Omega-3 Fatty Acids in Modern Parenteral Nutrition: A Review of the Current Evidence
Abstract
:1. Introduction
2. Classification and Mechanisms of Action
3. Fatty Acids: An Overview of Clinical Impact
3.1. Fatty Acids and Immune-Inflammatory Response
4. Physiological Effects and Associated Health Benefits of n-3 LC-PUFA
4.1. Cardioprotective, Antihypertensive, and Antithrombotic Effects
4.2. Anticancer and Anti-Cachectic Effects and Inhibition of Tumor Growth
4.3. Visual and Cognitive Development
4.4. Lipid Metabolism and Insulin Sensitivity
4.5. Inflammatory Disease
4.6. Immune Function
5. N-3 Fatty Acids in Parenteral Nutrition—Clinical Benefits
5.1. Preservation of Hepatocellular Integrity During Long-Term PN in Adults and Children
5.2. Critical Illness
5.3. Oncology
5.4. Surgery
5.5. Safety and Tolerability during Long-Term Use
5.6. Recommended Dosage and Duration of Intervention
5.7. Cost-Effectiveness
6. Conclusions
Author Contributions
Conflicts of Interest
References
- Sobotka, L. Basics in Clinical Nutrition, 4th ed.; Galen: Prague, Czech Republic, 2011. [Google Scholar]
- Waitzberg, D.L.; Torrinhas, R.S.; Jacintho, T.M. New parenteral lipid emulsions for clinical use. JPEN J. Parenter. Enteral Nutr. 2006, 30, 351–367. [Google Scholar] [CrossRef] [PubMed]
- Wanten, G.J.; Calder, P.C. Immune modulation by parenteral lipid emulsions. Am. J. Clin. Nutr. 2007, 85, 1171–1184. [Google Scholar] [PubMed]
- Calder, P.C. Long-chain n-3 fatty acids and inflammation: Potential Application in Surgical and Trauma Patients. Braz. J. Med. Biol. Res. 2003, 36, 433–446. [Google Scholar] [CrossRef] [PubMed]
- Carpentier, Y.A.; Dupont, I.E. Advances in intravenous lipid emulsions. World J. Surg. 2000, 24, 1493–1497. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C.; Jensen, G.L.; Koletzko, B.V.; Singer, P.; Wanten, G.J. Lipid emulsions in parenteral nutrition of intensive care patients: Current Thinking and Future Directions. Intensive Care Med. 2010, 36, 735–749. [Google Scholar] [CrossRef] [PubMed]
- Klek, S.; Chambrier, C.; Singer, P.; Rubin, M.; Bowling, T.; Staun, M.; Joly, F.; Rasmussen, H.; Strauss, B.J.; Wanten, G.; et al. Four-week parenteral nutrition using a third generation lipid emulsion (smoflipid)—A double-blind, randomised, multicentre study in adults. Clin. Nutr. 2013, 32, 224–231. [Google Scholar] [CrossRef] [PubMed]
- Carpentier, Y.A. Intravascular metabolism of fat emulsions: The Arvid Wretlind Lecture, Espen 1988. Clin. Nutr. 1989, 8, 115–125. [Google Scholar] [CrossRef]
- Carneheim, C.; Larsson-Backström, C.; Ekman, L. New fatty acids in the emulsions of the nineties. possibilities and implications. In Essential Fatty Acids and Total Parenteral Nutrition; Ghisolfi, J., Ed.; John Libbey Eurotext: Paris, France, 1990; pp. 171–180. [Google Scholar]
- Calder, P.C. Hot topics in parenteral nutrition. Rationale for using new lipid emulsions in parenteral nutrition and a review of the trials performed in adults. Proc. Nutr. Soc. 2009, 68, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Krohn, K.; Koletzko, B. Parenteral lipid emulsions in paediatrics. Curr. Opin. Clin. Nutr. Metab. Care 2006, 9, 319–323. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, C.; Austin, T.; Seidner, D.L. Essential fatty acid deficiency in human adults during parenteral nutrition. Nutr. Clin. Pract. 2006, 21, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C. Use of fish oil in parenteral nutrition: Rationale and reality. Proc. Nutr. Soc. 2006, 65, 264–277. [Google Scholar] [CrossRef] [PubMed]
- Mayer, K.; Schaefer, M.B.; Seeger, W. Fish oil in the critically ill: From experimental to clinical data. Curr. Opin. Clin. Nutr. Metab. Care 2006, 9, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Fürst, P.; Kuhn, K.S. Fish oil emulsions: What benefits can they bring? Clin. Nutr. 2000, 19, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C. Omega-3 polyunsaturated fatty acids and inflammatory processes: Nutrition or pharmacology? Br. J. Clin. Pharmacol. 2013, 75, 645–662. [Google Scholar] [CrossRef] [PubMed]
- Mayer, K.; Gokorsch, S.; Fegbeutel, C.; Hattar, K.; Rosseau, S.; Walmrath, D.; Seeger, W.; Grimminger, F. Parenteral nutrition with fish oil modulates cytokine response in patients with sepsis. Am. J. Respir. Crit Care Med. 2003, 167, 1321–1328. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C. Rationale and use of n-3 fatty acids in artificial nutrition. Proc. Nutr. Soc. 2010, 69, 565–573. [Google Scholar] [CrossRef] [PubMed]
