MUC1: The First Respiratory Mucin with an Anti-Inflammatory Function
Abstract
:1. Introduction
2. Structure of the MUC1 Glycoprotein
3. Expression of MUC1 in the Respiratory Tract
4. MUC1 Is an Airway Epithelial Cell Binding Site for Pseudomonas aeruginosa
5. Inhibition of Airway Inflammation by MUC1
6. TNF Increases MUC1 Expression through a Mitogen-Activated Protein Kinase (MAPK) → Sp1 Signaling Pathway
7. Role of Peroxisome Proliferator-Activated Receptor-γ (PPAR-γ) in the Anti-Inflammatory Effects of MUC1
8. The MUC1-CT Associates with TLR5 to Inhibit Recruitment of Adaptor Proteins
9. EGFR Activation Increases MUC1-CT Association with TLR5
10. Additional Role of Airway Macrophages in the Anti-Inflammatory Effects of MUC1
11. Anti-Inflammatory Effects of MUC1 Outside of the Airways
12. Role of MUC1 in Non-Pneumonia Respiratory Diseases
13. Perspectives
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Li, Y.; Cozzi, P.J. MUC1 is a promising therapeutic target for prostate cancer therapy. Curr. Cancer Drug Targets 2007, 7, 259–271. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.C.; Hyun, S.W.; Kim, B.T.; Meerzaman, D.; Lee, M.K.; Lillehoj, E.P. Pseudomonas adhesion to MUC1 mucins: A potential role of MUC1 mucins in clearance of inhaled bacteria. In Cilia and Mucus: From Development to Respiratory Defense; Salathe, M., Ed.; CRC Press: Boca Raton, FL, USA, 2001; pp. 217–224. ISBN 978-0-8247-0441-4. [Google Scholar]
- Lillehoj, E.P.; Hyun, S.W.; Kim, B.T.; Zhang, X.G.; Lee, D.I.; Rowland, S.; Kim, K.C. Muc1 mucins on the cell surface are adhesion sites for Pseudomonas aeruginosa. Am. J. Physiol. Lung Cell. Mol. Physiol. 2001, 280, L181–L187. [Google Scholar] [PubMed]
- Kato, K.; Lillehoj, E.P.; Kai, H.; Kim, K.C. MUC1 expression by human airway epithelial cells mediates Pseudomonas aeruginosa adhesion. Front. Biosci. (Elite Ed.) 2010, 2, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.C.; Lillehoj, E.P. MUC1 mucin: A peacemaker in the lung. Am. J. Respir. Cell Mol. Biol. 2008, 39, 644–647. [Google Scholar] [CrossRef] [PubMed]
- McAuley, J.L.; Corcilius, L.; Tan, H.X.; Payne, R.J.; McGuckin, M.A.; Brown, L.E. The cell surface mucin MUC1 limits the severity of influenza A virus infection. Mucosal Immunol. 2017, 10, 1581–1593. [Google Scholar] [CrossRef] [PubMed]
- Dhar, P.; Ng, G.Z.; Dunne, E.M.; Sutton, P. Mucin 1 protects against severe Streptococcus pneumoniae infection. Virulence 2017. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Dinwiddie, D.L.; Harrod, K.S.; Jiang, Y.; Kim, K.C. Anti-inflammatory effect of MUC1 during respiratory syncytial virus infection of lung epithelial cells in vitro. Am. J. Physiol. Lung Cell. Mol. Physiol. 2010, 298, L558–L563. [Google Scholar] [CrossRef] [PubMed]
- Kyo, Y.; Kato, K.; Park, Y.S.; Gajghate, S.; Umehara, T.; Lillehoj, E.P.; Suzaki, H.; Kim, K.C. Antiinflammatory role of MUC1 mucin during infection with nontypeable Haemophilus influenzae. Am. J. Respir. Cell Mol. Biol. 2012, 46, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Kardon, R.; Price, R.E.; Julian, J.; Lagow, E.; Tseng, S.C.; Gendler, S.J.; Carson, D.D. Bacterial conjunctivitis in Muc1 null mice. Investig. Ophthalmol. Vis. Sci. 1999, 40, 1328–1335. [Google Scholar]
- Pier, G.B.; Ramphal, R. Pseudomonas aeruginosa. In Mandell, Douglas and Bennett’s Principles and Practice of Infectious Diseases, 7th ed.; Mandell, G.L., Bennett, J.E., Dolin, R., Eds.; Churchill Livingstone: Philadelphia, PA, USA, 2010; Volume 2, pp. 2835–2860. ISBN 978-0-4430-6839-3. [Google Scholar]
- Parry, S.; Silverman, H.S.; McDermott, K.; Willis, A.; Hollingsworth, M.A.; Harris, A. Identification of MUC1 proteolytic cleavage sites in vivo. Biochem. Biophys. Res. Commun. 2001, 283, 715–720. [Google Scholar] [CrossRef] [PubMed]
- Levitin, F.; Stern, O.; Weiss, M.; Gil-Henn, C.; Ziv, R.; Prokocimer, Z.; Smorodinsky, N.I.; Rubinstein, D.B.; Wreschner, D.H. The MUC1 SEA module is a self-cleaving domain. J. Biol. Chem. 2005, 280, 33374–33386. [Google Scholar] [CrossRef] [PubMed]
