Glutathione as a Redox Biomarker in Mitochondrial Disease—Implications for Therapy
Abstract
:1. Introduction
2. Glutathione Levels in Mitochondrial Disorders
3. Glutathione Levels in Other Disorders Associated with Mitochondrial Dysfunction
3.1. Organic Acidemias
3.2. Friedreich Ataxia
3.3. Parkinson Disease and Other Neurodegenerative Disorders
3.4. Genetic Syndromes
4. Implications for Mitochondrial Disease Therapy
5. EPI-743
5.1. Mitochondrial Disorders
5.2. Leber Hereditary Optic Neuropathy
5.3. Leigh Syndrome
5.4. RARS2 Deficiency
5.5. Friedreich Ataxia
5.6. Rett Syndrome
5.7. Parkinson Disease
6. N-Acetylcysteine and Cysteamine
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Enns, G.M. Treatment of Mitochondrial Disorders: Antioxidants and Beyond. J. Child Neurol. 2014, 29, 1235–1240. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, A.M.; Phoenix, C.; Elson, J.L.; McFarland, R.; Chinnery, P.F.; Turnbull, D.M. Mitochondrial Disease in Adults: A Scale to Monitor Progression and Treatment. Neurology 2006, 66, 1932–1934. [Google Scholar] [CrossRef] [PubMed]
- Phoenix, C.; Schaefer, A.M.; Elson, J.L.; Morava, E.; Bugiani, M.; Uziel, G.; Smeitink, J.A.; Turnbull, D.M.; McFarland, R. A Scale to Monitor Progression and Treatment of Mitochondrial Disease in Children. Neuromuscul. Disord. 2006, 16, 814–820. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, M.C.; Sgandurra, G.; Tosetti, M.; Battini, R.; Cioni, G. Brain Magnetic Resonance in the Diagnostic Evaluation of Mitochondrial Encephalopathies. Biosci. Rep. 2007, 27, 69–85. [Google Scholar] [CrossRef] [PubMed]
- Mitochondrial Medicine Society’s Committee on Diagnosi; Haas, R.H.; Parikh, S.; Falk, M.J.; Saneto, R.P.; Wolf, N.I.; Darin, N.; Wong, L.J.; Cohen, B.H.; Naviaux, R.K. The in-Depth Evaluation of Suspected Mitochondrial Disease. Mol. Genet. Metab. 2008, 94, 16–37. [Google Scholar] [CrossRef] [PubMed]
- Mancuso, M.; Orsucci, D.; Coppede, F.; Nesti, C.; Choub, A.; Siciliano, G. Diagnostic Approach to Mitochondrial Disorders: The Need for a Reliable Biomarker. Curr. Mol. Med. 2009, 9, 1095–1107. [Google Scholar] [CrossRef] [PubMed]
- Blankenberg, F.G.; Kinsman, S.L.; Cohen, B.H.; Goris, M.L.; Spicer, K.M.; Perlman, S.L.; Krane, E.J.; Kheifets, V.; Thoolen, M.; Miller, G.; et al. Brain Uptake of Tc99m-Hmpao Correlates with Clinical Response to the Novel Redox Modulating Agent Epi-743 in Patients with Mitochondrial Disease. Mol. Genet. Metab. 2012, 107, 690–699. [Google Scholar] [CrossRef] [PubMed]
- Suomalainen, A. Biomarkers for Mitochondrial Respiratory Chain Disorders. J. Inherit. Metab. Dis. 2011, 34, 277–282. [Google Scholar] [CrossRef] [PubMed]
- Shaham, O.; Slate, N.G.; Goldberger, O.; Xu, Q.; Ramanathan, A.; Souza, A.L.; Clish, C.B.; Sims, K.B.; Mootha, V.K. A Plasma Signature of Human Mitochondrial Disease Revealed through Metabolic Profiling of Spent Media from Cultured Muscle Cells. Proc. Natl. Acad. Sci. USA 2010, 107, 1571–1575. [Google Scholar] [CrossRef] [PubMed]
- Suomalainen, A.; Elo, J.M.; Pietilainen, K.H.; Hakonen, A.H.; Sevastianova, K.; Korpela, M.; Isohanni, P.; Marjavaara, S.K.; Tyni, T.; Kiuru-Enari, S.; et al. Fgf-21 as a Biomarker for Muscle-Manifesting Mitochondrial Respiratory Chain Deficiencies: A Diagnostic Study. Lancet Neurol. 2011, 10, 806–818. [Google Scholar] [CrossRef]
- Yatsuga, S.; Fujita, Y.; Ishii, A.; Fukumoto, Y.; Arahata, H.; Kakuma, T.; Kojima, T.; Ito, M.; Tanaka, M.; Saiki, R.; et al. Growth Differentiation Factor 15 as a Useful Biomarker for Mitochondrial Disorders. Ann. Neurol. 2015, 78, 814–823. [Google Scholar] [CrossRef] [PubMed]
- Tyynismaa, H.; Carroll, C.J.; Raimundo, N.; Ahola-Erkkila, S.; Wenz, T.; Ruhanen, H.; Guse, K.; Hemminki, A.; Peltola-Mjosund, K.E.; Tulkki, V.; et al. Mitochondrial Myopathy Induces a Starvation-Like Response. Hum. Mol. Genet. 2010, 19, 3948–3958. [Google Scholar] [CrossRef] [PubMed]
- Kalko, S.G.; Paco, S.; Jou, C.; Rodriguez, M.A.; Meznaric, M.; Rogac, M.; Jekovec-Vrhovsek, M.; Sciacco, M.; Moggio, M.; Fagiolari, G.; et al. Transcriptomic Profiling of Tk2 Deficient Human Skeletal Muscle Suggests a Role for the P53 Signalling Pathway and Identifies Growth and Differentiation Factor-15 as a Potential Novel Biomarker for Mitochondrial Myopathies. BMC Genomics 2014, 15, 91. [Google Scholar] [CrossRef] [PubMed]
- Cadenas, E. Mitochondrial Free Radical Production and Cell Signaling. Mol. Asp. Med. 2004, 25, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Lash, L.H. Mitochondrial Glutathione Transport: Physiological, Pathological and Toxicological Implications. Chem. Biol. Interact. 2006, 163, 54–67. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.C. Regulation of Glutathione Synthesis. Curr. Top. Cell Regul. 2000, 36, 95–116. [Google Scholar] [PubMed]