- Ferrero-Miliani, L.; Nielsen, O.H.; Andersen, P.S.; Girardin, S.E. Chronic inflammation: Importance of Nod2 and Nalp3 in interleukin-1beta generation. Clin. Exp. Immunol. 2007, 147, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C. Omega-3 fatty acids and inflammatory processes. Nutrients 2010, 2, 355–374. [Google Scholar] [CrossRef] [PubMed]
- Bone, R.C.; Balk, R.A.; Cerra, F.B.; Dellinger, R.P.; Fein, A.M.; Knaus, W.A.; Schein, R.M.; Sibbald, W.J. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM consensus conference committee. American college of chest physicians/society of critical care medicine. Chest 1992, 101, 1644–1655. [Google Scholar] [CrossRef] [PubMed]
- Singer, P.; Doig, G.; Pichard, C. The truth about nutrition in the icu. Intensive Care Med. 2014, 40, 252–255. [Google Scholar] [CrossRef] [PubMed]
- Calviello, G.; Serini, S.; Piccioni, E. N-3 polyunsaturated fatty acids and the prevention of colorectal cancer: Molecular mechanisms involved. Curr. Med. Chem. 2007, 14, 3059–3069. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C. Mechanisms of action of (n-3) fatty acids. J. Nutr. 2012, 142, 592S–599S. [Google Scholar] [CrossRef] [PubMed]
- Grbic, J.T.; Mannick, J.A.; Gough, D.B.; Rodrick, M.L. The role of prostaglandin E2 in immune suppression following injury. Ann. Surg. 1991, 214, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Ertel, W.; Morrison, M.H.; Meldrum, D.R.; Ayala, A.; Chaudry, I.H. Ibuprofen restores cellular immunity and decreases susceptibility to sepsis following hemorrhage. J. Surg Res. 1992, 53, 55–61. [Google Scholar] [CrossRef]
- Kollef, M.H.; Schuster, D.P. The acute respiratory distress syndrome. N. Engl. J. Med. 1995, 332, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C. The 2008 espen sir david cuthbertson lecture: Fatty acids and inflammation—From the membrane to the nucleus and from the laboratory bench to the clinic. Clin. Nutr. 2010, 29, 5–12. [Google Scholar] [CrossRef] [PubMed]
- Bannenberg, G.L.; Chiang, N.; Ariel, A.; Arita, M.; Tjonahen, E.; Gotlinger, K.H.; Hong, S.; Serhan, C.N. Molecular circuits of resolution: Formation and actions of resolvins and protectins. J. Immunol. 2005, 174, 4345–4355. [Google Scholar] [CrossRef] [PubMed]
- Bannenberg, G.; Arita, M.; Serhan, C.N. Endogenous receptor agonists: Resolving inflammation. Sci. World J. 2007, 7, 1440–1462. [Google Scholar] [CrossRef] [PubMed]
- Bannenberg, G.; Serhan, C.N. Specialized pro-resolving lipid mediators in the inflammatory response: An update. Biochim. Biophys. Acta 2010, 1801, 1260–1273. [Google Scholar] [CrossRef] [PubMed]
- Serhan, C.N. Pro-resolving lipid mediators are leads for resolution physiology. Nature 2014, 510, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Lu, Y. Omega-3 fatty acid-derived resolvins and protectins in inflammation resolution and leukocyte functions: Targeting novel lipid mediator pathways in mitigation of acute kidney injury. Front. Immunol. 2013, 4, 13. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Gronert, K.; Devchand, P.R.; Moussignac, R.L.; Serhan, C.N. Novel docosatrienes and 17s-resolvins generated from docosahexaenoic acid in murine brain, human blood, and glial cells autacoids in anti-inflammation. J. Biol. Chem. 2003, 278, 14677–14687. [Google Scholar] [CrossRef] [PubMed]
- Serhan, C.N.; Hong, S.; Gronert, K.; Colgan, S.P.; Devchand, P.R.; Mirick, G.; Moussignac, R.L. Resolvins: A Family of Bioactive Products of Omega-3 Fatty Acid Transformation Circuits Initiated by Aspirin Treatment that Counter Proinflammation Signals. J. Exp. Med. 2002, 196, 1025–1037. [Google Scholar] [CrossRef] [PubMed]
- Marcheselli, V.L.; Hong, S.; Lukiw, W.J.; Tian, X.H.; Gronert, K.; Musto, A.; Hardy, M.; Gimenez, J.M.; Chiang, N.; Serhan, C.N.; et al. Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression. J. Biol. Chem. 2003, 278, 43807–43817. [Google Scholar] [CrossRef] [PubMed]
- Serhan, C.N.; Petasis, N.A. Resolvins and protectins in inflammation resolution. Chem. Rev. 2011, 111, 5922–5943. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Lu, Y.; Shah, S.P.; Hong, S. Autacoid 14S, 21R-dihydroxy-docosahexaenoic acid counteracts diabetic impairment of macrophage prohealing functions. Am. J. Pathol. 2011, 179, 1780–1791. [Google Scholar] [CrossRef] [PubMed]
- Hisada, T.; Ishizuka, T.; Aoki, H.; Mori, M. Resolvin E1 as a novel agent for the treatment of asthma. Expert Opin. Ther. Targets 2009, 13, 513–522. [Google Scholar] [CrossRef]
- Morita, M.; Kuba, K.; Ichikawa, A.; Nakayama, M.; Katahira, J.; Iwamoto, R.; Watanebe, T.; Sakabe, S.; Daidoji, T.; Nakamura, S.; et al. The lipid mediator protectin D1 inhibits influenza virus replication and improves severe influenza. Cell 2013, 153, 112–125. [Google Scholar] [CrossRef] [PubMed]
