2013, 70, 759–766. [Google Scholar] [CrossRef] [PubMed]
- Inaba, K.; Menaker, J.; Branco, B.C.; Gooch, J.; Okoye, O.T.; Herrold, J.; Scalea, T.M.; Dubose, J.; Demetriades, D. A prospective multicenter comparison of levetiracetam versus phenytoin for early posttraumatic seizure prophylaxis. J. Trauma Acute Care Surg. 2013, 74, 766–771; discussion 771–773. [Google Scholar] [CrossRef] [PubMed]
- Cantu, D.; Walker, K.; Andresen, L.; Taylor-Weiner, A.; Hampton, D.; Tesco, G.; Dulla, C.G. Traumatic brain injury increases cortical glutamate network activity by compromising GABAergic control. Cereb Cortex. 2015, 25, 2306–2320. [Google Scholar] [CrossRef] [PubMed]
- Pitkänen, A.; Kemppainen, S.; Ndode-Ekane, X.E.; Huusko, N.; Huttunen, J.K.; Gröhn, O.; Immonen, R.; Sierra, A.; Bolkvadze, T. Posttraumatic epilepsy—Disease or comorbidity? Epilepsy Behav. 2014, 38, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Englander, J.; Bushnik, T.; Duong, T.T.; Cifu, D.X.; Zafonte, R.; Wright, J.; Hughes, R.; Bergman, W. Analyzing risk factors for late posttraumatic seizures: A prospective, multicenter investigation. Arch. Phys. Med. Rehabil. 2003, 84, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Pugh, M.J.; Orman, J.A.; Jaramillo, C.A.; Salinsky, M.C.; Eapen, B.C.; Towne, A.R.; Amuan, M.E.; Roman, G.; McNamee, S.D.; Kent, T.A.; et al. The prevalence of epilepsy and association with traumatic brain injury in veterans of the Afghanistan and Iraq wars. J. Head Trauma Rehabil. 2015, 30, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Bushnik, T.; Englander, J.; Wright, J.; Kolakowsky-Hayner, S.A. Traumatic brain injury with and without late posttraumatic seizures: What are the impacts in the post-acute phase: A NIDRR Traumatic Brain Injury Model Systems study. J. Head Trauma Rehabil. 2012, 27, E36–E44. [Google Scholar] [CrossRef] [PubMed]
- Kolakowsky-Hayner, S.A.; Wright, J.; Englander, J.; Duong, T.; Ladley-O’Brien, S. Impact of late post-traumatic seizures on physical health and functioning for individuals with brain injury within the community. Brain Inj. 2013, 27, 578–586. [Google Scholar] [CrossRef] [PubMed]
- Nicolai, J.; Ebus, S.; Biemans, D.P.; Arends, J.; Hendriksen, J.; Vles, J.S.; Aldenkamp, A.P. The cognitive effects of interictal epileptiform EEG discharges and short nonconvulsive epileptic seizures. Epilepsia 2012, 53, 1051–1059. [Google Scholar] [CrossRef] [PubMed]
- Aldenkamp, A. Effects of epileptiform EEG discharges on cognitive function. In Epilepsy and Memory; Zeman, A., Kapur, N., Jones-Gotman, M., Eds.; Oxford University Press: Oxford, UK, 2012; pp. 160–176. [Google Scholar]
- Shekleton, J.A.; Parcell, D.L.; Redman, J.R.; Phipps-Nelson, J.; Ponsford, J.L.; Rajaratnam, S.M. Sleep disturbance and melatonin levels following traumatic brain injury. Neurology 2010, 74, 1732–1738. [Google Scholar] [CrossRef] [PubMed]