- Wu, G.; Fang, Y.Z.; Yang, S.; Lupton, J.R.; Turner, N.D. Glutathione Metabolism and Its Implications for Health. J. Nutr. 2004, 134, 489–492. [Google Scholar] [PubMed]
- Mari, M.; Morales, A.; Colell, A.; Garcia-Ruiz, C.; Kaplowitz, N.; Fernandez-Checa, J.C. Mitochondrial Glutathione: Features, Regulation and Role in Disease. Biochim. Biophys. Acta 2013, 1830, 3317–3328. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.P. Redefining Oxidative Stress. Antioxid. Redox Signal. 2006, 8, 1865–1879. [Google Scholar] [CrossRef] [PubMed]
- Ballatori, N.; Krance, S.M.; Notenboom, S.; Shi, S.; Tieu, K.; Hammond, C.L. Glutathione Dysregulation and the Etiology and Progression of Human Diseases. Biol. Chem. 2009, 390, 191–214. [Google Scholar] [CrossRef] [PubMed]
- Schafer, F.Q.; Buettner, G.R. Redox Environment of the Cell as Viewed through the Redox State of the Glutathione Disulfide/Glutathione Couple. Free Radic. Biol. Med. 2001, 30, 1191–1212. [Google Scholar] [CrossRef]
- Merad-Boudia, M.; Nicole, A.; Santiard-Baron, D.; Saille, C.; Ceballos-Picot, I. Mitochondrial Impairment as an Early Event in the Process of Apoptosis Induced by Glutathione Depletion in Neuronal Cells: Relevance to Parkinson’s Disease. Biochem. Pharmacol. 1998, 56, 645–655. [Google Scholar] [CrossRef]
- Piemonte, F.; Pastore, A.; Tozzi, G.; Tagliacozzi, D.; Santorelli, F.M.; Carrozzo, R.; Casali, C.; Damiano, M.; Federici, G.; Bertini, E. Glutathione in Blood of Patients with Friedreich’s Ataxia. Eur. J. Clin. Investig. 2001, 31, 1007–1011. [Google Scholar] [CrossRef] [PubMed]
- Hargreaves, I.P.; Sheena, Y.; Land, J.M.; Heales, S.J. Glutathione Deficiency in Patients with Mitochondrial Disease: Implications for Pathogenesis and Treatment. J. Inherit. Metab. Dis. 2005, 28, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Atkuri, K.R.; Cowan, T.M.; Kwan, T.; Ng, A.; Herzenberg, L.A.; Herzenberg, L.A.; Enns, G.M. Inherited Disorders Affecting Mitochondrial Function Are Associated with Glutathione Deficiency and Hypocitrullinemia. Proc. Natl. Acad. Sci. USA 2009, 106, 3941–3945. [Google Scholar] [CrossRef] [PubMed]
- Salmi, H.; Leonard, J.V.; Lapatto, R. Patients with Organic Acidaemias Have an Altered Thiol Status. Acta Paediatr. 2012, 101, e505–e508. [Google Scholar] [CrossRef] [PubMed]
- Signorini, C.; Leoncini, S.; De Felice, C.; Pecorelli, A.; Meloni, I.; Ariani, F.; Mari, F.; Amabile, S.; Paccagnini, E.; Gentile, M.; et al. Redox Imbalance and Morphological Changes in Skin Fibroblasts in Typical Rett Syndrome. Oxid. Med. Cell Longev. 2014, 2014, 195935. [Google Scholar] [CrossRef] [PubMed]
- Enns, G.M.; Moore, T.; Le, A.; Atkuri, K.; Shah, M.K.; Cusmano-Ozog, K.; Niemi, A.K.; Cowan, T.M. Degree of Glutathione Deficiency and Redox Imbalance Depend on Subtype of Mitochondrial Disease and Clinical Status. PLoS ONE 2014, 9, e100001. [Google Scholar] [CrossRef] [PubMed]
- Gu, F.; Chauhan, V.; Chauhan, A. Glutathione Redox Imbalance in Brain Disorders. Curr. Opin. Clin. Nutr. Metab. Care 2015, 18, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Pastore, A.; Petrillo, S.; Tozzi, G.; Carrozzo, R.; Martinelli, D.; Dionisi-Vici, C.; Di Giovamberardino, G.; Ceravolo, F.; Klein, M.B.; Miller, G.; et al. Glutathione: A Redox Signature in Monitoring Epi-743 Therapy in Children with Mitochondrial Encephalomyopathies. Mol. Genet. Metab. 2013, 109, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Moore, T.; Le, A.; Niemi, A.K.; Kwan, T.; Cusmano-Ozog, K.; Enns, G.M.; Cowan, T.M. A New Lc-Ms/Ms Method for the Clinical Determination of Reduced and Oxidized Glutathione from Whole Blood. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2013, 929, 51–55. [Google Scholar] [CrossRef] [PubMed]
- Rossi, R.; Milzani, A.; Dalle-Donne, I.; Giustarini, D.; Lusini, L.; Colombo, R.; Di Simplicio, P. Blood Glutathione Disulfide: In Vivo Factor or in Vitro Artifact? Clin. Chem. 2002, 48, 742–753. [Google Scholar] [PubMed]
- Rossi, R.; Dalle-Donne, I.; Milzani, A.; Giustarini, D. Oxidized Forms of Glutathione in Peripheral Blood as Biomarkers of Oxidative Stress. Clin. Chem. 2006, 52, 1406–1414. [Google Scholar] [CrossRef] [PubMed]
- Giustarini, D.; Dalle-Donne, I.; Milzani, A.; Rossi, R. Detection of Glutathione in Whole Blood after Stabilization with N-Ethylmaleimide. Anal. Biochem. 2011, 415, 81–83. [Google Scholar] [CrossRef] [PubMed]
- Steghens, J.P.; Flourie, F.; Arab, K.; Collombel, C. Fast Liquid Chromatography-Mass Spectrometry Glutathione Measurement in Whole Blood: Micromolar Gssg Is a Sample Preparation Artifact. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2003, 798, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Monostori, P.; Wittmann, G.; Karg, E.; Turi, S. Determination of Glutathione and Glutathione Disulfide in Biological Samples: An in-Depth Review. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2009, 877, 3331–3346. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, Y.; Saito, Y.; Nakano, Y.; Mochizuki, K.; Sakata, O.; Ito, R.; Saito, K.; Nakazawa, H. Chromatographic and Mass Spectrometric Analysis of Glutathione in Biological Samples. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2009, 877, 3309–3317. [Google Scholar] [CrossRef] [PubMed]