- Ortigoza, M.B.; Dibben, O.; Maamary, J.; Martinez-Gil, L.; Leyva-Grado, V.H.; Abreu, P., Jr.; Ayllon, J.; Palese, P.; Shaw, M.L. A novel small molecule inhibitor of influenza a viruses that targets polymerase function and indirectly induces interferon. PLoS Pathog. 2012, 8, e1002668. [Google Scholar] [CrossRef] [PubMed]
- Von Schacky, C. Cardiovascular disease prevention and treatment. Prostaglandins Leukot. Essent. Fatty Acids 2009, 81, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Breslow, J.L. N-3 fatty acids and cardiovascular disease. Am. J. Clin. Nutr. 2006, 83, 1477S–1482S. [Google Scholar] [PubMed]
- Wendel, M.; Heller, A.R. Anticancer actions of omega-3 fatty acids—Current state and future perspectives. Anticancer Agents Med. Chem. 2009, 9, 457–470. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Jiang, Y.; Fischer, S.M. Prostaglandin E3 metabolism and cancer. Cancer Lett. 2014, 348, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Jing, K.; Wu, T.; Lim, K. Omega-3 polyunsaturated fatty acids and cancer. Anticancer Agents Med. Chem. 2013, 13, 1162–1177. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, M.; Murota, S.I.; Morita, I. Docosapentaenoic acid (22:5, n-3) suppressed tube-forming activity in endothelial cells induced by vascular endothelial growth factor. Prostaglandins Leukot. Essent. Fatty Acids 2003, 68, 337–342. [Google Scholar] [CrossRef]
- Calviello, G.; di Nicuolo, F.; Gragnoli, S.; Piccioni, E.; Serini, S.; Maggiano, N.; Tringali, G.; Navarra, P.; Ranelletti, F.O.; Palozza, P. N-3 pufas reduce vegf expression in human colon cancer cells modulating the COX-2/PGE2 induced ERK-1 and -2 and HIF-1alpha induction pathway. Carcinogenesis 2004, 25, 2303–2310. [Google Scholar] [CrossRef] [PubMed]
- Arshad, A.; Isherwood, J.; Mann, C.; Cooke, J.; Pollard, C.; Runau, F.; Morgan, B.; Steward, W.; Metcalfe, M.; Dennison, A. Intravenous omega-3 fatty acids plus gemcitabine: Potential to improve response and quality of life in advanced pancreatic cancer. J. Parenter Enteral Nutr. 2015. [Google Scholar] [CrossRef]
- Baracos, V.E.; Mazurak, V.C.; Ma, D.W. N-3 polyunsaturated fatty acids throughout the cancer trajectory: Influence on disease incidence, progression, response to therapy and cancer-associated cachexia. Nutr. Res. Rev. 2004, 17, 177–192. [Google Scholar] [CrossRef] [PubMed]
- Xue, H.; Sawyer, M.B.; Field, C.J.; Dieleman, L.A.; Baracos, V.E. Nutritional modulation of antitumor efficacy and diarrhea toxicity related to irinotecan chemotherapy in rats bearing the ward colon tumor. Clin. Cancer Res. 2007, 13, 7146–7154. [Google Scholar] [CrossRef] [PubMed]
- Xue, H.; Ren, W.; Denkinger, M.; Schlotzer, E.; Wischmeyer, P.E. Nutrition modulation of cardiotoxicity and anticancer efficacy related to doxorubicin chemotherapy by glutamine and omega-3 polyunsaturated fatty acids. J. Parenter. Enteral Nutr. 2015. [Google Scholar] [CrossRef]
- Barber, M.D. The pathophysiology and treatment of cancer cachexia. Nutr. Clin. Pract. 2002, 17, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.L.; Chapkin, R.S.; Lupton, J.R. Fish oil blocks azoxymethane-induced rat colon tumorigenesis by increasing cell differentiation and apoptosis rather than decreasing cell proliferation. J. Nutr. 1998, 128, 491–497. [Google Scholar] [PubMed]
- Assisi, A.; Banzi, R.; Buonocore, C.; Capasso, F.; Di Muzio, V.; Michelacci, F.; Renzo, D.; Tafuri, G.; Trotta, F.; Vitocolonna, M.; et al. Fish oil and mental health: The role of n-3 long-chain polyunsaturated fatty acids in cognitive development and neurological disorders. Int. Clin. Psychopharmacol. 2006, 21, 319–336. [Google Scholar] [CrossRef] [PubMed]
- Chalon, S.; Delion-Vancassel, S.; Belzung, C.; Guilloteau, D.; Leguisquet, A.M.; Besnard, J.C.; Durand, G. Dietary fish oil affects monoaminergic neurotransmission and behavior in rats. J. Nutr. 1998, 128, 2512–2519. [Google Scholar] [PubMed]
- Chalon, S.; Vancassel, S.; Zimmer, L.; Guilloteau, D.; Durand, G. Polyunsaturated fatty acids and cerebral function: Focus on monoaminergic neurotransmission. Lipids 2001, 36, 937–944. [Google Scholar] [CrossRef] [PubMed]
- Hogyes, E.; Nyakas, C.; Kiliaan, A.; Farkas, T.; Penke, B.; Luiten, P.G. Neuroprotective effect of developmental docosahexaenoic acid supplement against excitotoxic brain damage in infant rats. Neuroscience 2003, 119, 999–1012. [Google Scholar] [CrossRef]