- Englander, J.; Bushnik, T.; Oggins, J.; Katznelson, L. Fatigue after traumatic brain injury: Association with neuroendocrine, sleep, depression and other factors. Brain Inj. 2010, 24, 1379–1388. [Google Scholar] [CrossRef] [PubMed]
- Bushnik, T.; Englander, J.; Wright, J. The experience of fatigue in the first 2 years after moderate to severe traumatic brain injury: A preliminary report. J. Head Trauma Rehabil. 2008, 23, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Olver, J.H.; Ponsford, J.L.; Curran, C.A. Outcome following TBI: A comparison between 2 and 5 years post injury. Brain Inj. 1996, 10, 841–848. [Google Scholar] [CrossRef] [PubMed]
- Ponsford, J.L.; Ziino, C.; Parcell, D.L.; Shekleton, J.A.; Roper, M.; Redman, J.R.; Phipps-Nelson, J.; Rajaratnam, S.M. Fatigue and sleep disturbance following traumatic brain injury—Their nature, causes, and potential treatments. J. Head Trauma Rehabil. 2012, 27, 224–233. [Google Scholar] [PubMed]
- Belmont, A.; Agar, N.; Hugeron, C.; Gallais, B.; Azouvi, P. Fatigueand traumatic brain injury. Ann. Readapt. Med. Phys. 2006, 49, 283–288, 370–374. [Google Scholar] [CrossRef] [PubMed]
- Bushnik, T.; Englander, J.; Wright, J. Patterns of fatigue and its correlates over the first 2 years after traumatic brain injury. J. Head Trauma Rehabil. 2008, 23, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Ponsford, J.L.; Schonberger, M.; Wilson Rajaratnam, S.M. A model of fatigue following traumatic brain injury. J. Head Trauma Rehabil. 2015, 30, 277–282. [Google Scholar] [PubMed]
- Sinclair, K.L.; Ponsford, J.L.; Taffe, J.; Lockley, S.W.; Rajaratnam, S.M. Sleep and fatigue following traumatic brain injury. Neurorehabil. Neural Repair 2014, 28, 303–313. [Google Scholar] [CrossRef] [PubMed]
- Bushnik, T.; Englander, J.; Katznelson, L. Fatigue after TBI: Association with neuroendocrine abnormalities. Brain Inj. 2007, 21, 559–566. [Google Scholar] [CrossRef] [PubMed]
- Cleare, A.J.; Blair, D.; Chambers, S.; Wessely, S. Urinary free cortisol in chronic fatigue syndrome. Am. J. Psychiatry 2001, 158, 641–643. [Google Scholar] [CrossRef] [PubMed]
- Laureys, S.; Celesia, G.G.; Cohadon, F.; Lavrijsen, J.; León-Carrión, J.; Sannita, W.G.; Sazbon, L.; Schmutzhard, E.; von Wild, K.R.; Zeman, A.; et al. Unresponsive wakefulness syndrome. A new name for the vegetative state or apallic syndrome. BMC Med. 2010, 8, 68. [Google Scholar] [PubMed]
- Giacino, J.T.; Ashwal, S.; Childs, N.; Cranford, R.; Jennett, B.; Katz, D.I.; Kelly, J.P.; Rosenberg, J.H.; Whyte, J.; Zafonte, R.D.; et al. The minimally conscious state: Definition and diagnostic criteria. Neurology 2002, 58, 349–353. [Google Scholar] [CrossRef] [PubMed]
- Medical aspects of the persistent vegetative state (1). The Multi-Society Task Force on PVS. N. Engl. J. Med. 1994, 330, 1499–1508.
- Medical aspects of the persistent vegetative state (2). The Multi-Society Task Force on PVS. N. Engl. J. Med. 1994, 330, 1572–1579.
