Experimental Models of Irritable Bowel Syndrome and the Role of the Enteric Neurotransmission
Abstract
:1. Introduction
2. Animal Models of IBS
2.1. The Wrap Restrain Stress (WRS)
2.2. Chronic Stressors
2.3. The Maternal Separation (MS)
2.4. The Water Avoidance Stress (WAS)
3. The Enteric Neurotransmission as a Potential Target of IBS Treatment
3.1. Cortocotropin Releasing Factor (CRF)
3.2. The Serotonin or 5-Hydroxytriptamine (5-HT)
3.3. Tachykinins
3.4. Calcium Channels
3.5. Others Receptors and Channels
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Canavan, C.; West, J.; Card, T. The epidemiology of irritable bowel syndrome. Clin. Epidemiol. 2014, 6, 71–80. [Google Scholar] [PubMed]
- Evangelista, S. Benefits from long-term treatment in irritable bowel syndrome. Gastroenterol. Res. Pract. 2012, 2012, 936–960. [Google Scholar] [CrossRef] [PubMed]
- Chadwick, V.S.; Chen, W.; Shu, D.; Paulus, B.; Bethwaite, P.; Tie, A.; Wilson, I. Activation of the mucosal immune system in irritable bowel syndrome. Gastroenterology 2002, 122, 1778–1783. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, M.; Clayton, N.; Breslin, N.P.; Harman, I.; Bountra, C.; McLaren, A.; O’Morain, C.A. Increased mast cells in the irritable bowel syndrome. Neurogastroenterol. Motil. 2000, 12, 449–457. [Google Scholar] [CrossRef] [PubMed]
- Walker, M.M.; Warwick, A.; Ung, C.; Talley, N.J. The role of eosinophils and mast cells in intestinal functional disease. Curr. Gastroenterol. Rep. 2011, 13, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Tuteja, A.K.; Fang, J.C.; Al-Suqi, M.; Stoddard, G.J.; Hale, D.C. Double-blind placebo-controlled study of mesalamine in post-infective irritable bowel syndrome—A pilot study. Scand. J. Gastroenterol. 2012, 47, 1159–1164. [Google Scholar] [CrossRef] [PubMed]
- Sarna, S.K. Lessons learnt from post-infectious IBS. Front. Physiol. 2011, 23, 2–49. [Google Scholar] [CrossRef] [PubMed]
- Moloney, R.D.; O’Mahony, S.M.; Dinan, T.G.; Cryan, J.F. Stress-induced visceral pain: Toward animal models of irritable-bowel syndrome and associated comorbidities. Front. Psychiatry 2015, 6, 15–45. [Google Scholar] [CrossRef] [PubMed]
- Mayer, E.A.; Naliboff, B.D.; Chang, L.; Coutinho, S.V. Stress and the Gastrointestinal Tract V. Stress and irritable bowel syndrome. Am. J. Physiol. Gastrointest. Liver Physiol. 2001, 280, G519–G524. [Google Scholar] [CrossRef] [PubMed]
- Rosenberger, C.; Elsenbruch, S.; Scholle, A.; de Greiff, G.A.; Schedlowski, M.; Forsting, M.; Gizewski, E.R. Effects of psychological stress on the cerebral processing of visceral stimuli in healthy women. Neurogastroenterol. Motil. 2009, 21, 740. [Google Scholar] [CrossRef] [PubMed]
- Fond, G.; Loundou, A.; Hamdani, N.; Boukouaci, W.; Dargel, A.; Oliveira, J.; Roger, M.; Tamouza, R.; Leboyer, M.; Boyer, L. Anxiety and depression comorbidities in irritable bowel syndrome (IBS): A systematic review and meta-analysis. Eur. Arch. Psychiatry Clin. Neurosci. 2014, 264, 651–660. [Google Scholar] [CrossRef] [PubMed]
- Herman, J.P.; Cullinan, W.E. Neurocircuitry of stress: Central control of the hypothalamo-pituitary -adrenocortical axis. Trends Neurosci. 1997, 20, 78–84. [Google Scholar] [CrossRef]
- Sawchenko, P.E.; Li, H.Y.; Ericsson, A. Circuits and mechanisms governing hypothalamic responses to stress: A tale of two paradigms. Prog. Brain Res. 2000, 122, 61–78. [Google Scholar] [PubMed]
- Bouin, M.; Plourde, V.; Boivin, M.; Riberdy, M.; Lupien, F.; Laganière, M.; Verrier, P.; Poitras, P. Rectal distention testing in patients with irritable bowel syndrome: Sensitivity, specificity, and predictive values of pain sensory thresholds. Gastroenterology 2002, 122, 1771–1777. [Google Scholar] [CrossRef] [PubMed]