- Minami, M.; Kimura, S.; Endo, T.; Hamaue, N.; Hirafuji, M.; Togashi, H.; Matsumoto, M.; Yoshioka, M.; Saito, H.; Watanabe, S.; et al. Dietary docosahexaenoic acid increases cerebral acetylcholine levels and improves passive avoidance performance in stroke-prone spontaneously hypertensive rats. Pharmacol. Biochem. Behav. 1997, 58, 1123–1129. [Google Scholar] [CrossRef]
- Xiao, Y.; Li, X. Polyunsaturated fatty acids modify mouse hippocampal neuronal excitability during excitotoxic or convulsant stimulation. Brain Res. 1999, 846, 112–121. [Google Scholar] [CrossRef]
- Hossain, M.S.; Hashimoto, M.; Gamoh, S.; Masumura, S. Antioxidative effects of docosahexaenoic acid in the cerebrum versus cerebellum and brainstem of aged hypercholesterolemic rats. J. Neurochem. 1999, 72, 1133–1138. [Google Scholar] [CrossRef] [PubMed]
- Issemann, I.; Prince, R.A.; Tugwood, J.D.; Green, S. The peroxisome proliferator-activated receptor:Retinoid x receptor heterodimer is activated by fatty acids and fibrate hypolipidaemic drugs. J. Mol. Endocrinol. 1993, 11, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Kyle, D.J.; Schaefer, E.; Patton, G.; Beiser, A. Low serum docosahexaenoic acid is a significant risk factor for alzheimer's dementia. Lipids 1999, 34, S245. [Google Scholar] [CrossRef] [PubMed]
- Akiyama, H.; Barger, S.; Barnum, S.; Bradt, B.; Bauer, J.; Cole, G.M.; Cooper, N.R.; Eikelenboom, P.; Emmerling, M.; Fiebich, B.L.; et al. Inflammation and Alzheimer’s disease. Neurobiol. Aging 2000, 21, 383–421. [Google Scholar] [CrossRef]
- Boston, P.F.; Bennett, A.; Horrobin, D.F.; Bennett, C.N. Ethyl-EPA in alzheimer’s disease—A pilot study. Prostaglandins Leukot. Essent. Fatty Acids 2004, 71, 341–346. [Google Scholar] [CrossRef] [PubMed]
- Eslick, G.D.; Howe, P.R.; Smith, C.; Priest, R.; Bensoussan, A. Benefits of fish oil supplementation in hyperlipidemia: A systematic review and meta-analysis. Int. J. Cardiol. 2009, 136, 4–16. [Google Scholar] [CrossRef] [PubMed]
- Montori, V.M.; Farmer, A.; Wollan, P.C.; Dinneen, S.F. Fish oil supplementation in type 2 diabetes: A quantitative systematic review. Diabetes Care 2000, 23, 1407–1415. [Google Scholar] [CrossRef] [PubMed]
- Spite, M. Deciphering the role of n-3 polyunsaturated fatty acid-derived lipid mediators in health and disease. Proc. Nutr. Soc. 2013, 72, 441–450. [Google Scholar] [CrossRef] [PubMed]
- Miles, E.A.; Calder, P.C. Influence of marine n-3 polyunsaturated fatty acids on immune function and a systematic review of their effects on clinical outcomes in rheumatoid arthritis. Br. J. Nutr. 2012, 107, S171–S184. [Google Scholar] [CrossRef] [PubMed]
- Campos, F.G.; Waitzberg, D.L.; Logulo, A.F.; Torrinhas, R.S.; Teixeira, W.G.; Habr-Gama, A. Immunonutrition in experimental colitis: Beneficial effects of omega-3 fatty acids. Arq. Gastroenterol. 2002, 39, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Pompeia, C.; Lopes, L.R.; Miyasaka, C.K.; Procopio, J.; Sannomiya, P.; Curi, R. Effect of fatty acids on leukocyte function. Braz.J. Med. Biol. Res. 2000, 33, 1255–1268. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C. Immunoregulatory and anti-inflammatory effects of n-3 polyunsaturated fatty acids. Braz. J. Med. Biol. Res. 1998, 31, 467–490. [Google Scholar] [CrossRef] [PubMed]
- Hughes, D.A.; Pinder, A.C. N-3 polyunsaturated fatty acids modulate the expression of functionally associated molecules on human monocytes and inhibit antigen-presentation in vitro. Clin. Exp. Immunol. 1997, 110, 516–523. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Zomerdijk, T.P.; van den Barselaar, M.T.; Geertsma, M.F.; Van Furth, R.; Nibbering, P.H. Arachidonic acid, but not its metabolites, is essential for fcgammar-stimulated intracellular killing of staphylococcus aureus by human monocytes. Immunology 1999, 96, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Kumaratilake, L.M.; Ferrante, A.; Robinson, B.S.; Jaeger, T.; Poulos, A. Enhancement of neutrophil-mediated killing of plasmodium falciparum asexual blood forms by fatty acids: Importance of fatty acid structure. Infect. Immun. 1997, 65, 4152–4157. [Google Scholar] [PubMed]
- Chavali, S.R.; Weeks, C.E.; Zhong, W.W.; Forse, R.A. Increased production of tnf-alpha and decreased levels of dienoic eicosanoids, IL-6 and IL-10 in mice fed menhaden oil and juniper oil diets in response to an intraperitoneal lethal dose of lps. Prostaglandins Leukot. Essent. Fatty Acids 1998, 59, 89–93. [Google Scholar] [CrossRef]