- Harwood, D.T.; Kettle, A.J.; Brennan, S.; Winterbourn, C.C. Simultaneous Determination of Reduced Glutathione, Glutathione Disulphide and Glutathione Sulphonamide in Cells and Physiological Fluids by Isotope Dilution Liquid Chromatography-Tandem Mass Spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2009, 877, 3393–3399. [Google Scholar] [CrossRef] [PubMed]
- Forman, H.J.; Zhang, H.; Rinna, A. Glutathione: Overview of Its Protective Roles, Measurement, and Biosynthesis. Mol. Asp. Med. 2009, 30, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Yap, L.P.; Sancheti, H.; Ybanez, M.D.; Garcia, J.; Cadenas, E.; Han, D. Determination of Gsh, Gssg, and Gsno Using Hplc with Electrochemical Detection. Methods Enzymol. 2010, 473, 137–147. [Google Scholar] [PubMed]
- Salmi, H.; Leonard, J.V.; Rahman, S.; Lapatto, R. Plasma Thiol Status Is Altered in Children with Mitochondrial Diseases. Scand. J. Clin. Lab. Investig. 2012, 72, 152–157. [Google Scholar] [CrossRef] [PubMed]
- Pastore, A.; Martinelli, D.; Piemonte, F.; Tozzi, G.; Boenzi, S.; Di Giovamberardino, G.; Petrillo, S.; Bertini, E.; Dionisi-Vici, C. Glutathione Metabolism in Cobalamin Deficiency Type C (Cblc). J. Inherit. Metab. Dis. 2014, 37, 125–129. [Google Scholar] [CrossRef] [PubMed]
- Piccolo, G.; Banfi, P.; Azan, G.; Rizzuto, R.; Bisson, R.; Sandona, D.; Bellomo, G. Biological Markers of Oxidative Stress in Mitochondrial Myopathies with Progressive External Ophthalmoplegia. J. Neurol. Sci. 1991, 105, 57–60. [Google Scholar] [CrossRef]
- Filosto, M.; Tonin, P.; Vattemi, G.; Spagnolo, M.; Rizzuto, N.; Tomelleri, G. Antioxidant Agents Have a Different Expression Pattern in Muscle Fibers of Patients with Mitochondrial Diseases. Acta Neuropathol. 2002, 103, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Hayasaka, K.; Metoki, K.; Satoh, T.; Narisawa, K.; Tada, K.; Kawakami, T.; Matsuo, N.; Aoki, T. Comparison of Cytosolic and Mitochondrial Enzyme Alterations in the Livers of Propionic or Methylmalonic Acidemia: A Reduction of Cytochrome Oxidase Activity. Tohoku J. Exp. Med. 1982, 137, 329–334. [Google Scholar] [CrossRef] [PubMed]
- Krahenbuhl, S.; Ray, D.B.; Stabler, S.P.; Allen, R.H.; Brass, E.P. Increased Hepatic Mitochondrial Capacity in Rats with Hydroxy-Cobalamin[C-Lactam]-Induced Methylmalonic Aciduria. J. Clin. Investig. 1990, 86, 2054–2061. [Google Scholar] [CrossRef] [PubMed]
- Krahenbuhl, S.; Chang, M.; Brass, E.P.; Hoppel, C.L. Decreased Activities of Ubiquinol:Ferricytochrome C Oxidoreductase (Complex Iii) and Ferrocytochrome C:Oxygen Oxidoreductase (Complex Iv) in Liver Mitochondria from Rats with Hydroxycobalamin[C-Lactam]-Induced Methylmalonic Aciduria. J. Biol. Chem. 1991, 266, 20998–21003. [Google Scholar] [PubMed]
- Tandler, B.; Krahenbuhl, S.; Brass, E.P. Unusual Mitochondria in the Hepatocytes of Rats Treated with a Vitamin B12 Analogue. Anat Rec. 1991, 231, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Wajner, M.; Dutra, J.C.; Cardoso, S.E.; Wannmacher, C.M.; Motta, E.R. Effect of Methylmalonate on in Vitro Lactate Release and Carbon Dioxide Production by Brain of Suckling Rats. J. Inherit. Metab. Dis. 1992, 15, 92–96. [Google Scholar] [CrossRef] [PubMed]
- Dutra, J.C.; Dutra-Filho, C.S.; Cardozo, S.E.; Wannmacher, C.M.; Sarkis, J.J.; Wajner, M. Inhibition of Succinate Dehydrogenase and Beta-Hydroxybutyrate Dehydrogenase Activities by Methylmalonate in Brain and Liver of Developing Rats. J. Inherit. Metab. Dis. 1993, 16, 147–153. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, B.A.; Nelson, D.; Silver, I.A.; Erecinska, M.; Chesselet, M.F. Methylmalonate Toxicity in Primary Neuronal Cultures. Neuroscience 1998, 86, 279–290. [Google Scholar] [CrossRef]
- Brusque, A.M.; Borba Rosa, R.; Schuck, P.F.; Dalcin, K.B.; Ribeiro, C.A.; Silva, C.G.; Wannmacher, C.M.; Dutra-Filho, C.S.; Wyse, A.T.; Briones, P.; et al. Inhibition of the Mitochondrial Respiratory Chain Complex Activities in Rat Cerebral Cortex by Methylmalonic Acid. Neurochem. Int. 2002, 40, 593–601. [Google Scholar] [CrossRef]
- Okun, J.G.; Horster, F.; Farkas, L.M.; Feyh, P.; Hinz, A.; Sauer, S.; Hoffmann, G.F.; Unsicker, K.; Mayatepek, E.; Kolker, S. Neurodegeneration in Methylmalonic Aciduria Involves Inhibition of Complex Ii and the Tricarboxylic Acid Cycle, and Synergistically Acting Excitotoxicity. J. Biol. Chem. 2002, 277, 14674–14680. [Google Scholar] [PubMed]
