Effect of Combined Treatment of Ketorolac and Remote Ischemic Preconditioning on Renal Ischemia-Reperfusion Injury in Patients Undergoing Partial Nephrectomy: Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
3.1. Renal Function Profile
3.2. Complications
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Thompson, R.H.; Lane, B.R.; Lohse, C.M.; Leibovich, B.C.; Fergany, A.; Frank, I.; Gill, I.S.; Blute, M.L.; Campbell, S.C. Every minute counts when the renal hilum is clamped during partial nephrectomy. Eur. Urol. 2010, 58, 340–345. [Google Scholar] [CrossRef] [PubMed]
- Clark, M.A.; Shikanov, S.; Raman, J.D.; Smith, B.; Kaag, M.; Russo, P.; Wheat, J.C.; Wolf, J.S., Jr.; Matin, S.F.; Huang, W.C.; et al. Chronic kidney disease before and after partial nephrectomy. J. Urol. 2011, 185, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Simmons, M.N.; Schreiber, M.J.; Gill, I.S. Surgical Renal ischemia: A contemporary overview. J. Urol. 2008, 180, 19–30. [Google Scholar] [CrossRef] [PubMed]
- Olweny, E.O.; Mir, S.A.; Park, S.K.; Tan, Y.K.; Faddegon, S.; Best, S.L.; Gurbuz, C.; Cadeddu, J.A. Intra-operative erythropoietin during laparoscopic partial nephrectomy is not renoprotective. World J. Urol. 2012, 30, 519–524. [Google Scholar] [CrossRef] [PubMed]
- Power, N.E.; Maschino, A.C.; Savage, C.; Silberstein, J.L.; Thorner, D.; Tarin, T.; Wong, A.; Touijer, K.A.; Russo, P.; Coleman, J.A. Intraoperative mannitol use does not improve long-term renal function outcomes after minimally invasive partial nephrectomy. Urology 2012, 79, 821–825. [Google Scholar] [CrossRef] [PubMed]
- Hosohata, K. Role of Oxidative Stress in Drug-Induced Kidney Injury. Int. J. Mol. Sci. 2016, 17, 1826. [Google Scholar] [CrossRef] [PubMed]
- Thurman, J.M. Triggers of inflammation after renal ischemia/reperfusion. Clin. Immunol. 2007, 123, 7–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yun, Y.; Duan, W.G.; Chen, P.; Wu, H.X.; Shen, Z.Q.; Qian, Z.Y.; Wang, D.H. Down-regulation of cyclooxygenase-2 is involved in ischemic postconditioning protection against renal ischemia reperfusion injury in rats. Transplant. Proc. 2009, 41, 3585–3889. [Google Scholar] [CrossRef] [PubMed]
- Feitoza, C.Q.; Semedo, P.; Goncalves, G.M.; Cenedeze, M.A.; Pinheiro, H.S.; Dos Santos, O.F.; Landgraf, A.; Pacheco-Silva, R.G.; Camara, N.O. Modulation of inflammatory response by selective inhibition of cyclooxygenase-1 and cyclooxygenase-2 in acute kidney injury. Inflamm. Res. 2010, 59, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Chen, Y.; Dong, B.; Kong, W.; Zhang, J.; Xue, W.; Liu, D.; Huang, Y. Effect of remote ischaemic preconditioning on renal protection in patients undergoing laparoscopic partial nephrectomy: A ’blinded’ randomised controlled trial. BJU Int. 2013, 112, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Gassanov, N.; Nia, A.M.; Caglayan, E.; Er, F. Remote ischemic preconditioning and renoprotection: From myth to a novel therapeutic option? J. Am. Soc. Nephrol. 2014, 25, 216–224. [Google Scholar] [CrossRef] [PubMed]
- Mehta, R.L.; Kellum, J.A.; Shah, S.V.; Molitoris, B.A.; Ronco, C.; Warnock, D.G.; Levin, A. Acute kidney injury network: Report of an initiative to improve outcomes in acute kidney injury. Crit. Care 2007, 11, R31. [Google Scholar] [CrossRef] [PubMed]