- Kelley, D.S.; Taylor, P.C.; Nelson, G.J.; Schmidt, P.C.; Ferretti, A.; Erickson, K.L.; Yu, R.; Chandra, R.K.; Mackey, B.E. Docosahexaenoic acid ingestion inhibits natural killer cell activity and production of inflammatory mediators in young healthy men. Lipids 1999, 34, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Purasiri, P.; McKechnie, A.; Heys, S.D.; Eremin, O. Modulation in vitro of human natural cytotoxicity, lymphocyte proliferative response to mitogens and cytokine production by essential fatty acids. Immunology 1997, 92, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, G.; Bysani, C.; Venkatraman, J.T.; Tomar, V.; Zhao, W. Increased tgf-beta and decreased oncogene expression by omega-3 fatty acids in the spleen delays onset of autoimmune disease in b/w mice. J. Immunol. 1994, 152, 5979–5987. [Google Scholar] [PubMed]
- Miyasaka, C.K.; Mendonca, J.R.; Silva, Z.L.; de Sousa, J.A.; Tavares de Lima, W.; Curi, R. Modulation of hypersensitivity reaction by lipids given orally. Gen. Pharmacol. 1999, 32, 597–602. [Google Scholar] [CrossRef]
- Robinson, L.E.; Field, C.J. Dietary long-chain (n-3) fatty acids facilitate immune cell activation in sedentary, but not exercise-trained rats. J. Nutr. 1998, 128, 498–504. [Google Scholar] [PubMed]
- Mayer, K.; Fegbeutel, C.; Hattar, K.; Sibelius, U.; Kramer, H.J.; Heuer, K.U.; Temmesfeld-Wollbruck, B.; Gokorsch, S.; Grimminger, F.; Seeger, W. Omega-3 vs. Omega-6 lipid emulsions exert differential influence on neutrophils in septic shock patients: Impact on plasma fatty acids and lipid mediator generation. Intensive Care Med. 2003, 29, 1472–1481. [Google Scholar] [CrossRef] [PubMed]
- Gabe, S.; Culkin, A. Abnormal liver function tests in the parenteral nutrition fed patient. Frontline Gastroenterol. 2010, 1, 98–104. [Google Scholar] [CrossRef]
- Lindor, K.D.; Fleming, C.R.; Abrams, A.; Hirschkorn, M.A. Liver function values in adults receiving total parenteral nutrition. JAMA 1979, 241, 2398–2400. [Google Scholar] [CrossRef] [PubMed]
- Staun, M.; Pironi, L.; Bozzetti, F.; Baxter, J.; Forbes, A.; Joly, F.; Jeppesen, P.; Moreno, J.; Hebuterne, X.; Pertkiewicz, M.; et al. Espen guidelines on parenteral nutrition: Home parenteral nutrition (HPN) in adult patients. Clin. Nutr. 2009, 28, 467–479. [Google Scholar] [CrossRef] [PubMed]
- Goulet, O.; Joly, F.; Corriol, O.; Colomb-Jung, V. Some new insights in intestinal failure-associated liver disease. Curr. Opin. Organ. Transplant. 2009, 14, 256–261. [Google Scholar] [CrossRef] [PubMed]
- Antebi, H.; Mansoor, O.; Ferrier, C.; Tetegan, M.; Morvan, C.; Rangaraj, J.; Alcindor, L.G. Liver function and plasma antioxidant status in intensive care unit patients requiring total parenteral nutrition: Comparison of 2 fat emulsions. J. Parenter. Enteral Nutr. 2004, 28, 142–148. [Google Scholar] [CrossRef]
- Heller, A.R.; Rossel, T.; Gottschlich, B.; Tiebel, O.; Menschikowski, M.; Litz, R.J.; Zimmermann, T.; Koch, T. Omega-3 fatty acids improve liver and pancreas function in postoperative cancer patients. Int. J. Cancer 2004, 111, 611–616. [Google Scholar] [CrossRef] [PubMed]
- Piper, S.N.; Schade, I.; Beschmann, R.B.; Maleck, W.H.; Boldt, J.; Rohm, K.D. Hepatocellular integrity after parenteral nutrition: Comparison of a fish-oil-containing lipid emulsion with an olive-soybean oil-based lipid emulsion. Eur. J. Anaesthesiol. 2009, 26, 1076–1082. [Google Scholar] [CrossRef] [PubMed]
- Tomsits, E.; Pataki, M.; Tolgyesi, A.; Fekete, G.; Rischak, K.; Szollar, L. Safety and efficacy of a lipid emulsion containing a mixture of soybean oil, medium-chain triglycerides, olive oil, and fish oil: A randomised, double-blind clinical trial in premature infants requiring parenteral nutrition. J. Pediatr. Gastroenterol. Nutr. 2010, 51, 514–521. [Google Scholar] [CrossRef] [PubMed]
- Goulet, O.; Antebi, H.; Wolf, C.; Talbotec, C.; Alcindor, L.G.; Corriol, O.; Lamor, M.; Colomb-Jung, V. A new intravenous fat emulsion containing soybean oil, medium-chain triglycerides, olive oil, and fish oil: A single-center, double-blind randomized study on efficacy and safety in pediatric patients receiving home parenteral nutrition. J. Parenter. Enteral Nutr. 2010, 34, 485–495. [Google Scholar] [CrossRef] [PubMed]
- Rayyan, M.; Devlieger, H.; Jochum, F.; Allegaert, K. Short-term use of parenteral nutrition with a lipid emulsion containing a mixture of soybean oil, olive oil, medium-chain triglycerides, and fish oil: A randomized, double-blind study in preterm infants. JPEN 2012, 36, 81S–94S. [Google Scholar] [CrossRef] [PubMed]