- Chandler, R.J.; Zerfas, P.M.; Shanske, S.; Sloan, J.; Hoffmann, V.; DiMauro, S.; Venditti, C.P. Mitochondrial Dysfunction in Mut Methylmalonic Acidemia. FASEB J. 2009, 23, 1252–1261. [Google Scholar] [CrossRef] [PubMed]
- Murphy, G.E.; Lowekamp, B.C.; Zerfas, P.M.; Chandler, R.J.; Narasimha, R.; Venditti, C.P.; Subramaniam, S. Ion-Abrasion Scanning Electron Microscopy Reveals Distorted Liver Mitochondrial Morphology in Murine Methylmalonic Acidemia. J. Struct. Biol. 2010, 171, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, C.G.; Borges, C.G.; Seminotti, B.; Amaral, A.U.; Knebel, L.A.; Eichler, P.; de Oliveira, A.B.; Leipnitz, G.; Wajner, M. Experimental Evidence That Methylmalonic Acid Provokes Oxidative Damage and Compromises Antioxidant Defenses in Nerve Terminal and Striatum of Young Rats. Cell Mol. Neurobiol. 2011, 31, 775–785. [Google Scholar] [CrossRef] [PubMed]
- Valayannopoulos, V.; Hubert, L.; Benoist, J.F.; Romano, S.; Arnoux, J.B.; Chretien, D.; Kaplan, J.; Fakhouri, F.; Rabier, D.; Rotig, A.; et al. Multiple Oxphos Deficiency in the Liver of a Patient with Cbla Methylmalonic Aciduria Sensitive to Vitamin B(12). J. Inherit. Metab. Dis. 2009, 32, 159–162. [Google Scholar] [CrossRef] [PubMed]
- Richard, E.; Jorge-Finnigan, A.; Garcia-Villoria, J.; Merinero, B.; Desviat, L.R.; Gort, L.; Briones, P.; Leal, F.; Perez-Cerda, C.; Ribes, A.; et al. Genetic and Cellular Studies of Oxidative Stress in Methylmalonic Aciduria (Mma) Cobalamin Deficiency Type C (Cblc) with Homocystinuria (Mmachc). Hum. Mutat. 2009, 30, 1558–1566. [Google Scholar] [CrossRef] [PubMed]
- Melo, D.R.; Kowaltowski, A.J.; Wajner, M.; Castilho, R.F. Mitochondrial Energy Metabolism in Neurodegeneration Associated with Methylmalonic Acidemia. J. Bioenerg. Biomembr. 2011, 43, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Richard, E.; Monteoliva, L.; Juarez, S.; Perez, B.; Desviat, L.R.; Ugarte, M.; Albar, J.P. Quantitative Analysis of Mitochondrial Protein Expression in Methylmalonic Acidemia by Two-Dimensional Difference Gel Electrophoresis. J. Proteome Res. 2006, 5, 1602–1610. [Google Scholar] [CrossRef] [PubMed]
- Fontella, F.U.; Pulrolnik, V.; Gassen, E.; Wannmacher, C.M.; Klein, A.B.; Wajner, M.; Dutra-Filho, C.S. Propionic and L-Methylmalonic Acids Induce Oxidative Stress in Brain of Young Rats. Neuroreport 2000, 11, 541–544. [Google Scholar] [CrossRef] [PubMed]
- Brusque, A.M.; Rotta, L.N.; Tavares, R.G.; Emanuelli, T.; Schwarzbold, C.V.; Dutra-Filho, C.S.; de Souza Wyse, A.T.; Duval Wannmacher, C.M.; Gomes de Souza, D.O.; Wajner, M. Effects of Methylmalonic and Propionic Acids on Glutamate Uptake by Synaptosomes and Synaptic Vesicles and on Glutamate Release by Synaptosomes from Cerebral Cortex of Rats. Brain Res. 2011, 920, 194–201. [Google Scholar] [CrossRef]
- Mardach, R.; Verity, M.A.; Cederbaum, S.D. Clinical, Pathological, and Biochemical Studies in a Patient with Propionic Acidemia and Fatal Cardiomyopathy. Mol. Genet. Metab. 2005, 85, 286–290. [Google Scholar] [CrossRef] [PubMed]
- Schwab, M.A.; Sauer, S.W.; Okun, J.G.; Nijtmans, L.G.; Rodenburg, R.J.; van den Heuvel, L.P.; Drose, S.; Brandt, U.; Hoffmann, G.F.; Ter Laak, H.; et al. Secondary Mitochondrial Dysfunction in Propionic Aciduria: A Pathogenic Role for Endogenous Mitochondrial Toxins. Biochem. J. 2006, 398, 107–112. [Google Scholar] [CrossRef] [PubMed]
- De Keyzer, Y.; Valayannopoulos, V.; Benoist, J.F.; Batteux, F.; Lacaille, F.; Hubert, L.; Chretien, D.; Chadefeaux-Vekemans, B.; Niaudet, P.; Touati, G.; et al. Multiple Oxphos Deficiency in the Liver, Kidney, Heart, and Skeletal Muscle of Patients with Methylmalonic Aciduria and Propionic Aciduria. Pediatr. Res. 2009, 66, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, C.A.; Balestro, F.; Grando, V.; Wajner, M. Isovaleric Acid Reduces Na+, K+-Atpase Activity in Synaptic Membranes from Cerebral Cortex of Young Rats. Cell Mol. Neurobiol. 2007, 27, 529–540. [Google Scholar] [CrossRef] [PubMed]
- Solano, A.F.; Leipnitz, G.; De Bortoli, G.M.; Seminotti, B.; Amaral, A.U.; Fernandes, C.G.; Latini, A.S.; Dutra-Filho, C.S.; Wajner, M. Induction of Oxidative Stress by the Metabolites Accumulating in Isovaleric Acidemia in Brain Cortex of Young Rats. Free Radic. Res. 2008, 42, 707–715. [Google Scholar] [CrossRef] [PubMed]
- Lehnert, W.; Sass, J.O. Glutaconyl-Coa Is the Main Toxic Agent in Glutaryl-Coa Dehydrogenase Deficiency (Glutaric Aciduria Type I). Med. Hypotheses. 2005, 65, 330–333. [Google Scholar] [CrossRef] [PubMed]