- Kotwica, Z.; Jakubowski, J.K. Head-injured adult patients with GCS of 3 on admission: Who have a chance to survive? Acta Neurochir. (Wien) 1995, 133, 56–59. [Google Scholar] [PubMed]
- Levy, M.L.; Masri, L.S.; Lavine, S.; Apuzzo, M.L. Outcome prediction after penetrating craniocerebral injury in a civilian population: Aggressive surgical management in patients with admission Glasgow Coma Scale scores of 3, 4, or 5. Neurosurgery 1994, 35, 77–85. [Google Scholar] [PubMed]
- Katz, D.I.; Polyak, M.; Coughlan, D.; Nichols, M.; Roche, A. Natural history of recovery from brain injury after prolonged disorders of consciousness: Outcome of patients admitted to inpatient rehabilitation with 1–4 year follow up. Prog. Brain Res. 2009, 177, 73–88. [Google Scholar] [PubMed]
- Nakase-Richardson, R.; Whyte, J.; Giacino, J.; Pavawalla, S.; Barnett, S.D.; Yablon, S.A.; Sherer, M.; Kalmar, K.; Hammond, F.M.; Greenwald, B.; et al. Longitudinal outcome of patients with disordered consciousness in the NIDRR TBI Model Systems Programs. J. Neurotrauma 2012, 29, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Nakase-Richardson, R.; McNamee, S.; Howe, L.L.; Massengale, J.; Peterson, M.; Barnett, S.D.; Harris, O.; McCarthy, M.; Tran, J.; Scott, S.; et al. Descriptive characteristics and rehabilitation outcomes in active duty military personnel and veterans with disorders of consciousness with combat- and noncombat-related brain injury. Arch. Phys. Med. Rehabil. 2013, 94, 1861–1869. [Google Scholar] [CrossRef] [PubMed]
- Whyte, J.; Nakase-Richardson, R.; Hammond, F.M.; McNamee, S.; Giacino, J.T.; Kalmar, K.; Greenwald, B.D.; Yablon, S.A.; Horn, L.J. Functional outcomes in traumatic disorders of consciousness: 5-year outcomes from the National Institute on Disability and Rehabilitation Research Traumatic Brain Injury Model Systems. Arch. Phys. Med. Rehabil. 2013, 94, 1855–1860. [Google Scholar] [CrossRef] [PubMed]
- Whyte, J.; Nordenbo, A.M.; Kalmar, K.; Merges, B.; Bagiella, E.; Chang, H.; Yablon, S.; Cho, S.; Hammond, F.; Khademi, A.; Giacino, J. Medical complications during inpatient rehabilitation among patients with traumatic disorders of consciousness. Arch. Phys. Med. Rehabil. 2013, 94, 1877–1883. [Google Scholar] [CrossRef] [PubMed]
- Nakase-Richardson, R.; Tran, J.; Cifu, D.; Barnett, S.D.; Horn, L.J.; Greenwald, B.D.; Brunner, R.C.; Whyte, J.; Hammond, F.M.; Yablon, S.A.; et al. Do rehospitalization rates differ among injury severity levels in the NIDRR Traumatic Brain Injury Model Systems program? Arch. Phys. Med. Rehabil. 2013, 94, 1884–1890. [Google Scholar] [CrossRef] [PubMed]
- Ganesh, S.; Guernon, A.; Chalcraft, L.; Harton, B.; Smith, B.; Louise-Bender Pape, T. Medical comorbidities in disorders of consciousness patients and their association with functional outcomes. Arch. Phys. Med. Rehabil. 2013, 94, 1899–1907. [Google Scholar] [CrossRef] [PubMed]
- Kleindienst, A.; Brabant, G.; Bock, C.; Maser-Gluth, C.; Buchfelder, M. Neuroendocrine function following traumatic brain injury and subsequent intensive care treatment: A prospective longitudinal evaluation. J. Neurotrauma 2009, 26, 1435–1446. [Google Scholar] [CrossRef] [PubMed]
- Steppacher, I.; Kaps, M.; Kissler, J. Will time heal? A long-term follow-up of severe disorders of consciousness. Ann. Clin. Transl. Neurol. 2014, 1, 401–408. [Google Scholar] [CrossRef] [PubMed]
- Perkes, I.; Baguley, I.J.; Nott, M.T.; Menon, D.K. A review of paroxysmal sympathetic hyperactivity after acquired brain injury. Ann. Neurol. 2010, 68, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Ortega, J.F.; Prieto-Palomino, M.A.; Garcia-Caballero, M.; Galeas-Lopez, J.L.; Quesada-Garcia, G.; Baguley, I.J. Paroxysmal sympathetic hyperactivity after traumatic brain injury: Clinical and prognostic implications. J. Neurotrauma 2012, 29, 1364–1370. [Google Scholar] [CrossRef] [PubMed]