- D’Ascenzo, R.; Savini, S.; Biagetti, C.; Bellagamba, M.P.; Marchionni, P.; Pompilio, A.; Cogo, P.E.; Carnielli, V.P. Higher docosahexaenoic acid, lower arachidonic acid and reduced lipid tolerance with high doses of a lipid emulsion containing 15% fish oil: A randomized clinical trial. Clin. Nutr. 2014, 33, 1002–1009. [Google Scholar] [CrossRef] [PubMed]
- De Meijer, V.E.; Gura, K.M.; Meisel, J.A.; Le, H.D.; Puder, M. Parenteral fish oil monotherapy in the management of patients with parenteral nutrition-associated liver disease. Arch. Surg. 2010, 145, 547–551. [Google Scholar] [CrossRef] [PubMed]
- Diamond, I.R.; Sterescu, A.; Pencharz, P.B.; Kim, J.H.; Wales, P.W. Changing the paradigm: Omegaven for the treatment of liver failure in pediatric short bowel syndrome. J. Pediatr. Gastroenterol. Nutr. 2009, 48, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Gura, K.M.; Duggan, C.P.; Collier, S.B.; Jennings, R.W.; Folkman, J.; Bistrian, B.R.; Puder, M. Reversal of parenteral nutrition-associated liver disease in two infants with short bowel syndrome using parenteral fish oil: Implications for future management. Pediatrics 2006, 118, e197–e201. [Google Scholar] [CrossRef] [PubMed]
- Gura, K.M.; Lee, S.; Valim, C.; Zhou, J.; Kim, S.; Modi, B.P.; Arsenault, D.A.; Strijbosch, R.A.; Lopes, S.; Duggan, C.; et al. Safety and efficacy of a fish-oil-based fat emulsion in the treatment of parenteral nutrition-associated liver disease. Pediatrics 2008, 121, e678–e686. [Google Scholar] [CrossRef] [PubMed]
- Ekema, G.; Falchetti, D.; Boroni, G.; Tanca, A.R.; Altana, C.; Righetti, L.; Ridella, M.; Gambarotti, M.; Berchich, L. Reversal of severe parenteral nutrition-associated liver disease in an infant with short bowel syndrome using parenteral fish oil (omega-3 fatty acids). J. Pediatr. Surg. 2008, 43, 1191–1195. [Google Scholar] [CrossRef] [PubMed]
- Beken, S.; Dilli, D.; Fettah, N.D.; Kabatas, E.U.; Zenciroglu, A.; Okumus, N. The influence of fish-oil lipid emulsions on retinopathy of prematurity in very low birth weight infants: A randomized controlled trial. Early Hum. Dev. 2014, 90, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Singer, P.; Berger, M.M.; Van den, B.G.; Biolo, G.; Calder, P.; Forbes, A.; Griffiths, R.; Kreyman, G.; Leverve, X.; Pichard, C.; et al. Espen guidelines on parenteral nutrition: Intensive care. Clin. Nutr. 2009, 28, 387–400. [Google Scholar] [CrossRef] [PubMed]
- Heller, A.R.; Rossler, S.; Litz, R.J.; Stehr, S.N.; Heller, S.C.; Koch, R.; Koch, T. Omega-3 fatty acids improve the diagnosis-related clinical outcome. Crit. Care Med. 2006, 34, 972–979. [Google Scholar] [CrossRef] [PubMed]
- Mayer, K.; Seeger, W. Fish oil in critical illness. Curr. Opin. Clin. Nutr. Metab. Care 2008, 11, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Manzanares, W.; Langlois, P.L.; Dhaliwal, R.; Lemieux, M.; Heyland, D.K. Intravenous fish oil lipid emulsions in critically ill patients: An updated systematic review and meta-analysis. Crit. Care 2015, 19, 167. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Govil, D.; Bhatnagar, S.; Gupta, S.; Goyal, J.; Patel, S.; Baweja, H. Efficacy and safety of parenteral omega 3 fatty acids in ventilated patients with acute lung injury. Indian J. Crit. Care Med. 2011, 15, 108. [Google Scholar] [CrossRef] [PubMed]
- Khor, B.S.; Liaw, S.J.; Shih, H.C.; Wang, L.S. Randomized, double blind, placebo-controlled trial of fish-oil-based lipid emulsion infusion for treatment of critically ill patients with severe sepsis. Asian J. Surg. 2011, 34, 1–10. [Google Scholar] [CrossRef]
- Hall, T.C.; Bilku, D.K.; Al-Leswas, D.; Neal, C.P.; Horst, C.; Cooke, J.; Metcalfe, M.S.; Dennison, A.R. A randomized controlled trial investigating the effects of parenteral fish oil on survival outcomes in critically ill patients with sepsis: A pilot study. J. Parenter. Enteral Nutr. 2015, 39, 301–312. [Google Scholar] [CrossRef] [PubMed]
- Burkhart, C.S.; Dell-Kuster, S.; Siegemund, M.; Pargger, H.; Marsch, S.; Strebel, S.P.; Steiner, L.A. Effect of n-3 fatty acids on markers of brain injury and incidence of sepsis-associated delirium in septic patients. Acta Anaesthesiol. Scand. 2014, 58, 689–700. [Google Scholar] [CrossRef] [PubMed]
- Dhaliwal, R.; Cahill, N.; Lemieux, M.; Heyland, D.K. The canadian critical care nutrition guidelines in 2013: An update on current recommendations and implementation strategies. Nutr. Clin. Pract. 2014, 29, 29–43. [Google Scholar] [CrossRef] [PubMed]
- Dewey, A.; Baughan, C.; Dean, T.; Higgins, B.; Johnson, I. Eicospentaenoic acid (EPA, an omega-3 fatty acid from fish oils) for the treatment of cancer cachexia (review). Cochrane Database Syst. Rev. 2010. [Google Scholar] [CrossRef] [Green Version]