- Magni, D.V.; Furian, A.F.; Oliveira, M.S.; Souza, M.A.; Lunardi, F.; Ferreira, J.; Mello, C.F.; Royes, L.F.; Fighera, M.R. Kinetic Characterization of L-[(3)H]Glutamate Uptake Inhibition and Increase Oxidative Damage Induced by Glutaric Acid in Striatal Synaptosomes of Rats. Int. J. Dev. Neurosci. 2009, 27, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Wajner, M.; Goodman, S.I. Disruption of Mitochondrial Homeostasis in Organic Acidurias: Insights from Human and Animal Studies. J. Bioenerg. Biomembr. 2011, 43, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Treacy, E.; Arbour, L.; Chessex, P.; Graham, G.; Kasprzak, L.; Casey, K.; Bell, L.; Mamer, O.; Scriver, C.R. Glutathione Deficiency as a Complication of Methylmalonic Acidemia: Response to High Doses of Ascorbate. J. Pediatr. 1996, 129, 445–448. [Google Scholar] [CrossRef]
- Seznec, H.; Simon, D.; Bouton, C.; Reutenauer, L.; Hertzog, A.; Golik, P.; Procaccio, V.; Patel, M.; Drapier, J.C.; Koenig, M.; et al. Friedreich Ataxia: The Oxidative Stress Paradox. Hum. Mol. Genet. 2005, 14, 463–474. [Google Scholar] [CrossRef] [PubMed]
- Santos, R.; Lefevre, S.; Sliwa, D.; Seguin, A.; Camadro, J.M.; Lesuisse, E. Friedreich Ataxia: Molecular Mechanisms, Redox Considerations, and Therapeutic Opportunities. Antioxid. Redox. Signal. 2010, 13, 651–690. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, J.S.; Khdour, O.; Hecht, S.M. Does Oxidative Stress Contribute to the Pathology of Friedreich’s Ataxia? A Radical Question. FASEB J. 2010, 24, 2152–2163. [Google Scholar] [CrossRef] [PubMed]
- Cotticelli, M.G.; Crabbe, A.M.; Wilson, R.B.; Shchepinov, M.S. Insights into the Role of Oxidative Stress in the Pathology of Friedreich Ataxia Using Peroxidation Resistant Polyunsaturated Fatty Acids. Redox. Biol. 2013, 1, 398–404. [Google Scholar] [CrossRef] [PubMed]
- Murray, J.; Taylor, S.W.; Zhang, B.; Ghosh, S.S.; Capaldi, R.A. Oxidative Damage to Mitochondrial Complex I Due to Peroxynitrite: Identification of Reactive Tyrosines by Mass Spectrometry. J. Biol. Chem. 2003, 278, 37223–37230. [Google Scholar] [CrossRef] [PubMed]
- Hauser, D.N.; Hastings, T.G. Mitochondrial Dysfunction and Oxidative Stress in Parkinson’s Disease and Monogenic Parkinsonism. Neurobiol. Dis. 2013, 51, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Ansari, M.A.; Scheff, S.W. Oxidative Stress in the Progression of Alzheimer Disease in the Frontal Cortex. J. Neuropathol. Exp. Neurol. 2010, 69, 155–167. [Google Scholar] [CrossRef] [PubMed]
- Sultana, R.; Mecocci, P.; Mangialasche, F.; Cecchetti, R.; Baglioni, M.; Butterfield, D.A. Increased Protein and Lipid Oxidative Damage in Mitochondria Isolated from Lymphocytes from Patients with Alzheimer’s Disease: Insights into the Role of Oxidative Stress in Alzheimer’s Disease and Initial Investigations into a Potential Biomarker for This Dementing Disorder. J. Alzheimers. Dis. 2011, 24, 77–84. [Google Scholar] [PubMed]
- Filosa, S.; Pecorelli, A.; D’Esposito, M.; Valacchi, G.; Hajek, J. Exploring the Possible Link between Mecp2 and Oxidative Stress in Rett Syndrome. Free Radic. Biol. Med. 2015, 88, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Murata, T.; Ohtsuka, C.; Terayama, Y. Increased Mitochondrial Oxidative Damage in Patients with Sporadic Amyotrophic Lateral Sclerosis. J. Neurol. Sci. 2008, 267, 66–69. [Google Scholar] [CrossRef] [PubMed]
- Zeevalk, G.D.; Razmpour, R.; Bernard, L.P. Glutathione and Parkinson’s Disease: Is This the Elephant in the Room? Biomed. Pharmacother. 2008, 62, 236–249. [Google Scholar] [CrossRef] [PubMed]
- Martin, H.L.; Teismann, P. Glutathione—A Review on Its Role and Significance in Parkinson’s Disease. FASEB J. 2009, 23, 3263–3272. [Google Scholar] [CrossRef] [PubMed]
- Rossignol, D.A.; Frye, R.E. Mitochondrial Dysfunction in Autism Spectrum Disorders: A Systematic Review and Meta-Analysis. Mol. Psychiatry 2012, 17, 290–314. [Google Scholar] [CrossRef] [PubMed]
- Frye, R.E.; Melnyk, S.; Macfabe, D.F. Unique Acyl-Carnitine Profiles Are Potential Biomarkers for Acquired Mitochondrial Disease in Autism Spectrum Disorder. Transl. Psychiatry 2013, 3, e220. [Google Scholar] [CrossRef] [PubMed]
- Frye, R.E.; Delatorre, R.; Taylor, H.; Slattery, J.; Melnyk, S.; Chowdhury, N.; James, S.J. Redox Metabolism Abnormalities in Autistic Children Associated with Mitochondrial Disease. Transl. Psychiatry 2013, 3, e273. [Google Scholar] [CrossRef] [PubMed]
- Pastore, A.; Tozzi, G.; Gaeta, L.M.; Giannotti, A.; Bertini, E.; Federici, G.; Digilio, M.C.; Piemonte, F. Glutathione Metabolism and Antioxidant Enzymes in Children with Down Syndrome. J. Pediatr. 2003, 142, 583–585. [Google Scholar] [CrossRef] [PubMed]
- Infantino, V.; Castegna, A.; Iacobazzi, F.; Spera, I.; Scala, I.; Andria, G.; Iacobazzi, V. Impairment of Methyl Cycle Affects Mitochondrial Methyl Availability and Glutathione Level in Down’s Syndrome. Mol. Genet. Metab. 2011, 102, 378–382. [Google Scholar] [CrossRef] [PubMed]