- Elsenbruch, S. Abdominal pain in irritable bowel syndrome: A review of putative psychological, neural and neuro-immune mechanisms. Brain Behav. Immun. 2011, 25, 386–394. [Google Scholar] [CrossRef] [PubMed]
- Larauche, M.; Mulak, A.; Tachè, Y. Stress and visceral pain: From animal model to clinical therapies. Exp. Neurol. 2012, 233, 49–67. [Google Scholar] [CrossRef] [PubMed]
- Camilleri, M.; Ford, A.C. Pharmacotherapy for irritable bowel syndrome. J. Clin. Med. 2017, 6, 101. [Google Scholar] [CrossRef] [PubMed]
- Williams, C.L.; Villar, R.G.; Peterson, J.M.; Burks, T.F. Stress-induced changes in intestinal transit in the rat: A model for irritable bowel syndrome. Gastroenterology 1988, 94, 611–621. [Google Scholar] [CrossRef]
- Gue, M.; Del Rio-Lacheze, C.; Eutamene, H.; Theodorou, V.; Fioramonti, J.; Bueno, L. Stress-induced visceral hypersensitivity to rectal distension in rats: Role of CRF and mast cells. Neurogastroenterol. Motil. 1997, 9, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Traini, C.; Evangelista, S.; Girod, V.; Faussone-Pellegrini, M.S.; Vannucchi, M.G. Changes of excitatory and inhibitory neurotransmitters in the colon of rats underwent to the wrap partial restraint stress (WRS). Neurogastroenterol. Motil. 2016, 28, 1172–1185. [Google Scholar] [CrossRef] [PubMed]
- Traini, C.; Evangelista, S.; Girod, V.; Faussone-Pellegrini, M.S.; Vannucchi, M.G. Repeated otilonium bromide administration prevents neurotransmitter changes in colon of rats underwent to wrap restraint stress. J. Cell. Mol. Med. 2017, 21, 735–745. [Google Scholar] [CrossRef] [PubMed]
- Bashashati, M.; Moossavi, S.; Cremon, C.; Barbaro, M.R.; Moraveji, S.; Talmon, G.; Rezaei, N.; Hughes, P.A.; Bian, Z.X.; Choi, C.H.; et al. Colonic immune cells in irritable bowel syndrome: A systematic review and meta-analysis. Neurogastroenterol. Motil. 2017. [Google Scholar] [CrossRef] [PubMed]
- Mayer, E.A.; Collins, S.M. Evolving pathophysiologic models of functional gastrointestinal disorders. Gastroenterology 2002, 122, 2032–2048. [Google Scholar] [CrossRef] [PubMed]
- Bouwknecht, J.A. Behavioral studies on anxiety and depression in a drug discovery environment: Keys to a successful future. Eur. J. Pharmacol. 2015, 753, 158–176. [Google Scholar] [CrossRef] [PubMed]
- Mayer, E.A.; Labus, J.S.; Tillisch, K.; Cole, S.W.; Baldi, P. Towards a systems view of IBS. Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 592–605. [Google Scholar] [CrossRef] [PubMed]
- Fish, E.W.; Shahrokh, D.; Bagot, R.; Caldji, C.; Bredy, T.; Szyf, M.; Meaney, M.J. Epigenetic programming of stress responses through variations in maternal care. Ann. N. Y. Acad. Sci. 2004, 1036, 167–180. [Google Scholar] [CrossRef] [PubMed]
- Szyf, M.; Weaver, I.; Meaney, M. Maternal care, the epigenome and phenotypic differences in behavior. Reprod. Toxicol. 2007, 24, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Barreau, F.; Salvador-Cartier, C.; Houdeau, E.; Bueno, L.; Fioramonti, J. Long term alterations of colonic nerve mast cell interactions induced by neonatal maternal deprivation in rats. Gut 2008, 57, 582–590. [Google Scholar] [CrossRef] [PubMed]
- Welting, O.; Van Den Wijngaard, R.M.; De Jonge, W.J.; Holman, R.; Boeckxstaens, G.E. Assessment of visceral sensitivity using radio telemetry in a rat model of maternal separation. Neurogastroenterol. Motil. 2005, 17, 838–845. [Google Scholar] [CrossRef] [PubMed]