- Bozzetti, F.; Arends, J.; Lundholm, K.; Micklewright, A.; Zurcher, G.; Muscaritoli, M. Espen guidelines on parenteral nutrition: Non-surgical oncology. Clin. Nutr. 2009, 28, 445–454. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Lara, K.; Turcott, J.G.; Juarez-Hernandez, E.; Nunez-Valencia, C.; Villanueva, G.; Guevara, P.; de la Torre-Vallejo, M.; Mohar, A.; Arrieta, O. Effects of an oral nutritional supplement containing eicosapentaenoic acid on nutritional and clinical outcomes in patients with advanced non-small cell lung cancer: Randomised trial. Clin. Nutr. 2014, 33, 1017–1023. [Google Scholar] [CrossRef] [PubMed]
- van der Meij, B.S.; Langius, J.A.; Spreeuwenberg, M.D.; Slootmaker, S.M.; Paul, M.A.; Smit, E.F.; van Leeuwen, P.A. Oral nutritional supplements containing n-3 polyunsaturated fatty acids affect quality of life and functional status in lung cancer patients during multimodality treatment: An RCT. Eur. J. Clin. Nutr. 2012, 66, 399–404. [Google Scholar] [CrossRef] [PubMed]
- Trabal, J.; Leyes, P.; Forga, M.; Maurel, J. Potential usefulness of an EPA-enriched nutritional supplement on chemotherapy tolerability in cancer patients without overt malnutrition. Nutr. Hosp. 2010, 25, 736–740. [Google Scholar] [PubMed]
- Ma, Y.J.; Yu, J.; Xiao, J.; Cao, B.W. The consumption of omega-3 polyunsaturated fatty acids improves clinical outcomes and prognosis in pancreatic cancer patients: A systematic evaluation. Nutr. Cancer 2015, 67, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yu, J.C.; Kang, W.M.; Ma, Z.Q. Superiority of a fish oil-enriched emulsion to medium-chain triacylglycerols/long-chain triacylglycerols in gastrointestinal surgery patients: A randomized clinical trial. Nutrition 2012, 28, 623–629. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.Y.; Lai, S.L.; Ko, W.J.; Chou, C.H.; Lai, H.S. Effects of fish oil on inflammatory modulation in surgical intensive care unit patients. Nutr. Clin. Pract. 2012, 27, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.M.; Wilmore, D.W.; Wang, X.R.; Wei, J.M.; Zhang, Z.T.; Gu, Z.Y.; Wang, S.; Han, S.M.; Jiang, H.; Yu, K. Randomized clinical trial of intravenous soybean oil alone versus soybean oil plus fish oil emulsion after gastrointestinal cancer surgery. Br. J. Surg. 2010, 97, 804–809. [Google Scholar] [CrossRef] [PubMed]
- de Miranda Torrinhas, R.S.; Santana, R.; Garcia, T.; Cury-Boaventura, M.F.; Sales, M.M.; Curi, R.; Waitzberg, D.L. Parenteral fish oil as a pharmacological agent to modulate post-operative immune response: A randomized, double-blind, and controlled clinical trial in patients with gastrointestinal cancer. Clin. Nutr. 2013, 32, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.W.; Tang, D.N.; Hou, J.; Wei, J.M.; Hua, B.; Sun, J.H.; Cui, H.Y. Impact of fish oil enriched total parenteral nutrition on elderly patients after colorectal cancer surgery. Chin. Med. J. (Engl.) 2012, 125, 178–181. [Google Scholar]
- Zhu, X.; Wu, Y.; Qiu, Y.; Jiang, C.; Ding, Y. Effects of omega-3 fish oil lipid emulsion combined with parenteral nutrition on patients undergoing liver transplantation. J. Parenter. Enteral Nutr. 2013, 37, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Berger, M.M.; Delodder, F.; Liaudet, L.; Tozzi, P.; Schlaepfer, J.; Chiolero, R.L.; Tappy, L. Three short perioperative infusions of n-3 pufas reduce systemic inflammation induced by cardiopulmonary bypass surgery: A Randomized Controlled Trial. Am. J. Clin. Nutr. 2013, 97, 246–254. [Google Scholar] [CrossRef] [PubMed]
- Klek, S.; Waitzberg, D.L. Intravenous lipids in adult surgical patients. In Intravenous Lipid Emulsions; Calder, P.C., Waitzberg, D.L., Koletzko, B., Eds.; Karger: Basel, Switzerland, 2015; Volume 112, pp. 115–119. [Google Scholar]
- Chen, B.; Zhou, Y.; Yang, P.; Wan, H.W.; Wu, X.T. Safety and efficacy of fish oil-enriched parenteral nutrition regimen on postoperative patients undergoing major abdominal surgery: A Meta-Analysis of Randomized Controlled Trials. J. Parenter. Enteral Nutr. 2010, 34, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Li, N.N.; Zhou, Y.; Qin, X.P.; Chen, Y.; He, D.; Feng, J.Y.; Wu, X.T. Does intravenous fish oil benefit patients post-surgery? A meta-analysis of randomised controlled trials. Clin. Nutr. 2014, 33, 226–239. [Google Scholar] [CrossRef] [PubMed]