- Pagano, G.; Zatterale, A.; Degan, P.; d’Ischia, M.; Kelly, F.J.; Pallardo, F.V.; Calzone, R.; Castello, G.; Dunster, C.; Giudice, A.; et al. In Vivo Prooxidant State in Werner Syndrome (Ws): Results from Three Ws Patients and Two Ws Heterozygotes. Free Radic. Res. 2005, 39, 529–533. [Google Scholar] [CrossRef] [PubMed]
- Song, G.; Napoli, E.; Wong, S.; Hagerman, R.; Liu, S.; Tassone, F.; Giulivi, C. Altered Redox Mitochondrial Biology in the Neurodegenerative Disorder Fragile X-Tremor/Ataxia Syndrome: Use of Antioxidants in Precision Medicine. Mol. Med. 2016, 22, 548–559. [Google Scholar] [CrossRef] [PubMed]
- Zapatero-Solana, E.; Garcia-Gimenez, J.L.; Guerrero-Aspizua, S.; Garcia, M.; Toll, A.; Baselga, E.; Duran-Moreno, M.; Markovic, J.; Garcia-Verdugo, J.M.; Conti, C.J.; et al. Oxidative Stress and Mitochondrial Dysfunction in Kindler Syndrome. Orphanet. J. Rare Dis. 2014, 9, 211. [Google Scholar] [CrossRef] [PubMed]
- Enns, G.M.; Kinsman, S.L.; Perlman, S.L.; Spicer, K.M.; Abdenur, J.E.; Cohen, B.H.; Amagata, A.; Barnes, A.; Kheifets, V.; Shrader, W.D.; et al. Initial Experience in the Treatment of Inherited Mitochondrial Disease with Epi-743. Mol. Genet. Metab. 2012, 105, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Sadun, A.A.; Chicani, C.F.; Ross-Cisneros, F.N.; Barboni, P.; Thoolen, M.; Shrader, W.D.; Kubis, K.; Carelli, V.; Miller, G. Effect of Epi-743 on the Clinical Course of the Mitochondrial Disease Leber Hereditary Optic Neuropathy. Arch. Neurol. 2012, 69, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Martinelli, D.; Catteruccia, M.; Piemonte, F.; Pastore, A.; Tozzi, G.; Dionisi-Vici, C.; Pontrelli, G.; Corsetti, T.; Livadiotti, S.; Kheifets, V.; et al. Epi-743 Reverses the Progression of the Pediatric Mitochondrial Disease—Genetically Defined Leigh Syndrome. Mol. Genet. Metab. 2012, 107, 383–388. [Google Scholar] [CrossRef] [PubMed]
- Klein, M. Personal communication; manuscript in preparation. Presented in part at the United Mitochondrial Disease Foundation Annual Meeting, Seattle, WA, USA, 15–18 June 2016. [Google Scholar]
- Luhl, S.; Bode, H.; Schlotzer, W.; Bartsakoulia, M.; Horvath, R.; Abicht, A.; Stenzel, M.; Kirschner, J.; Grunert, S.C. Novel Homozygous Rars2 Mutation in Two Siblings without Pontocerebellar Hypoplasia—Further Expansion of the Phenotypic Spectrum. Orphanet. J. Rare Dis. 2016, 11, 140. [Google Scholar] [CrossRef] [PubMed]
- Martinelli, D.; Catteruccia, M.; Klein, M.; Bevivino, E.; Thoolen, M.; Piemonte, F.; Pastore, A.; Tozzi, G.; Pontrelli, G.; Bertini, E.; et al. Epi-743 Reduces Seizure Frequency in Rars2 Defect Syndrome. J. Inherit. Metab. Dis. 2013, 36, S110. [Google Scholar]
- Lynch, D.R.; Willi, S.M.; Wilson, R.B.; Cotticelli, M.G.; Brigatti, K.W.; Deutsch, E.C.; Kucheruk, O.; Shrader, W.; Rioux, P.; Miller, G.; et al. A0001 in Friedreich Ataxia: Biochemical Characterization and Effects in a Clinical Trial. Mov. Disord. 2012, 27, 1026–1033. [Google Scholar] [CrossRef] [PubMed]
- Klein, M. Personal communication; manuscript in preparation. Presented at the Friedreich’s Ataxia Research Alliance Annual Meeting, Tampa, FL, USA, June 2016. [Google Scholar]
- Sullivan, K.; Freeman, M.; Shaw, J.; Gooch, C.; Huang, Y.; Klein, M.; Miller, G.; Zesiewicz, T. Epi-743 for Friedreichs Ataxia Patients with Point Mutations. Neurology 2016, 86. Supplement P5.388. [Google Scholar]
- Hayek, J. Epi-743 in Rett Syndrome: Improved Head Growth in a Randomized Double-Blind Placebo-Controlled Trial. In Proceedings of the 4th European Congress on Rett Syndrome, Rome, Italy, 30 October–1 November 2015. [Google Scholar]
- Zesiewicz, T.; Allison, K.; Jahan, I.; Shaw, J.; Murtagh, F.; Jones, T.; Gooch, C.; Salemi, J.; Klein, M.; Miller, G.; et al. Epi-743 Improves Motor Function and Cns Biomarkers in Pd: Results from a Phase 2a Pilot Trial. Neurology 2016, 86. Supplement I1.012. [Google Scholar]
- Shrader, W.D.; Amagata, A.; Barnes, A.; Enns, G.M.; Hinman, A.; Jankowski, O.; Kheifets, V.; Komatsuzaki, R.; Lee, E.; Mollard, P.; et al. Alpha-Tocotrienol Quinone Modulates Oxidative Stress Response and the Biochemistry of Aging. Bioorg. Med. Chem. Lett. 2011, 21, 3693–3698. [Google Scholar] [CrossRef] [PubMed]
- Jacquier-Sarlin, M.R.; Polla, B.S.; Slosman, D.O. Oxido-Reductive State: The Major Determinant for Cellular Retention of Technetium-99m-Hmpao. J. Nucl. Med. 1996, 37, 1413–1416. [Google Scholar] [PubMed]
- Subramony, S.H.; May, W.; Lynch, D.; Gomez, C.; Fischbeck, K.; Hallett, M.; Taylor, P.; Wilson, R.; Ashizawa, T.; Group Cooperative Ataxia. Measuring Friedreich Ataxia: Interrater Reliability of a Neurologic Rating Scale. Neurology 2005, 64, 1261–1262. [Google Scholar] [CrossRef] [PubMed]
- Movement Disorder Society Task Force on Rating Scales for Parkinson’s Disease. The Unified Parkinson’s Disease Rating Scale (Updrs): Status and Recommendations. Mov. Disord. 2003, 18, 738–750. [Google Scholar]