- Macao, B.; Johansson, D.G.; Hansson, G.C.; Härd, T. Autoproteolysis coupled to protein folding in the SEA domain of the membrane-bound MUC1 mucin. Nat. Struct. Mol. Biol. 2006, 13, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Johansson, D.G.; Wallin, G.; Sandberg, A.; Macao, B.; Aqvist, J.; Härd, T. Protein autoproteolysis: Conformational strain linked to the rate of peptide cleavage by the pH dependence of the N → O acyl shift reaction. J. Am. Chem. Soc. 2009, 131, 9475–9477. [Google Scholar] [CrossRef] [PubMed]
- Ligtenberg, M.J.; Kruijshaar, L.; Buijs, F.; van Meijer, M.; Litvinov, S.V.; Hilkens, J. Cell-associated episialin is a complex containing two proteins derived from a common precursor. J. Biol. Chem. 1992, 267, 6171–6177. [Google Scholar] [PubMed]
- Julian, J.A.; Carson, D.D. Formation of MUC1 metabolic complex is conserved in tumor-derived and normal epithelial cells. Biochem. Biophys. Res. Commun. 2002, 293, 1183–1190. [Google Scholar] [CrossRef]
- Thathiah, A.; Blobel, C.P.; Carson, D.D. Tumor necrosis factor-α converting enzyme/ADAM 17 mediates MUC1 shedding. J. Biol. Chem. 2003, 278, 3386–3394. [Google Scholar] [CrossRef] [PubMed]
- Thathiah, A.; Carson, D.D. MT1-MMP mediates MUC1 shedding independent of TACE/ADAM17. Biochem. J. 2004, 382 Pt 1, 363–373. [Google Scholar] [CrossRef] [PubMed]
- Julian, J.; Dharmaraj, N.; Carson, D.D. MUC1 is a substrate for γ-secretase. J. Cell. Biochem. 2009, 108, 802–815. [Google Scholar] [CrossRef] [PubMed]
- Lillehoj, E.P.; Hyun, S.W.; Liu, A.; Guang, W.; Verceles, A.C.; Luzina, I.G.; Atamas, S.P.; Kim, K.C.; Goldblum, S.E. NEU1 sialidase regulates membrane-tethered mucin (MUC1) ectodomain adhesiveness for Pseudomonas aeruginosa and decoy receptor release. J. Biol. Chem. 2015, 290, 18316–18331. [Google Scholar] [CrossRef] [PubMed]
- Pandey, P.; Kharbanda, S.; Kufe, D. Association of the DF3/MUC1 breast cancer antigen with Grb2 and the Sos/Ras exchange protein. Cancer Res. 1995, 55, 4000–4003. [Google Scholar] [PubMed]
- Li, Y.; Kuwahara, H.; Ren, J.; Wen, G.; Kufe, D. The c-Src tyrosine kinase regulates signaling of the human DF3/MUC1 carcinoma-associated antigen with GSK3β and β-catenin. J. Biol. Chem. 2001, 276, 6061–6064. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ren, J.; Yu, W.H.; Li, Q.; Kuwahara, H.; Yin, L.; Carraway, K., III; Kufe, D. The epidermal growth factor receptor regulates interaction of the human DF3/MUC1 carcinoma antigen with c-Src and β-catenin. J. Biol. Chem. 2001, 276, 35239–35242. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Lillehoj, E.P.; Kim, K.C. Identification of four sites of stimulated tyrosine phosphorylation in the MUC1 cytoplasmic tail. Biochem. Biophys. Res. Commun. 2003, 310, 341–346. [Google Scholar] [CrossRef] [PubMed]
- Kato, K.; Lu, W.; Kai, H.; Kim, K.C. Phosphoinositide 3-kinase is activated by MUC1 but not responsible for MUC1-induced suppression of Toll-like receptor 5 signaling. Am. J. Physiol. Lung Cell. Mol. Physiol. 2007, 293, L686–L692. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Bharti, A.; Chen, D.; Gong, J.; Kufe, D. Interaction of glycogen synthase kinase 3β with the DF3/MUC1 carcinoma-associated antigen and β-catenin. Mol. Cell. Biol. 1998, 18, 7216–7224. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Li, Y.; Kufe, D. Protein kinase C δ regulates function of the DF3/MUC1 carcinoma antigen in β-catenin signaling. J. Biol. Chem. 2002, 277, 17616–17622. [Google Scholar] [CrossRef] [PubMed]
- Zrihan-Licht, S.; Baruch, A.; Elroy-Stein, O.; Keydar, I.; Wreschner, D.H. Tyrosine phosphorylation of the MUC1 breast cancer membrane protein. Cytokine receptor-like molecule. FEBS Lett. 1994, 356, 130–136. [Google Scholar] [CrossRef]
- Albrecht, H.; Carraway, K.L., III. MUC1 and MUC4: Switching the emphasis from large to small. Cancer Biother. Radiopharm. 2011, 26, 261–271. [Google Scholar] [CrossRef] [PubMed]