- Schrier, R.W.; Wang, W.; Poole, B.; Mitra, A. Acute renal failure: Definitions, diagnosis, pathogenesis, and therapy. J. Clin. Investig. 2004, 114, 5–14. [Google Scholar] [CrossRef] [PubMed]
- Fujihara, C.K.; Antunes, G.R.; Mattar, A.L.; Andreoli, N.; Malheiros, D.M.; Noronha, I.L.; Zatz, R. Cyclooxygenase-2 (Cox-2) inhibition limits abnormal Cox-2 expression and progressive injury in the remnant kidney. Kidney Int. 2003, 64, 2172–2181. [Google Scholar] [CrossRef] [PubMed]
- Campanholle, G.; Landgraf, R.G.; Goncalves, G.M.; Paiva, V.N.; Martins, J.O.; Wang, P.H.; Monteiro, R.M.; Silva, R.C.; Cenedeze, M.A.; Teixeira, V.P.; et al. Lung inflammation is induced by renal ischemia and reperfusion injury as part of the systemic inflammatory syndrome. Inflamm. Res. 2010, 59, 861–869. [Google Scholar] [CrossRef] [PubMed]
- Schneider, R.; Meusel, M.; Renker, S.; Bauer, C.; Holzinger, H.; Roeder, M.; Wanner, C.; Gekle, M.; Sauvant, C. Low-dose indomethacin after ischemic acute kidney injury prevents downregulation of Oat1/3 and improves renal outcome. Am. J. Physiol. Renal Physiol. 2009, 297, F1614–F1621. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Li, Y.S.; Xu, M.; Wen, S.H.; Yao, X.; Wu, Y.; Huang, C.Y.; Huang, W.Q.; Liu, K.X. Limb remote ischemic preconditioning for intestinal and pulmonary protection during elective open infrarenal abdominal aortic aneurysm repair: A randomized controlled trial. Anesthesiology 2013, 118, 842–852. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, S.V.; Dave, K.R.; Perez-Pinzon, M.A. Ischemic preconditioning and clinical scenarios. Curr. Opin. Neurol. 2013, 26, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lane, B.R.; Babineau, D.C.; Poggio, E.D.; Weight, C.J.; Larson, B.T.; Gill, I.S.; Novick, A.C. Factors predicting renal functional outcome after partial nephrectomy. J. Urol. 2008, 180, 2363–2368. [Google Scholar] [CrossRef] [PubMed]
- Simmons, M.N.; Hillyer, S.P.; Lee, B.H.; Fergany, A.F.; Kaouk, J.; Campbell, S.C. Functional recovery after partial nephrectomy: Effects of volume loss and ischemic injury. J. Urol. 2012, 187, 1667–1673. [Google Scholar] [CrossRef] [PubMed]
- Heydari, B.; Khalili, H.; Beigmohammadi, M.T.; Abdollahi, A.; Karimzadeh, I. Effects of atorvastatin on biomarkers of acute kidney injury in amikacin recipients: A pilot, randomized, placebo-controlled, clinical trial. J. Res. Med. Sci. 2017, 22, 1–7. [Google Scholar]
- Mori, K.; Nakao, K. Neutrophil gelatinase-associated lipocalin as the real-time indicator of active kidney damage. Kidney Int. 2007, 71, 967–970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, R.C. Cox-2 and the kidney. J. Cardiovasc Pharmacol. 2006, 47, 37–42. [Google Scholar] [CrossRef]
- Roig, F.; Llinas, M.T.; Lopez, R.; Salazar, F.J. Role of cyclooxygenase-2 in the prolonged regulation of renal function. Hypertension 2002, 40, 721–728. [Google Scholar] [CrossRef] [PubMed]
- Lopez, R.; Roig, F.; Llinas, M.T.; Salazar, F.J. Role of Cyclooxygenase-2 in the control of renal haemodynamics and excretory function. Acta Physiol. Scand. 2003, 177, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Diblasio, C.J.; Snyder, M.E.; Kattan, M.W.; Russo, P. Ketorolac: Safe and effective analgesia for the management of renal cortical tumors with partial nephrectomy. J. Urol. 2004, 171, 1062–1065. [Google Scholar] [CrossRef] [PubMed]