- Rosztoczy, A.; Fioramonti, J.; Jarmay, K.; Barreau, F.; Wittmann, T.; Bueno, L. Influence of sex and experimental protocol on the effect of maternal deprivation on rectal sensitivity to distension in the adult rat. Neurogastroenterol. Motil. 2003, 15, 679–686. [Google Scholar] [CrossRef] [PubMed]
- Whitehead, W.E.; Palsson, O.S. Is rectal pain sensitivity a biological marker for irritable bowel syndrome: Psychological influences on pain perception? Gastroenterology 1998, 115, 1263–1271. [Google Scholar] [CrossRef]
- Barreau, F.; Cartier, C.; Ferrier, L.; Fioramonti, J.; Buéno, L. Nerve growth factor mediates alterations of colonic sensitivity and mucosal barrier induced by neonatal stress in rats. Gastroenterology 2004, 127, 524–534. [Google Scholar] [CrossRef] [PubMed]
- O’Mahony, S.M.; Hyland, N.P.; Dinan, T.G.; Cryan, J.F. Maternal separation as a model of brain–gut axis dysfunction. Psychopharmacology 2011, 214, 71–88. [Google Scholar] [CrossRef] [PubMed]
- Elsenbruch, S.; Rosenberger, C.; Bingel, U.; Forsting, M.; Schedlowski, M.; Gizewski, E.R. Patients with irritable bowel syndrome have altered emotional modulation of neural responses to visceral stimuli. Gastroenterology 2010, 139, 1310–1319. [Google Scholar] [CrossRef] [PubMed]
- Elsenbruch, S.; Rosenberger, C.; Enck, P.; Forsting, M.; Schedlowski, M.; Gizewski, E.R. Affective disturbances modulate the neural processing of visceral pain stimuli in irritable bowel syndrome: An fMRI study. Gut 2010, 59, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Lackner, J.M.; Brasel, A.M.; Quigley, B.M.; Keefer, L.; Krasner, S.S.; Powell, C.; Katz, L.A.; Sitrin, M.D. The ties that bind: Perceived social support, stress, and IBS in severely affected patients. Neurogastroenterol. Motil. 2010, 22, 893–900. [Google Scholar] [CrossRef] [PubMed]
- Bradesi, S.; Schwetz, I.; Ennes, H.S.; Lamy, C.M.; Ohning, G.; Fanselow, M.; Pothoulakis, C.; McRoberts, J.A.; Mayer, E.A. Repeated exposure to water avoidance stress in rats: A new model for sustained visceral hyperalgesia. Am. J. Physiol. Gatrointest. Liver Physiol. 2005, 289, G42–G53. [Google Scholar] [CrossRef] [PubMed]
- Holzer, P.; Holzer-Petsche, U. Pharmacology of inflammatory pain: Local alteration in receptors and mediators. Dig. Dis. 2009, 27, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Million, M.; Wang, L.; Wang, Y.; Adelson, D.W.; Yuan, P.Q.; Maillot, C.; Coutinho, S.V.; McRoberts, J.A.; Bayati, A.; Mattsson, H.; et al. CRF2 receptor activation prevents colorectal distension induced visceral pain and spinal ERK1/2 phosphorylation in rats. Gut 2006, 55, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Fukudo, S. Role of corticotropin-releasing hormone in irritable bowel syndrome and intestinal inflammation. J. Gastroenterol. 2007, 42, 48–51. [Google Scholar] [CrossRef] [PubMed]
- Taché, Y.; Brunnhuber, S. From Hans Selye’s discovery of biological stress to the identification of corticotropin-releasing factor signaling pathways: Implication in stress-related functional bowel diseases. Ann. N. Y. Acad. Sci. 2008, 1148, 29–41. [Google Scholar] [CrossRef] [PubMed]
- Owens, M.J.; Nemeroff, C.B. The role of corticotropin-releasing factor in the pathophysiology of affective and anxiety disorders: Laboratory and clinical studies. Ciba Found. Symp. 1993, 172, 296–316. [Google Scholar] [PubMed]
- Taché, Y.; Martinez, V.; Million, M.; Rivier, J. Corticotropin releasing factor and the brain-gut motor response to stress. Can. J. Gastroenterol. 1999, 13, 18A–25A. [Google Scholar] [CrossRef] [PubMed]