- Kufe, D.W. MUC1-C oncoprotein as a target in breast cancer: Activation of signaling pathways and therapeutic approaches. Oncogene 2013, 32, 1073–1081. [Google Scholar] [CrossRef] [PubMed]
- Mehla, K.; Singh, P.K. MUC1: A novel metabolic master regulator. Biochim. Biophys. Acta 2014, 1845, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Haddon, L.; Hugh, J. MUC1-mediated motility in breast cancer: A review highlighting the role of the MUC1/ICAM-1/Src signaling triad. Clin. Exp. Metastasis 2015, 32, 393–403. [Google Scholar] [CrossRef] [PubMed]
- Hanson, R.L.; Hollingsworth, M.A. Functional consequences of differential O-glycosylation of MUC1, MUC4, and MUC16 (Downstream effects on signaling). Biomolecules 2016, 6, 34. [Google Scholar] [CrossRef] [PubMed]
- Gendler, S.J.; Lancaster, C.A.; Taylor-Papadimitriou, J.; Duhig, T.; Peat, N.; Burchell, J.; Pemberton, L.; Lalani, E.N.; Wilson, D. Molecular cloning and expression of human tumor-associated polymorphic epithelial mucin. J. Biol. Chem. 1990, 265, 15286–15293. [Google Scholar] [PubMed]
- Lan, M.S.; Batra, S.K.; Qi, W.N.; Metzgar, R.S.; Hollingsworth, M.A. Cloning and sequencing of a human pancreatic tumor mucin cDNA. J. Biol. Chem. 1990, 265, 15294–15299. [Google Scholar] [PubMed]
- Kim, K.C.; Wasano, K.; Niles, R.M.; Schuster, J.E.; Stone, P.J.; Brody, J.S. Human neutrophil elastase releases cell surface mucins from primary cultures of hamster tracheal epithelial cells. Proc. Natl. Acad. Sci. USA 1987, 84, 9304–9308. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Hyun, S.W.; Kim, K.C. Expression of MUC1 mucin gene by hamster tracheal surface epithelial cells in primary culture. Am. J. Respir. Cell Mol. Biol. 1996, 15, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Paul, E.; Lee, D.I.; Hyun, S.W.; Gendler, S.; Kim, K.C. Identification and characterization of high molecular-mass mucin-like glycoproteins in the plasma membrane of airway epithelial cells. Am. J. Respir. Cell Mol. Biol. 1998, 19, 681–690. [Google Scholar] [CrossRef] [PubMed]
- Hollingsworth, M.A.; Batra, S.K.; Qi, W.N.; Yankaskas, J.R. MUC1 mucin mRNA expression in cultured human nasal and bronchial epithelial cells. Am. J. Respir. Cell Mol. Biol. 1992, 6, 516–520. [Google Scholar] [CrossRef] [PubMed]
- Pemberton, L.; Taylor-Papadimitriou, J.; Gendler, S.J. Antibodies to the cytoplasmic domain of the MUC1 mucin show conservation throughout mammals. Biochem. Biophys. Res. Commun. 1992, 185, 167–175. [Google Scholar] [CrossRef]
- Gendler, S.J. MUC1, the renaissance molecule. J. Mammary Gland Biol. Neoplasia 2001, 6, 339–353. [Google Scholar] [CrossRef] [PubMed]
- Hattrup, C.L.; Gendler, S.J. Structure and function of the cell surface (tethered) mucins. Annu. Rev. Physiol. 2008, 70, 431–457. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, B.; Krantz, M.J.; Parker, J.; Longenecker, B.M. Expression of MUC1 mucin on activated human T cells: Implications for a role of MUC1 in normal immune regulation. Cancer Res. 1998, 58, 4079–4081. [Google Scholar] [PubMed]
- Chang, J.F.; Zhao, H.L.; Phillips, J.; Greenburg, G. The epithelial mucin, MUC1, is expressed on resting T lymphocytes and can function as a negative regulator of T cell activation. Cell. Immunol. 2000, 201, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Konowalchuk, J.D.; Agrawal, B. MUC1 mucin is expressed on human T-regulatory cells: Function in both co-stimulation and co-inhibition. Cell. Immunol. 2012, 272, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Nishida, A.; Lau, C.W.; Zhang, M.; Andoh, A.; Shi, H.N.; Mizoguchi, E.; Mizoguchi, A. The membrane-bound mucin Muc1 regulates T helper 17-cell responses and colitis in mice. Gastroenterology 2012, 142, 865–874. [Google Scholar] [CrossRef] [PubMed]
- Wykes, M.; MacDonald, K.P.; Tran, M.; Quin, R.J.; Xing, P.X.; Gendler, S.J.; Hart, D.N.; McGuckin, M.A. MUC1 epithelial mucin (CD227) is expressed by activated dendritic cells. J. Leukoc. Biol. 2002, 72, 692–701. [Google Scholar] [PubMed]