- Atkuri, K.R.; Mantovani, J.J.; Herzenberg, L.A.; Herzenberg, L.A. N-Acetylcysteine—A Safe Antidote for Cysteine/Glutathione Deficiency. Curr. Opin. Pharmacol. 2007, 7, 355–359. [Google Scholar] [CrossRef] [PubMed]
- Besouw, M.; Masereeuw, R.; van den Heuvel, L.; Levtchenko, E. Cysteamine: An Old Drug with New Potential. Drug. Discov. Today 2013, 18, 785–792. [Google Scholar] [CrossRef] [PubMed]
- Harrison, P.M.; Keays, R.; Bray, G.P.; Alexander, G.J.; Williams, R. Improved Outcome of Paracetamol-Induced Fulminant Hepatic Failure by Late Administration of Acetylcysteine. Lancet 1990, 335, 1572–1573. [Google Scholar] [CrossRef]
- Harrison, P.M.; Wendon, J.A.; Gimson, A.E.; Alexander, G.J.; Williams, R. Improvement by Acetylcysteine of Hemodynamics and Oxygen Transport in Fulminant Hepatic Failure. N. Engl. J. Med. 1991, 324, 1852–1857. [Google Scholar] [CrossRef] [PubMed]
- Stravitz, R.T.; Sanyal, A.J.; Reisch, J.; Bajaj, J.S.; Mirshahi, F.; Cheng, J.; Lee, W.M.; Group Acute Liver Failure Study. Effects of N-Acetylcysteine on Cytokines in Non-Acetaminophen Acute Liver Failure: Potential Mechanism of Improvement in Transplant-Free Survival. Liver Int. 2013, 33, 1324–1331. [Google Scholar] [CrossRef] [PubMed]
- Hilgier, W.; Wegrzynowicz, M.; Ruszkiewicz, J.; Oja, S.S.; Saransaari, P.; Albrecht, J. Direct Exposure to Ammonia and Hyperammonemia Increase the Extracellular Accumulation and Degradation of Astroglia-Derived Glutathione in the Rat Prefrontal Cortex. Toxicol. Sci. 2010, 117, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Gimenez-Garzo, C.; Urios, A.; Agusti, A.; Gonzalez-Lopez, O.; Escudero-Garcia, D.; Escudero-Sanchis, A.; Serra, M.A.; Giner-Duran, R.; Montoliu, C.; Felipo, V. Is Cognitive Impairment in Cirrhotic Patients Due to Increased Peroxynitrite and Oxidative Stress? Antioxid. Redox. Signal. 2015, 22, 871–877. [Google Scholar] [CrossRef] [PubMed]
- Moreira, P.I.; Harris, P.L.; Zhu, X.; Santos, M.S.; Oliveira, C.R.; Smith, M.A.; Perry, G. Lipoic Acid and N-Acetyl Cysteine Decrease Mitochondrial-Related Oxidative Stress in Alzheimer Disease Patient Fibroblasts. J. Alzheimers Dis. 2007, 12, 195–206. [Google Scholar] [CrossRef] [PubMed]
- Wright, D.J.; Renoir, T.; Smith, Z.M.; Frazier, A.E.; Francis, P.S.; Thorburn, D.R.; McGee, S.L.; Hannan, A.J.; Gray, L.J. N-Acetylcysteine Improves Mitochondrial Function and Ameliorates Behavioral Deficits in the R6/1 Mouse Model of Huntington’s Disease. Transl. Psychiatry 2015, 5, e492. [Google Scholar] [CrossRef] [PubMed]
- Douiev, L.; Soiferman, D.; Alban, C.; Saada, A. The Effects of Ascorbate, N-Acetylcysteine, and Resveratrol on Fibroblasts from Patients with Mitochondrial Disorders. J. Clin. Med. 2017, 6, 1. [Google Scholar] [CrossRef] [PubMed]
- Niemi, A.K.; Enns, G.M. The Role of N-Acetylcysteine in Treating Mitochondrial Liver Disease. ASHG Annual Meeting Program Guide. 2012, p. 140. Available online: http://www.ashg.org/2012meeting/abstracts/fulltext/f120121092.htm (accessed on 3 May 2017).
- Deepmala; Slattery, J.; Kumar, N.; Delhey, L.; Berk, M.; Dean, O.; Spielholz, C.; Frye, R. Clinical Trials of N-Acetylcysteine in Psychiatry and Neurology: A Systematic Review. Neurosci. Biobehav. Rev. 2015, 55, 294–321. [Google Scholar]
- Viscomi, C.; Burlina, A.B.; Dweikat, I.; Savoiardo, M.; Lamperti, C.; Hildebrandt, T.; Tiranti, V.; Zeviani, M. Combined Treatment with Oral Metronidazole and N-Acetylcysteine Is Effective in Ethylmalonic Encephalopathy. Nat. Med. 2010, 16, 869–871. [Google Scholar] [CrossRef] [PubMed]
- Gibrat, C.; Cicchetti, F. Potential of Cystamine and Cysteamine in the Treatment of Neurodegenerative Diseases. Prog. Neuropsychopharmacol. Biol. Psychiatry 2011, 35, 380–389. [Google Scholar] [CrossRef] [PubMed]
- Dubinsky, R.; Gray, C. Cyte-I-Hd: Phase I Dose Finding and Tolerability Study of Cysteamine (Cystagon) in Huntington’s Disease. Mov. Disord. 2006, 21, 530–533. [Google Scholar] [CrossRef] [PubMed]
- Dohil, R.; Rioux, P. Pharmacokinetic Studies of Cysteamine Bitartrate Delayed-Release. Clin. Pharmacol. Drug Dev. 2013, 2, 178–185. [Google Scholar] [CrossRef] [PubMed]
Conditions | Age | Analytical Method | Results | Reference |
---|---|---|---|---|
CPEO (n = 11) | 30–70 years | HPLC | Plasma GSH: 8.64 ± 1.82 μM (controls 11 ± 3 μM; p < 0.01) RBC-GSH: 12.41 ± 2.37 nmol/mg protein (controls 18 ± 2.2 nmol/mg protein) | [43] |
CPEO (n = 14) MELAS (n = 2) MERRF (n = 1) | 19–86 years | GSH histo-chemistry | Muscle GSH: Induction of GSH in fibers with respiratory chain deficiency | [44] |
Mitochondrial disorders (n = 24) | 1 month–12 years | HPLC | Muscle GSH: Complexes I, II − III + IV (n = 7) 4.1 ± 0.98 nmol/mg protein (p < 0.05) Complex I (n = 1) 4.9 nmol/mg protein Complexes II − III + IV (n = 1) 3.0 nmol/mg protein Complex IV (n = 11) 9.7 ± 1.39 nmol/mg protein Complex I + IV (n = 7) 10.3 ± 1.80 nmol/mg protein Controls (n = 15) 12.3 ± 0.62 nmol/mg protein | [24] |