- Baguley, I.J. The excitatory: Inhibitory ratio model (EIR model): An integrative explanation of acute autonomic overactivity syndromes. Med. Hypotheses 2008, 70, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Mitsis, E.M.; Chu, K.; Newmark, R.E.; Hazlett, E.A.; Buchsbaum, M.S. Statistical parametric mapping and cluster counting analysis of [18F] FDG-PET imaging in traumatic brain injury. J. Neurotrauma 2010, 27, 35–49. [Google Scholar] [CrossRef] [PubMed]
- Perkes, I.E.; Menon, D.K.; Nott, M.T.; Baguley, I.J. Paroxysmal sympathetic hyperactivity after acquired brain injury: A review of diagnostic criteria. Brain Inj. 2011, 25, 925–932. [Google Scholar] [CrossRef] [PubMed]
- Baguley, I.J.; Heriseanu, R.E.; Gurka, J.A.; Nordenbo, A.; Cameron, I.D. Gabapentin in the management of dysautonomia following severe traumatic brain injury: A case series. J. Neurol. Neurosurg. Psychiatry 2007, 78, 539–541. [Google Scholar] [CrossRef] [PubMed]
- Baguley, I.J.; Perkes, I.E.; Fernandez-Ortega, J.F.; Rabinstein, A.A.; Dolce, G.; Hendricks, H.T. Paroxysmal sympathetic hyperactivity after acquired brain injury: Consensus on conceptual definition, nomenclature, and diagnostic criteria. J. Neurotrauma 2014, 31, 1515–1520. [Google Scholar] [CrossRef] [PubMed]
- Ciurli, P.; Formisano, R.; Bivona, U.; Cantagallo, A.; Angelelli, P. Neuropsychiatric disorders in persons with severe traumatic brain injury: Prevalence, phenomenology, and relationship with demographic, clinical, and functional features. J. Head Trauma Rehabil. 2011, 26, 116–126. [Google Scholar] [CrossRef] [PubMed]
- Kim, E. Agitation, aggression, and disinhibition syndromes after traumatic brain injury. NeuroRehabilitation 2002, 17, 297–310. [Google Scholar] [PubMed]
- Levy, M.; Berson, A.; Cook, T.; Bollegala, N.; Seto, E.; Tursanski, S.; Kim, J.; Sockalingam, S.; Rajput, A.; Krishnadev, N.; et al. Treatment of agitation following traumatic brain injury: A review of literature. Neurorehabilitation 2005, 20, 279–306. [Google Scholar] [PubMed]
- Van der Naalt, J.; van Zomeren, A.H.; Sluiter, W.J.; Minderhoud, J.M. Acute behavioural disturbances related to imaging studies and outcome in mild-to-moderate head injury. Brain Inj. 2000, 14, 781–788. [Google Scholar] [CrossRef] [PubMed]
- Osborn, A.J.; Mathias, J.L.; Fairweather-Schmidt, A.K. Depression following adult, non-penetrating traumatic brain injury: A meta-analysis examining methodological variables and sample characteristics. Neurosci. Biobehav. Rev. 2014, 47, 1–15. [Google Scholar] [PubMed]
- Hart, T.; Brenner, L.; Clark, A.N.; Bogner, J.A.; Novack, T.A.; Chervoneva, I.; Nakase-Richardson, R.; Arango-Lasprilla, J.C. Major and minor depression after traumatic brain injury. Arch. Phys. Med. Rehabil. 2011, 92, 1211–1219. [Google Scholar] [CrossRef] [PubMed]
- Hart, T.; Hoffman, J.M.; Pretz, C.; Kennedy, R.; Clark, A.N.; Brenner, L.A. Alongitudinal study of major and minor depression following traumatic brain injury. Arch. Phys. Med. Rehabil. 2012, 93, 1343–1349. [Google Scholar] [CrossRef] [PubMed]
- Webster, J.B.; Bell, K.R. Primary adrenal insufficiency following traumatic brain injury: A case report and review of the literature. Arch. Phys. Med. Rehabil. 1997, 78, 314–318. [Google Scholar] [CrossRef]
- Colantonio, A.; Harris, J.E.; Ratcliff, G.; Chase, S.; Ellis, K. Gender differences in self reported long term outcomes following moderate to severe traumatic brain injury. BMC Neurol. 2010, 10, 102. [Google Scholar] [CrossRef] [PubMed]