- Cloosen, S.; Thio, M.; Vanclée, A.; van Leeuwen, E.B.; Senden-Gijsbers, B.L.; Oving, E.B.; Germeraad, W.T.; Bos, G.M. Mucin-1 is expressed on dendritic cells, both in vitro and in vivo. Int. Immunol. 2004, 16, 1561–1571. [Google Scholar] [CrossRef] [PubMed]
- Leong, C.F.; Raudhawati, O.; Cheong, S.K.; Sivagengei, K.; Noor Hamidah, H. Epithelial membrane antigen (EMA) or MUC1 expression in monocytes and monoblasts. Pathology 2003, 35, 422–427. [Google Scholar] [CrossRef] [PubMed]
- Kato, K.; Uchino, R.; Lillehoj, E.P.; Knox, K.; Lin, Y.; Kim, K.C. Membrane-tethered MUC1 mucin counter-regulates the phagocytic activity of macrophages. Am. J. Respir. Cell Mol. Biol. 2016, 54, 515–523. [Google Scholar] [CrossRef] [PubMed]
- Croce, M.V.; Rabassa, M.E.; Price, M.R.; Segal-Eiras, A. MUC1 mucin and carbohydrate associated antigens as tumor markers in head and neck squamous cell carcinoma. Pathol. Oncol. Res. 2001, 7, 284–291. [Google Scholar] [CrossRef] [PubMed]
- Jeannon, J.P.; Stafford, F.W.; Soames, J.V.; Wilson, J.A. Altered MUC1 and MUC2 glycoprotein expression in laryngeal cancer. Otolaryngol. Head Neck Surg. 2001, 124, 199–202. [Google Scholar] [CrossRef] [PubMed]
- Finkbeiner, W.E.; Carrier, S.D.; Teresi, C.E. Reverse transcription-polymerase chain reaction (RT-PCR) phenotypic analysis of cell cultures of human tracheal epithelium, tracheobronchial glands, and lung carcinomas. Am. J. Respir. Cell Mol. Biol. 1993, 9, 547–556. [Google Scholar] [CrossRef] [PubMed]
- Jarrard, J.A.; Linnoila, R.I.; Lee, H.; Steinberg, S.M.; Witschi, H.; Szabo, E. MUC1 is a novel marker for the type II pneumocyte lineage during lung carcinogenesis. Cancer Res. 1998, 58, 5582–5589. [Google Scholar] [PubMed]
- Jung, S.E.; Seo, K.Y.; Kim, H.; Kim, H.L.; Chung, I.H.; Kim, E.K. Expression of MUC1 on corneal endothelium of human. Cornea 2002, 21, 691–695. [Google Scholar] [CrossRef] [PubMed]
- Porowska, H.; Paszkiewicz-Gadek, A.; Wosek, J.; Wnuczko, K.; Rusak, M.; Szczepański, M. Expression of MUC1 mucin in human umbilical vein endothelial cells (HUVEC). Folia Histochem. Cytobiol. 2010, 48, 417–424. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Ji, J.; Thirkill, T.L.; Douglas, G.C. MUC1 Is expressed by human skin fibroblasts and plays a role in cell adhesion and migration. BioRes. Open Access 2014, 3, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Ramphal, R.; Guay, C.; Pier, G.B. Pseudomonas aeruginosa adhesins for tracheobronchial mucin. Infect. Immun. 1987, 55, 600–603. [Google Scholar] [PubMed]
- Lillehoj, E.P.; Hyun, S.W.; Feng, C.; Zhang, L.; Liu, A.; Guang, W.; Nguyen, C.; Luzina, I.G.; Atamas, S.P.; Passaniti, A.; et al. NEU1 sialidase expressed in human airway epithelia regulates epidermal growth factor receptor (EGFR) and MUC1 protein signaling. J. Biol. Chem. 2012, 287, 8214–8231. [Google Scholar] [CrossRef] [PubMed]
- Lillehoj, E.P.; Kim, B.T.; Kim, K.C. Identification of Pseudomonas aeruginosa flagellin as an adhesin for Muc1 mucin. Am. J. Physiol. Lung Cell. Mol. Physiol. 2002, 282, L751–L756. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Louboutin, J.P.; Weiner, D.J.; Goldberg, J.B.; Wilson, J.M. Human airway epithelial cells sense Pseudomonas aeruginosa infection via recognition of flagellin by Toll-like receptor 5. Infect. Immun. 2005, 73, 7151–7160. [Google Scholar] [CrossRef] [PubMed]
- Rastogi, D.; Ratner, A.J.; Prince, A. Host-bacterial interactions in the initiation of inflammation. Paediatr. Respir. Rev. 2001, 2, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Gómez, M.I.; Prince, A. Airway epithelial cell signaling in response to bacterial pathogens. Pediatr. Pulmonol. 2008, 43, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Lillehoj, E.P.; Kim, H.; Chun, E.Y.; Kim, K.C. Pseudomonas aeruginosa stimulates phosphorylation of the airway epithelial membrane glycoprotein Muc1 and activates MAP kinase. Am. J. Physiol. Lung Cell. Mol. Physiol. 2004, 287, L809–L815. [Google Scholar] [CrossRef] [PubMed]