- Larauche, M.; Bradesi, S.; Million, M.; McLean, P.; Taché, Y.; Mayer, E.A.; McRoberts, J.A. Corticotropin-releasing factor type 1 receptors mediate the visceral hyperalgesia induced by repeated psychological stress in rats. Am. J. Physiol. Gastrointest. Liver Physiol. 2008, 294, G1033–G1040. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.W.; Aubry, J.M.; Dellu, F.; Contarino, A.; Bilezikjian, L.M.; Gold, L.H.; Chen, R.; Marchuk, Y.; Hauser, C.; Bentley, C.A.; et al. Corticotropin releasing factor receptor 1-deficient mice display decreased anxiety, impaired stress response, and aberrant neuroendocrine development. Neuron 1998, 20, 1093–1102. [Google Scholar] [CrossRef]
- Timpl, P.; Spanagel, R.; Sillaber, I.; Kresse, A.; Reul, J.M.; Stalla, G.K.; Blanquet, V.; Steckler, T.; Holsboer, F.; Wurst, W. Impaired stress response and reduced anxiety in mice lacking a functional corticotropin-releasing hormone receptor. Nat. Genet. 1998, 19, 162–166. [Google Scholar] [CrossRef] [PubMed]
- Larauche, M.; Kiank, C.; Tachè, Y. Corticotropin releasing factor signaling in colon and ileum: Regulation by stress and pathophysiological implications. J. Physiol. Pharmacol. 2009, 60, 33–46. [Google Scholar] [PubMed]
- Muramatsu, Y.; Fukushima, K.; Iino, K.; Totsune, K.; Takahashi, K.; Suzuki, T.; Hirasawa, G.; Takeyama, J.; Ito, M.; Nose, M.; et al. Urocortin and corticotropin-releasing factor receptor expression in the human colonic mucosa. Peptides 2000, 21, 1799–1809. [Google Scholar] [CrossRef]
- Chatzaki, E.; Crowe, P.D.; Wang, L.; Million, M.; Taché, Y.; Grigoriadis, D.E. CRF receptor type 1 and 2 expression and anatomical distribution in the rat colon. J. Neurochem. 2004, 90, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Gao, X.; Gao, N.; Wang, X.; Fang, X.; Hu, H.Z.; Wang, G.D.; Xia, Y.; Wood, J.D. Expression of type 1 corticotropin-releasing factor receptor in the guinea pig enteric nervous system. J. Comp. Neurol. 2005, 481, 284–298. [Google Scholar] [CrossRef] [PubMed]
- Yuan, P.Q.; Million, M.; Wu, S.V.; Rivier, J.; Tachè, Y. Peripheral corticotropin releasing factor (CRF) and a novel CRF1 receptor agonist, stressin1-A activate CRF1 receptor expressing cholinergic and nitrergic myenteric neurons selectively in the colon of conscious rats. Neurogastroenterol. Motil. 2007, 19, 923–936. [Google Scholar] [CrossRef] [PubMed]
- Yuan, P.Q.; Wu, S.V.; Elliott, J.; Anton, P.A.; Chatzaki, E.; Million, M.; Taché, Y. Expression of corticotropin releasing factor receptor type 1 (CRF1) in the human gastrointestinal tract and upregulation in the colonic mucosa in patients with ulcerative colitis. Peptides 2012, 38, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Rivier, J.E. Prospective clinical applications of CRF peptide antagonists. Curr. Mol. Pharmacol. 2017, 10, 264–269. [Google Scholar] [CrossRef] [PubMed]
- Stasi, C.; Bellini, M.; Bassotti, G.; Blandizzi, C.; Milani, S. Serotonin receptors and their role in the pathophysiology and therapy of irritable bowel syndrome. Tech. Coloproctol. 2014, 18, 613–621. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, W.; Lockhart, S.; Whorwell, P.J.; Keevil, B.; Houghton, L.A. Altered 5-hydroxytryptamine signaling in patients with constipation- and diarrhea-predominant irritable bowel syndrome. Gastroenterology 2006, 130, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Taguschi, R.; Shikata, K.; Furuya, Y.; Hirakawa, T.; Ino, M.; Shin, K.; Shibata, H. Selective corticotropin-releasing factor 1 receptor antagonist E2508 reduces restraint stress-induced defecation and visceral pain in rat models. Psychoneuroendocrinology 2017, 75, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Bellucci, F.; Buéno, L.; Bugianesi, R.; Crea, A.; D’Aranno, V.; Meini, S.; Santicioli, P.; Tramontana, M.; Maggi, C.A. Gender-related differential effect of tachykinin NK2 receptor-mediated visceral hyperalgesia in guinea pig colon. Br. J. Pharmacol. 2016, 173, 1329–1338. [Google Scholar] [CrossRef] [PubMed]