- Ruigrok, A.N.V.; Salimi-Khorshidi, G.; Lai, M.; Baron-Cohen, S.; Lombardo, M.V.; Tait, R.J.; Suckling, J. A meta-analysis of sex differences in human brainstructure. Neurosci. Biobehav. Rev. 2014, 39, 34–50. [Google Scholar] [CrossRef] [PubMed]
- Mathias, J.L.; Wheaton, P. Contribution of brain or biological reserve and cognitive or neural reserve to outcome after TBI: A meta-analysis (prior to 2015). Neurosci. Biobehav. Rev. 2015, 55, 573–593. [Google Scholar] [CrossRef] [PubMed]
- Cancelliere, C.; Donovan, J.; Cassidy, J.D. Is sex an indicator of prognosis after mild traumatic brain injury: A systematic analysis of the findings of the WHO Collaborating Centre Task Force on Mild Traumatic Brain Injury and the International Collaboration on Mild Traumatic Brain Injury Prognosis. Arch. Phys. Med. Rehabil. 2015. [Google Scholar] [CrossRef] [PubMed]
- McGlade, E.; Rogowska, J.; Yurgelun-Todd, D. Sex differences in orbitofrontal connectivity in male and female veterans with TBI. Brain Imaging Behav. 2015. [Google Scholar] [CrossRef] [PubMed]
- Stein, D.G. Progesterone exerts neuroprotective effects after brain injury. Brain Res. Rev. 2008, 57, 386–397. [Google Scholar] [CrossRef] [PubMed]
- Sayeed, I.; Stein, D.G. Progesterone as a neuroprotective factor in traumatic and ischemic brain injury. In Progress in Brain Research. Volume 175; Neurotherapy: Progress in Restorative Neuroscience and Neurology; Verhaagen, J., Hol, E.M., Huitinga, I., Wijnholds, J., Bergen, A.A., Boer, G.J., Swaab, D.F., Eds.; Elsevier: Amsterdam, The Netherlands, 2009; pp. 219–237. [Google Scholar]
- Wright, D.W.; Yeatts, S.D.; Silbergleit, R.; Palesch, Y.Y.; Hertzberg, V.S.; Frankel, M.; Goldstein, F.C.; Caveney, A.F.; Howlett-Smith, H.; Bengelink, E.M.; et al. Very early administration of progesterone for acute traumatic brain injury. N. Engl. J. Med. 2014, 371, 2457–2466. [Google Scholar] [PubMed]
- Skolnick, B.E.; Maas, A.I.; Narayan, R.K.; van der Hoop, R.G.; MacAllister, T.; Ward, J.D.; Nelson, N.R.; Stocchetti, N. SYNAPSE Trial Investigators. A clinical trial of progesterone for severe traumatic brain injury. N. Engl. J. Med. 2014, 371, 2467–2476. [Google Scholar] [CrossRef] [PubMed]
- Wagner, A.K.; McCullough, E.H.; Niyonkuru, C.; Ozawa, H.; Loucks, T.L.; Dobos, J.A.; Brett, C.A.; Santarsieri, M.; Dixon, C.E.; Berga, S.L.; et al. Acute serum hormone levels: Characterization and prognosis after severe traumatic brain injury. J. Neurotrauma 2011, 28, 871–888. [Google Scholar] [CrossRef] [PubMed]
- Garringer, J.A.; Niyonkuru, C.; McCullough, E.H.; Loucks, T.; Dixon, C.E.; Conley, Y.P.; Berga, S.; Wagner, A.K. Impact of aromatase genetic variation on hormone levels and global outcome after severe TBI. J. Neurotrauma 2013, 30, 1415–1425. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Renner, C.I.E. Interrelation between Neuroendocrine Disturbances and Medical Complications Encountered during Rehabilitation after TBI. J. Clin. Med. 2015, 4, 1815-1840. https://doi.org/10.3390/jcm4091815
Renner CIE. Interrelation between Neuroendocrine Disturbances and Medical Complications Encountered during Rehabilitation after TBI. Journal of Clinical Medicine. 2015; 4(9):1815-1840. https://doi.org/10.3390/jcm4091815
Chicago/Turabian StyleRenner, Caroline I. E. 2015. "Interrelation between Neuroendocrine Disturbances and Medical Complications Encountered during Rehabilitation after TBI" Journal of Clinical Medicine 4, no. 9: 1815-1840. https://doi.org/10.3390/jcm4091815
APA StyleRenner, C. I. E. (2015). Interrelation between Neuroendocrine Disturbances and Medical Complications Encountered during Rehabilitation after TBI. Journal of Clinical Medicine, 4(9), 1815-1840. https://doi.org/10.3390/jcm4091815