- Spicer, A.P.; Rowse, G.J.; Lidner, T.K.; Gendler, S.J. Delayed mammary tumor progression in Muc-1 null mice. J. Biol. Chem. 1995, 270, 30093–30101. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Hisatsune, A.; Koga, T.; Kato, K.; Kuwahara, I.; Lillehoj, E.P.; Chen, W.; Cross, A.S.; Gendler, S.J.; Gewirtz, A.T.; et al. Cutting edge: Enhanced pulmonary clearance of Pseudomonas aeruginosa by Muc1 knockout mice. J. Immunol. 2006, 176, 3890–3894. [Google Scholar] [CrossRef] [PubMed]
- Umehara, T.; Kato, K.; Park, Y.S.; Lillehoj, E.P.; Kawauchi, H.; Kim, K.C. Prevention of lung injury by Muc1 mucin in a mouse model of repetitive Pseudomonas aeruginosa infection. Inflamm. Res. 2012, 61, 1013–1020. [Google Scholar] [CrossRef] [PubMed]
- Milara, J.; Peiró, T.; Armengot, M.; Frias, S.; Morell, A.; Serrano, A.; Cortijo, J. Mucin 1 downregulation associates with corticosteroid resistance in chronic rhinosinusitis with nasal polyps. J. Allergy Clin. Immunol. 2015, 135, 470–476. [Google Scholar] [CrossRef] [PubMed]
- Ueno, K.; Koga, T.; Kato, K.; Golenbock, D.T.; Gendler, S.J.; Kai, H.; Kim, K.C. MUC1 mucin is a negative regulator of Toll-like receptor signaling. Am. J. Respir. Cell Mol. Biol. 2008, 38, 263–268. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Park, Y.S.; Koga, T.; Treloar, A.; Kim, K.C. TNF-α is a key regulator of MUC1, an anti-inflammatory molecule, during airway Pseudomonas aeruginosa infection. Am. J. Respir. Cell Mol. Biol. 2011, 44, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, B.B.; Gupta, S.C.; Kim, J.H. Historical perspectives on tumor necrosis factor and its superfamily: 25 years later, a golden journey. Blood 2012, 119, 651–665. [Google Scholar] [CrossRef] [PubMed]
- Lagow, E.L.; Carson, D.D. Synergistic stimulation of MUC1 expression in normal breast epithelia and breast cancer cells by interferon-γ and tumor necrosis factor-α. J. Cell. Biochem. 2002, 86, 759–772. [Google Scholar] [CrossRef] [PubMed]
- Shirasaki, H.; Kanaizumi, E.; Watanabe, K.; Konno, N.; Sato, J.; Narita, S.; Himi, T. Tumor necrosis factor α increases MUC1 mRNA in cultured human nasal epithelial cells. Acta Otolaryngol. 2003, 123, 524–531. [Google Scholar] [CrossRef] [PubMed]
- Thathiah, A.; Brayman, M.; Dharmaraj, N.; Julian, J.J.; Lagow, E.L.; Carson, D.D. Tumor necrosis factor α stimulates MUC1 synthesis and ectodomain release in a human uterine epithelial cell line. Endocrinology 2004, 145, 4192–4203. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, J.C.; Julian, J.; Lim, S.D.; Carson, D.D. MUC1 expression in human prostate cancer cell lines and primary tumors. Prostate Cancer Prostatic Dis. 2005, 8, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Koga, T.; Kuwahara, I.; Lillehoj, E.P.; Lu, W.; Miyata, T.; Isohama, Y.; Kim, K.C. TNF-α induces MUC1 gene transcription in lung epithelial cells: Its signaling pathway and biological implication. Am. J. Physiol. Lung Cell. Mol. Physiol. 2007, 293, L693–L701. [Google Scholar] [CrossRef] [PubMed]
- Straus, D.S.; Glass, C.K. Anti-inflammatory actions of PPAR ligands: New insights on cellular and molecular mechanisms. Trends Immunol. 2007, 28, 551–558. [Google Scholar] [CrossRef] [PubMed]
- Shalom-Barak, T.; Nicholas, J.M.; Wang, Y.; Zhang, X.; Ong, E.S.; Young, T.H.; Gendler, S.J.; Evans, R.M.; Barak, Y. Peroxisome proliferator-activated receptor γ controls Muc1 transcription in trophoblasts. Mol. Cell. Biol. 2004, 24, 10661–10669. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.S.; Lillehoj, E.P.; Kato, K.; Park, C.S.; Kim, K.C. PPARγ inhibits airway epithelial cell inflammatory response through a MUC1-dependent mechanism. Am. J. Physiol. Lung Cell. Mol. Physiol. 2012, 302, L679–L687. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.S.; Guang, W.; Blanchard, T.G.; Kim, K.C.; Lillehoj, E.P. Suppression of IL-8 production in gastric epithelial cells by MUC1 mucin and peroxisome proliferator-associated receptor-γ. Am. J. Physiol. Gastrointest. Liver Physiol. 2012, 303, G765–G774. [Google Scholar] [CrossRef] [PubMed]