- Pradelli, L.; Mayer, K.; Muscaritoli, M.; Heller, A.R. N-3 fatty acid-enriched parenteral nutrition regimens in elective surgical and icu patients: A Meta-Analysis. Crit. Care 2012, 16, R184. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Yao, X.; Zeng, R.; Sun, R.; Tian, H.; Shi, C.; Li, L.; Tian, J.; Yang, K. Safety and efficacy of a new parenteral lipid emulsion (SMOF) for surgical patients: A systematic review and meta-analysis of randomized controlled trials. Nutr. Rev. 2013, 71, 815–821. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.; Hua, J.; Bin, C.; Klassen, K. Impact of lipid emulsion containing fish oil on outcomes of surgical patients: Systematic Review of Randomized Controlled Trials from Europe and Asia. Nutrition 2010, 26, 474–481. [Google Scholar] [CrossRef] [PubMed]
- Braga, M.; Wischmeyer, P.E.; Drover, J.; Heyland, D.K. Clinical evidence for pharmaconutrition in major elective surgery. J. Parenter. Enteral Nutr. 2013, 37, 66S–72S. [Google Scholar] [CrossRef] [PubMed]
- Skouroliakou, M.; Konstantinou, D.; Agakidis, C.; Delikou, N.; Koutri, K.; Antoniadi, M.; Karagiozoglou-Lampoudi, T. Cholestasis, bronchopulmonary dysplasia, and lipid profile in preterm infants receiving MCT/omega-3-PUFA-containing or soybean-based lipid emulsions. Nutr. Clin. Pract. 2012, 27, 817–824. [Google Scholar] [CrossRef] [PubMed]
- Klek, S.; Kulig, J.; Szczepanik, A.M.; Jedrys, J.; Kolodziejczyk, P. The clinical value of parenteral immunonutrition in surgical patients. Acta Chir. Belg. 2005, 105, 175–179. [Google Scholar] [PubMed]
- Wu, G.H.; Gao, J.; Ji, C.Y.; Pradelli, L.; Xi, Q.L.; Zhuang, Q.L. Cost and effectiveness of omega-3 fatty acid supplementation in chinese iCU patients receiving parenteral nutrition. Clinicoecon. Outcomes Res. 2015, 7, 369–375. [Google Scholar] [PubMed]
- Pradelli, L.; Eandi, M.; Povero, M.; Mayer, K.; Muscaritoli, M.; Heller, A.R.; Fries-Schaffner, E. Cost-effectiveness of omega-3 fatty acid supplements in parenteral nutrition therapy in hospitals: A Discrete Event Simulation Model. Clin. Nutr. 2014, 33, 785–792. [Google Scholar] [CrossRef] [PubMed]
Author | Year | Population | Intervention | Duration | Result |
---|---|---|---|---|---|
Jiang [117] | 2010 | Colectomy and rectotomy (n = 206) | LCT vs LCT+fish oil | 7 days post-surgery | Significant reduction in LOS and SIRS |
Wang [115] | 2012 | Gastrointestinal surgery (n = 64) | MCT/LCT vs. LCT+fish oil | 5 days post-surgery | Amelioration of liver function and immune status |
Han [116] | 2012 | Major surgery (n = 38) | MCT/LCT vs. LCT+fish oil | 7 days post-surgery | Reduced postoperative liver dysfunction and infection rate |
Zhu [119] | 2012 | Colectomy and rectotomy (n = 57) | LCT vs. fish oil | 7 days post-surgery | Reduced LOS |
Zhu [120] | 2012 | Liver transplantation (n = 98) | Oral diet vs. standard PN vs fish oil PN | 7 days post-surgery | Reduced incidence of liver injury, decreased LOS and infectious complications |
Berger [121] | 2013 | Cardiopulmonary bypass surgery (n = 28) | Fish oils vs saline | 12 and 2 h before surgery and after surgery | Decreased biological and clinical signs of inflammation |
De Miranda Torrinhas [118] | 2013 | Surgery for gastrointestinal cancer (n = 63) | MCT/LCT vs. fish oil | 3 days post-surgery | Significant increase in IL-10 levels (day 3), decrease in IL-6 and IL-10 levels (day 6), less decline in leukocyte oxidative burst |
Chen [123] | 2010 | Major abdominal surgery, meta-analysis (n = 892) | Fish oil vs. various control emulsions | Various | Decreased LOS in the hospital and ICU, reduced postoperative infection rate, improved liver function |
Li [124] | 2013 | Major surgery, meta-analysis (n = 1487) | Fish oil | Various | Decreased infection rate, LOS, and liver dysfunction; no effect on mortality |
Pradelli [125] | 2012 | Subgroup analysis in patients undergoing major abdominal surgery and not admitted to ICU (n = 740) | n-3 PUFA-enriched vs. standard lipid emulsions | Various | Significant reduction in the infection rate and LOS |
Tian [126] | 2013 | Surgical patients, meta-analysis (n = 306) | Fish oil/LCT/ MCT vs. LCT/olive oil | Various | No significant difference, fish oil less toxic to liver when compared to LCT or olive oil |
© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klek, S. Omega-3 Fatty Acids in Modern Parenteral Nutrition: A Review of the Current Evidence. J. Clin. Med. 2016, 5, 34. https://doi.org/10.3390/jcm5030034
Klek S. Omega-3 Fatty Acids in Modern Parenteral Nutrition: A Review of the Current Evidence. Journal of Clinical Medicine. 2016; 5(3):34. https://doi.org/10.3390/jcm5030034
Chicago/Turabian StyleKlek, Stanislaw. 2016. "Omega-3 Fatty Acids in Modern Parenteral Nutrition: A Review of the Current Evidence" Journal of Clinical Medicine 5, no. 3: 34. https://doi.org/10.3390/jcm5030034