- Toulouse, M.; Coelho, A.M.; Fioramonti, J.; Lecci, A.; Maggi, C.A.; Bueno, L. Role of tachykinin NK2 receptors in normal and altered rectal sensitivity in rats. Br. J. Pharmacol. 2000, 129, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Kakol-Palm, D.; Brusberg, M.; Sand, E.; Larsson, H.; Martinez, V.; Johansson, A.; von Mentzer, B.; Påhlman, I.; Lindström, E. Role of tachykinin NK(1) and NK(2) receptors in colonic sensitivity and stress-induced defecation in gerbils. Eur. J. Pharmacol. 2008, 582, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Birder, L.A.; Kiss, S.; De Groat, W.C.; Lecci, A.; Maggi, C.A. Effect of MEN 11420, an NK2 tachykinin antagonist, on immediate-early gene expression following TNBS induced colitis in the rat. J. Pharmacol. Exp. Ther. 2003, 304, 272–276. [Google Scholar] [CrossRef] [PubMed]
- Laird, J.M.; Olivar, T.; Lopez-Garcia, J.A.; Maggi, C.A.; Cervero, F. Responses of rat spinal neurons to distension of inflamed colon: Role of tachykinin NK2 receptors. Neuropharmacology 2001, 40, 696–701. [Google Scholar] [CrossRef]
- Laird, J.M.; Olivar, T.; Roza, C.; De Felipe, C.; Hunt, S.P.; Cervero, F. Deficits in visceral pain and hyperalgesia of mice with a disruption of the tachykinin NK1 receptor gene. Neuroscience 2000, 98, 345–352. [Google Scholar] [CrossRef]
- Teng, W.; Chen, H.; Guo, F.; Du, X.; Fu, X.; Fang, Y.; Zhang, H.; Fang, M.; Ding, M. Expression and distribution of SP and its NK1 receptor in the brain-gut axis in neonatal maternally separated rat model with visceral hypersensitivity. Genet. Mol. Res. 2016, 15. [Google Scholar] [CrossRef] [PubMed]
- Julia, V.; Su, X.; Bueno, L.; Gebhart, G.F. Role of neurokinin 3 receptors on responses to colorectal distension in the rat: Electrophysiological and behavioral studies. Gastroenterology 1999, 116, 1124–1131. [Google Scholar] [CrossRef]
- Kamp, E.H.; Beck, D.R.; Gebhart, G.F. Combinations of neurokinin receptor antagonists reduce visceral hyperalgesia. J. Pharmacol. Exp. Ther. 2001, 299, 105–113. [Google Scholar] [PubMed]
- Bradesi, S.; Eutamene, H.; Fioramonti, J.; Bueno, L. Acute restraint stress activates functional NK1 receptor in the colon of female rats: Involvement of steroids. Gut 2002, 50, 349–354. [Google Scholar] [CrossRef] [PubMed]
- Gaudreau, G.A.; Plourde, V. Role of tachykinin NK1, NK2 and NK3 receptors in the modulation of visceral hypersensitivity in the rat. Neurosci. Lett. 2003, 351, 59–62. [Google Scholar] [CrossRef]
- Marger, F.; Gelot, A.; Alloui, A.; Matricon, J.; Ferrer, J.F.; Barrère, C.; Pizzoccaro, A.; Muller, E.; Nargeot, J.; Snutch, T.P.; et al. T-type calcium channels contribute to colonic hypersensitivity in a rat model of irritable bowel syndrome. Proc. Natl. Acad. Sci. USA 2011, 108, 11266–11273. [Google Scholar] [CrossRef] [PubMed]
- Strege, P.R.; Sha, L.; Beyder, A.; Bernard, C.E.; Perez-Reyes, E.; Evangelista, S.; Gibbons, S.J.; Szurszewski, J.H.; Farrugia, G. T-type Ca(2+) channel modulation by otilonium bromide. Am. J. Physiol. Gastrointest. Liver Physiol. 2010, 298, G706–G713. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Cutillas, M.; Gil, V.; Gallego, D.; Mañé, N.; Martín, M.T.; Jiménez, M. Mechanisms of action of otilonium bromide (OB) in human cultured smooth muscle cells and rat colonic strips. Neurogastroenterol. Motil. 2013, 25, e803–e812. [Google Scholar] [CrossRef] [PubMed]