- Kawai, T.; Akira, S. Signaling to NF-κB by Toll-like receptors. Trends Mol. Med. 2007, 13, 460–469. [Google Scholar] [CrossRef] [PubMed]
- Kato, K.; Lillehoj, E.P.; Park, Y.S.; Umehara, T.; Hoffman, N.E.; Madesh, M.; Kim, K.C. Membrane-tethered MUC1 mucin is phosphorylated by epidermal growth factor receptor in airway epithelial cells and associates with TLR5 to inhibit recruitment of MyD88. J. Immunol. 2012, 188, 2014–2022. [Google Scholar] [CrossRef] [PubMed]
- Kato, K.; Lillehoj, E.P.; Kim, K.C. MUC1 regulates epithelial inflammation and apoptosis by polyI:C through inhibition of Toll/IL-1 receptor-domain-containing adapter-inducing IFN-β (TRIF) recruitment to Toll-like receptor 3. Am. J. Respir. Cell Mol. Biol. 2014, 51, 446–454. [Google Scholar] [CrossRef]
- Kato, K.; Lillehoj, E.P.; Kim, K.C. Pseudomonas aeruginosa stimulates tyrosine phosphorylation of and TLR5 association with the MUC1 cytoplasmic tail through EGFR activation. Inflamm. Res. 2016, 65, 225–233. [Google Scholar] [CrossRef]
- Aggarwal, N.R.; King, L.S.; D’Alessio, F.R. Diverse macrophage populations mediate acute lung inflammation and resolution. Am. J. Physiol. Lung Cell. Mol. Physiol. 2014, 306, L709–L725. [Google Scholar] [CrossRef] [PubMed]
- Kato, K.; Hanss, A.D.; Zemskova, M.A.; Morgan, N.E.; Kim, M.; Knox, K.S.; Lin, Y.; Lillehoj, E.P.; Kim, K.C. Pseudomonas aeruginosa increases MUC1 expression in macrophages through the TLR4-p38 pathway. Biochem. Biophys. Res. Commun. 2017, 492, 231–235. [Google Scholar] [CrossRef]
- Yen, J.H.; Xu, S.; Park, Y.S.; Ganea, D.; Kim, K.C. Higher susceptibility to experimental autoimmune encephalomyelitis in Muc1-deficient mice is associated with increased Th1/Th17 responses. Brain Behav. Immun. 2013, 29, 70–81. [Google Scholar] [CrossRef] [PubMed]
- Kato, K.; Zemskova, M.A.; Hanss, A.D.; Kim, M.M.; Summer, R.; Kim, K.C. Muc1 deficiency exacerbates pulmonary fibrosis in a mouse model of silicosis. Biochem. Biophys. Res. Commun. 2017, 493, 1230–1235. [Google Scholar] [CrossRef] [PubMed]
- Imbert, Y.; Darling, D.S.; Jumblatt, M.M.; Foulks, G.N.; Couzin, E.G.; Steele, P.S.; Young, W.W., Jr. MUC1 splice variants in human ocular surface tissues: Possible differences between dry eye patients and normal controls. Exp. Eye Res. 2006, 83, 493–501. [Google Scholar] [CrossRef] [PubMed]
- Imbert-Fernandez, Y.; Radde, B.N.; Teng, Y.; Young, W.W., Jr.; Hu, C.; Klinge, C.M. MUC1/A and MUC1/B splice variants differentially regulate inflammatory cytokine expression. Exp. Eye Res. 2011, 93, 649–657. [Google Scholar] [CrossRef] [PubMed]
- Menon, B.B.; Kaiser-Marko, C.; Spurr-Michaud, S.; Tisdale, A.S.; Gipson, I.K. Suppression of Toll-like receptor-mediated innate immune responses at the ocular surface by the membrane-associated mucins MUC1 and MUC16. Mucosal Immunol. 2015, 8, 1000–1008. [Google Scholar] [CrossRef] [PubMed]
- McGuckin, M.A.; Every, A.L.; Skene, C.D.; Linden, S.K.; Chionh, Y.T.; Swierczak, A.; McAuley, J.; Harbour, S.; Kaparakis, M.; Ferrero, R.; et al. Muc1 mucin limits both Helicobacter pylori colonization of the murine gastric mucosa and associated gastritis. Gastroenterology 2007, 133, 1210–1218. [Google Scholar] [CrossRef] [PubMed]
- Guang, W.; Ding, H.; Czinn, S.J.; Kim, K.C.; Blanchard, T.G.; Lillehoj, E.P. Muc1 cell surface mucin attenuates epithelial inflammation in response to a common mucosal pathogen. J. Biol. Chem. 2010, 285, 20547–20557. [Google Scholar] [CrossRef] [PubMed]
- Guang, W.; Twaddell, W.S.; Lillehoj, E.P. Molecular interactions between MUC1 epithelial mucin, β-catenin, and cagA proteins. Front. Immunol. 2012, 3, 105. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Y.H.; Triyana, S.; Wang, R.; Das, I.; Gerloff, K.; Florin, T.H.; Sutton, P.; McGuckin, M.A. MUC1 and MUC13 differentially regulate epithelial inflammation in response to inflammatory and infectious stimuli. Mucosal Immunol. 2013, 6, 557–568. [Google Scholar] [CrossRef] [PubMed]