Mitochondrial disorders (n = 20) | 3–36 years | Hi-D FACS | Leukocyte GSH: Decreased iGSH in CD4 T cells (p = 0.014), CD8 T cells (p = 0.005), monocytes (p = 0.016), and neutrophils (p = 0.044) | [25] |
Mitochondrial disorders (n = 10) | 4–14 years | HPLC | Plasma GSH: 26.3 μM (controls 48.9 μM; p = 0.031) RBC-GSH: 6.4 ± 1.1 μmol/g protein (controls 6.7 ± 0.56 μmol/g protein) | [41] |
Mitochondrial disorders (n = 58) | 6 months–50 years | LC-MS/MS | Whole blood GSH: 808 ± 149 μM (controls 900 ± 140 μM; p = 0.0008) Whole blood GSSG: 2.23 ± 1.84 μM (controls 1.17 ± 0.43 μM; <0.0001) Whole blood GSH/GSSG: 596 ± 93 μM (controls 800 ± 370 μM; p = 0.0002) Whole blood redox potential: −251 ± 9.7 mV (controls −260 ± 6.4 mV) | [28,31] |
Friedreich ataxia (n = 14) | 8–22 years | HPLC | Whole blood GSH + GSSG: 0.55 nmol/mg hemoglobin (controls 8.4 ± 1.79 nmol/mg hemoglobin; p < 0.001) RBC hemoglobin-bound glutathione: 15 ± 1.5% (controls 8 ± 1.8%; p < 0.05) | [23] |
Organic acidemias (n = 9) | 1 week–6 years | Hi-D FACS | Leukocyte GSH: Decreased iGSH in CD4 T cells (p = 0.008), CD8 T cells (p = 0.003), monocytes (p = 0.0008), and neutrophils (p = 0.0006) in hospitalized patients Decreased iGSH in CD4 T cells (0.040) and CD8 T cells (0.045) in outpatients | [25] |
Organic acidemias (n = 11) | 1–16 years | HPLC | Plasma GSH: 32.9 ± 6.9 μM (controls 48.9 ± 25.7 μM) | [26] |
Cobalamin C disease (n = 18) | 1–14 years | HPLC | Lymphocyte total glutathione: 23 nmol/mg protein (95% CI 10.25–62.03) (controls 6.9 nmol/mg protein; 95% CI 21.96–60.42; p < 0.05) Lymphocyte GSH: 6.9 nmol/mg protein (95% CI 0.68–24.83) (controls 39.10 nmol/mg protein; 95% CI 19.31–54.55; p < 0.001) Lymphocyte GSSG: 7.9 nmol/mg protein (95% CI 1.87–24.78) (controls 2.94 nmol/mg protein; 95% CI 1.33–3.82; p < 0.05) | [42] |
Patient Population | Age | Trial Design | Duration | Outcomes | Reference |
---|---|---|---|---|---|
Mitochondrial disease (n = 14) | 2–27 years | Open-label | 98–444 days | 11/12 survivors with clinical improvement; 3/11 partial relapse; 10/12 improvement in quality of life (NPMDS section IV); 2 deaths | [92] |
LHON (n = 5) | 8–52 years | Open-label | 204–557 days | 4/5 arrested disease progression and reversal of vision loss; 2/5 total recovery of visual acuity | [93] |
Leigh syndrome (n = 10) | 1–13 years | Open-label | 6 months | Reversal of disease progression; Improvement in NPMDS, GMFM, PedsQL Neuromuscular Module (p < 0.05) | [94] |
Leigh syndrome (n = 35) | 9 months–14 years | Randomized, double-blind, placebo-controlled | 36 months | Decreased rate of hospitalization and serious adverse events | [95] |
RARS2 deficiency (n = 5) | 5–13 years | Open-label | 1 year | Improved neuromuscular function and redox state; Decreased seizure frequency with 2 patients showing resolution of status epilepticus | [96,97] |
Friedreich ataxia (n = 31) 1 | 18–66 years | Randomized, double-blind, placebo-controlled | 28 days | Dose-dependent improvement in FARS score; No alteration in Disposition Index (measure of diabetic tendency) | [98] |
Friedreich ataxia (n = 63) | 19–43 years | Randomized, double-blind, placebo-controlled | 2 years | Dose-dependent improvement in FARS score | [99] |
Freidreich ataxia (point mutations) (n = 4) | 21–63 years | Open-label | 18 months | Improvement in FARS | [100] |
Rett syndrome (n = 24) | 2.5–8 years | Open-label | 6 months | Primary endpoint of improvement in Rett syndrome disease severity score not met; Increase in head circumference (p = 0.05); Improved oxygenation, hand function and disease biomarkers in subgroup with greatest degree of head growth | [101] |
Parkinson disease (n = 10) | 43–69 years | Open-label | 6 months | Improvement in UPDRS Parts II/III; Decrease in brain glutamine/glutamate levels; Improvement of retinal function on electroretinogram | [102] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Enns, G.M.; Cowan, T.M. Glutathione as a Redox Biomarker in Mitochondrial Disease—Implications for Therapy. J. Clin. Med. 2017, 6, 50. https://doi.org/10.3390/jcm6050050
Enns GM, Cowan TM. Glutathione as a Redox Biomarker in Mitochondrial Disease—Implications for Therapy. Journal of Clinical Medicine. 2017; 6(5):50. https://doi.org/10.3390/jcm6050050
Chicago/Turabian StyleEnns, Gregory M., and Tina M. Cowan. 2017. "Glutathione as a Redox Biomarker in Mitochondrial Disease—Implications for Therapy" Journal of Clinical Medicine 6, no. 5: 50. https://doi.org/10.3390/jcm6050050
APA StyleEnns, G. M., & Cowan, T. M. (2017). Glutathione as a Redox Biomarker in Mitochondrial Disease—Implications for Therapy. Journal of Clinical Medicine, 6(5), 50. https://doi.org/10.3390/jcm6050050