- Clavé, P.; Acalovschi, M.; Triantafillidis, J.K.; Uspensky, Y.P.; Kalayci, C.; Shee, V.; Tack, J. OBIS study investigators. Randomised clinical trial: Otilonium bromide improves frequency of abdominal pain, severity of distention and time to relapse in patients with irritable bowel syndrome. Aliment. Pharmacol. Ther. 2011, 34, 432–442. [Google Scholar] [CrossRef] [PubMed]
- Plourde, V.; St-Pierre, S.; Quirion, R. Calcitonin gene-related peptide in viscera-sensitive response to colorectal distension in rats. Am. J. Physiol. 1997, 273, G191–G196. [Google Scholar] [PubMed]
- Chan, C.L.H.; Facer, P.; Davis, J.B.; Smith, G.D.; Egerton, J.; Williams, N.S.; Anand, P. Sensory fibres expressing capsaicin receptor TRPV1 in patients with rectal hypersensitivity and faecal urgency. Lancet 2003, 361, 385–391. [Google Scholar] [CrossRef]
- Yu, Y.B.; Yang, J.; Zuo, X.L.; Gao, L.J.; Wang, P.; Li, Y.Q. Transient receptor potential vanilloid-1 (TRPV1) and ankyrin-1 (TRPA1) participate in visceral hyperalgesia in chronic water avoidance stress rat model. Neurochem. Res. 2010, 35, 797–803. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Fan, L.; Balakrishna, S.; Sui, A.; Morris, J.B.; Jordt, S.E. TRPM8 is the principal mediator of menthol-induced analgesia of acute and inflammatory pain. Pain 2013, 154, 2169–2177. [Google Scholar] [CrossRef] [PubMed]
- Eutamene, H.; Bradesi, S.; Larauche, M.; Theodorou, V.; Beaufrand, C.; Ohning, G.; Fioramonti, J.; Cohen, M.; Bryant, A.P.; Kurtz, C.; et al. Guanylate cyclase C-mediated antinociceptive effects of linaclotide in rodent models of visceral pain. Neurogastroenterol. Motil. 2010, 22, 312. [Google Scholar] [CrossRef] [PubMed]
- Castro, J.; Harrington, A.M.; Hughes, P.A.; Martin, C.M.; Ge, P.; Shea, C.M.; Jin, H.; Jacobson, S.; Hannig, G.; Mann, E.; et al. Linaclotide inhibits colonic nociceptors and relieves abdominal pain via guanylate cyclase-C and extracellular cyclic guanosine 3′,5′-monophosphate. Gastroenterology 2013, 145, 1334–1346. [Google Scholar] [CrossRef] [PubMed]
- Chey, W.D.; Lembo, A.J.; Rosenbaum, D.P. Tenapanor treatment of patients with constipation-predominant irritable bowel syndrome: A phase 2, randomized, placebo-controlled efficacy and safety trial. Am. J. Gastroenterol. 2017, 112, 763–774. [Google Scholar] [CrossRef] [PubMed]
- Mitsui, K.; Niwa, T.; Kawahara, Y.; Morimoto, N.; Ohmoto, K.; Kato, M.; Yamaura, Y.; Yoshimoto, N.; Suna, H.; Katsumata, S. Anti-stress effects of ONO-2952, a novel translocator protein 18 kDa antagonist, in rats. Neuropharmacology 2015, 99, 51–66. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vannucchi, M.G.; Evangelista, S. Experimental Models of Irritable Bowel Syndrome and the Role of the Enteric Neurotransmission. J. Clin. Med. 2018, 7, 4. https://doi.org/10.3390/jcm7010004
Vannucchi MG, Evangelista S. Experimental Models of Irritable Bowel Syndrome and the Role of the Enteric Neurotransmission. Journal of Clinical Medicine. 2018; 7(1):4. https://doi.org/10.3390/jcm7010004
Chicago/Turabian StyleVannucchi, Maria Giuliana, and Stefano Evangelista. 2018. "Experimental Models of Irritable Bowel Syndrome and the Role of the Enteric Neurotransmission" Journal of Clinical Medicine 7, no. 1: 4. https://doi.org/10.3390/jcm7010004
APA StyleVannucchi, M. G., & Evangelista, S. (2018). Experimental Models of Irritable Bowel Syndrome and the Role of the Enteric Neurotransmission. Journal of Clinical Medicine, 7(1), 4. https://doi.org/10.3390/jcm7010004