- Every, A.L.; Ng, G.Z.; Skene, C.D.; Harbour, S.N.; Walduck, A.K.; McGuckin, M.A.; Sutton, P. Localized suppression of inflammation at sites of Helicobacter pylori colonization. Infect. Immun. 2011, 79, 4186–4192. [Google Scholar] [CrossRef] [PubMed]
- Lindén, S.K.; Sheng, Y.H.; Every, A.L.; Miles, K.M.; Skoog, E.C.; Florin, T.H.; Sutton, P.; McGuckin, M.A. MUC1 limits Helicobacter pylori infection both by steric hindrance and by acting as a releasable decoy. PLoS Pathog. 2009, 5, e1000617. [Google Scholar] [CrossRef] [PubMed]
- Ng, G.Z.; Menheniott, T.R.; Every, A.L.; Stent, A.; Judd, L.M.; Chionh, Y.T.; Dhar, P.; Komen, J.C.; Giraud, A.S.; Wang, T.C.; et al. The MUC1 mucin protects against Helicobacter pylori pathogenesis in mice by regulation of the NLRP3 inflammasome. Gut 2016, 65, 1087–1099. [Google Scholar] [CrossRef] [PubMed]
- Ng, G.Z.; Sutton, P. The MUC1 mucin specifically inhibits activation of the NLRP3 inflammasome. Genes Immun. 2016, 17, 203–206. [Google Scholar] [CrossRef] [PubMed]
- Hirasawa, Y.; Kohno, N.; Yokoyama, A.; Inoue, Y.; Abe, M.; Hiwada, K. KL-6, a human MUC1 mucin, is chemotactic for human fibroblasts. Am. J. Respir. Cell Mol. Biol. 1997, 17, 501–507. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, N.; Hattori, N.; Yokoyama, A.; Kohno, N. Utility of KL-6/MUC1 in the clinical management of interstitial lung diseases. Respir. Investig. 2012, 50, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Ohshimo, S.; Bonella, F.; Grammann, N.; Starke, K.; Cui, A.; Bauer, P.C.; Teschler, H.; Kohno, N.; Guzman, J.; Costabel, U. Serum KL-6 as a novel disease marker in adolescent and adult cystic fibrosis. Sarcoidosis Vasc. Diffuse Lung Dis. 2009, 26, 47–53. [Google Scholar] [PubMed]
- Imai, T.; Takase, M.; Takeda, S.; Kougo, T. Serum KL-6 levels in pediatric patients: Reference values for children and levels in pneumonia, asthma, and measles patients. Pediatr. Pulmonol. 2002, 33, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Qi, Y.; Xu, X.; Jiang, H.; Li, Z.; Yang, Q.; Zhang, C.; Zhang, K.; Chen, R.; Wang, J.; et al. Sputum mucin 1 is increased during the acute phase of chronic obstructive pulmonary disease exacerbation. J. Thorac. Dis. 2017, 9, 1873–1882. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, N.; Hattori, N.; Tanaka, S.; Horimasu, Y.; Haruta, Y.; Yokoyama, A.; Kohno, N.; Kinnula, V.L. Levels of surfactant proteins A and D and KL-6 are elevated in the induced sputum of chronic obstructive pulmonary disease patients: A sequential sputum analysis. Respiration 2011, 82, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Hinojosa-Kurtzberg, A.M.; Johansson, M.E.; Madsen, C.S.; Hansson, G.C.; Gendler, S.J. Novel MUC1 splice variants contribute to mucin overexpression in CFTR-deficient mice. Am. J. Physiol. Gastrointest. Liver Physiol. 2003, 284, G853–G862. [Google Scholar] [CrossRef] [PubMed]
- Malmberg, E.K.; Noaksson, K.A.; Phillipson, M.; Johansson, M.E.; Hinojosa-Kurtzberg, M.; Holm, L.; Gendler, S.J.; Hansson, G.C. Increased levels of mucins in the cystic fibrosis mouse small intestine, and modulator effects of the Muc1 mucin expression. Am. J. Physiol. Gastrointest. Liver Physiol. 2006, 291, G203–G210. [Google Scholar] [CrossRef] [PubMed]
- Yao, M.; Zhang, W.; Zhang, Q.; Xing, L.; Xu, A.; Liu, Q.; Cui, B. Overexpression of MUC1 enhances proangiogenic activity of non-small-cell lung cancer cells through activation of Akt and extracellular signal-regulated kinase pathways. Lung 2011, 189, 453–460. [Google Scholar] [CrossRef] [PubMed]
- Guddo, F.; Giatromanolaki, A.; Koukourakis, M.I.; Reina, C.; Vignola, A.M.; Chlouverakis, G.; Hilkens, J.; Gatter, K.C.; Harris, A.L.; Bonsignore, G. MUC1 (episialin) expression in non-small cell lung cancer is independent of EGFR and c-erbB-2 expression and correlates with poor survival in node positive patients. J. Clin. Pathol. 1998, 51, 667–671. [Google Scholar] [CrossRef] [PubMed]
- Khodarev, N.N.; Pitroda, S.P.; Beckett, M.A.; MacDermed, D.M.; Huang, L.; Kufe, D.W.; Weichselbaum, R.R. MUC1-induced transcriptional programs associated with tumorigenesis predict outcome in breast and lung cancer. Cancer Res. 2009, 69, 2833–2837. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Bai, L.; Chen, W.; Padilla, M.T.; Liu, Y.; Kim, K.C.; Belinsky, S.A.; Lin, Y. MUC1 contributes to BPDE-induced human bronchial epithelial cell transformation through facilitating EGFR activation. PLoS ONE 2012, 7, e33846. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.T.; Gallup, M.; Nikulina, K.; Lazarev, S.; Zlock, L.; Finkbeiner, W.; McNamara, N. Cigarette smoke induces epidermal growth factor receptor-dependent redistribution of apical MUC1 and junctional β-catenin in polarized human airway epithelial cells. Am. J. Pathol. 2010, 177, 1255–1264. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Gallup, M.; Zlock, L.; Basbaum, C.; Finkbeiner, W.E.; McNamara, N.A. Cigarette smoke disrupts the integrity of airway adherens junctions through the aberrant interaction of p120-catenin with the cytoplasmic tail of MUC1. J. Pathol. 2013, 229, 74–86. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Gallup, M.; Zlock, L.; Chen, Y.T.; Finkbeiner, W.E.; McNamara, N.A. Pivotal role of MUC1 glycosylation by cigarette smoke in modulating disruption of airway adherens junctions in vitro. J. Pathol. 2014, 234, 60–73. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Gallup, M.; Zlock, L.; Feeling Chen, Y.T.; Finkbeiner, W.E.; McNamara, N.A. Cigarette smoke mediates nuclear to cytoplasmic trafficking of transcriptional inhibitor Kaiso through MUC1 and p120-catenin. Am. J. Pathol. 2016, 186, 3146–3159. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Padilla, M.T.; Li, B.; Wells, A.; Kato, K.; Tellez, C.; Belinsky, S.A.; Kim, K.C.; Lin, Y. MUC1 in macrophage: Contributions to cigarette smoke-induced lung cancer. Cancer Res. 2014, 74, 460–470. [Google Scholar] [CrossRef] [PubMed]
- Raina, D.; Kosugi, M.; Ahmad, R.; Panchamoorthy, G.; Rajabi, H.; Alam, M.; Shimamura, T.; Shapiro, G.I.; Supko, J.; Kharbanda, S.; et al. Dependence on the MUC1-C oncoprotein in non-small cell lung cancer cells. Mol. Cancer Ther. 2011, 10, 806–816. [Google Scholar] [CrossRef] [PubMed]
- Raina, D.; Ahmad, R.; Joshi, M.D.; Yin, L.; Wu, Z.; Kawano, T.; Vasir, B.; Avigan, D.; Kharbanda, S.; Kufe, D. Direct targeting of the mucin 1 oncoprotein blocks survival and tumorigenicity of human breast carcinoma cells. Cancer Res. 2009, 69, 5133–5141. [Google Scholar] [CrossRef] [PubMed]
- Bitler, B.G.; Menzl, I.; Huerta, C.L.; Sands, B.; Knowlton, W.; Chang, A.; Schroeder, J.A. Intracellular MUC1 peptides inhibit cancer progression. Clin. Cancer Res. 2009, 15, 100–109. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Chen, W.; Leng, S.; Padilla, M.T.; Saxton, B.; Hutt, J.; Tessema, M.; Kato, K.; Kim, K.C.; Belinsky, S.A.; et al. Muc1 knockout potentiates murine lung carcinogenesis involving an epiregulin-mediated EGFR activation feedback loop. Carcinogenesis 2017, 38, 604–614. [Google Scholar] [CrossRef] [PubMed]
- Joshi, M.D.; Ahmad, R.; Yin, L.; Raina, D.; Rajabi, H.; Bubley, G.; Kharbanda, S.; Kufe, D. MUC1 oncoprotein is a druggable target in human prostate cancer cells. Mol. Cancer Ther. 2009, 8, 3056–3065. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kato, K.; Lillehoj, E.P.; Lu, W.; Kim, K.C. MUC1: The First Respiratory Mucin with an Anti-Inflammatory Function. J. Clin. Med. 2017, 6, 110. https://doi.org/10.3390/jcm6120110
Kato K, Lillehoj EP, Lu W, Kim KC. MUC1: The First Respiratory Mucin with an Anti-Inflammatory Function. Journal of Clinical Medicine. 2017; 6(12):110. https://doi.org/10.3390/jcm6120110
Chicago/Turabian StyleKato, Kosuke, Erik P. Lillehoj, Wenju Lu, and Kwang Chul Kim. 2017. "MUC1: The First Respiratory Mucin with an Anti-Inflammatory Function" Journal of Clinical Medicine 6, no. 12: 110. https://doi.org/10.3390/jcm6120110
APA StyleKato, K., Lillehoj, E. P., Lu, W., & Kim, K. C. (2017). MUC1: The First Respiratory Mucin with an Anti-Inflammatory Function. Journal of Clinical Medicine, 6(12), 110. https://doi.org/10.3390/jcm6120110