- Freedland, S.J.; Blanco-Yarosh, M.; Sun, J.C.; Hale, S.J.; Elashoff, D.A.; Litwin, M.S.; Smith, R.B.; Rajfer, J.; Gritsch, H.A. Ketorolac-based analgesia improves outcomes for living kidney donors. Transplantation 2002, 73, 741–745. [Google Scholar] [CrossRef] [PubMed]
- Feldman, H.I.; Kinman, J.L.; Berlin, J.A.; Hennessy, S.; Kimmel, S.E.; Farrar, J.; Carson, J.L.; Strom, B.L. Parenteral ketorolac: The risk for acute renal failure. Ann. Intern. Med. 1997, 126, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Forrest, J.B.; Camu, F.; Greer, I.A.; Kehlet, H.; Abdalla, M.; Bonnet, F.; Ebrahim, S.; Escolar, G.; Jage, J.; Pocock, S.; et al. Ketorolac, diclofenac, and ketoprofen are equally safe for pain relief after major surgery. Br. J. Anaesth 2002, 88, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zheng, H.; Wang, X.; Zhou, Z.; Luo, A.; Tian, Y. Remote ischemic preconditioning fails to improve early renal function of patients undergoing living-donor renal transplantation: A randomized controlled trial. Transplantation 2013, 95, e4–e6. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, D.; Fuchs, T.C.; Henzler, T.; Matheis, K.A.; Herget, T.; Dekant, W.; Hewitt, P.; Mally, A. Evaluation of a urinary kidney biomarker panel in rat models of acute and subchronic nephrotoxicity. Toxicology 2010, 277, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Hosohata, K.; Ando, H.; Fujiwara, Y.; Fujimura, A. Vanin-1: A potential biomarker for nephrotoxicant-induced renal injury. Toxicology 2011, 290, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Mishra, J.; Ma, Q.; Prada, A.; Mitsnefes, M.; Zahedi, K.; Yang, J.; Barasch, J.; Devarajan, P. Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury. J. Am. Soc. Nephrol. 2003, 14, 2534–2543. [Google Scholar] [CrossRef] [PubMed]
Variable | KI (n = 8) | Control (n = 8) | p Value |
---|---|---|---|
Age (years) | 55 ± 12 | 61 ± 12 | 0.352 |
Weight (kg) | 66 ± 8 | 70 ± 6 | 0.198 |
Height (cm) | 165.2 ± 5.2 | 168.9 ± 6.2 | 0.216 |
BMI (kg/m2) | 1.7 ± 0.1 | 1.8 ± 0.1 | 0.112 |
Sex (male) | 6 (75%) | 7 (88%) | >0.999 |
Medical history | |||
Hypertension | 4 (50%) | 6 (75%) | 0.608 |
Atrial fibrillation | 0 | 1 (13%) | >0.999 |
Old tuberculosis | 0 | 1 (13%) | >0.999 |
Asthma | 0 | 1 (13%) | >0.999 |
Operation time (min) | 146 (99–217) | 163 (70–197) | 0.528 |
Anesthesia time (min) | 190 (160–265) | 201 (120–260) | 0.875 |
Ischemia time (min) | 29 (17–51) | 30 (14–38) | 0.462 |
Size of mass (cm) | 3.5 (2.1–6.8) | 2.8 (1.8–6.2) | 0.461 |
Intraoperative fluid balance | |||
Crystalloid (mL) | 1850 (1650–2600) | 1800 (1000–2800) | 0.874 |
Colloid (mL) | 200 (0–1500) | 500 (400–750) | 0.451 |
Packed RBC (unit) | 1 (13%) | 0 | >0.999 |
Urination (mL) | 280 (48–422) | 212 (100–315) | 0.345 |
Bleeding (mL) | 150 (60–1200) | 350 (50–550) | 0.206 |
Intraoperative medication | |||
Ephedrine | 6 (75%) | 6 (75%) | >0.999 |
Atropin | 0 | 1 (13%) | >0.999 |
β-blocker | 1 (13%) | 0 | >0.999 |
Betasin | 1 (13%) | 0 | >0.999 |
Diuretic | 2 (25%) | 5 (63%) | 0.315 |
Hospital stay (days) | 4 (3–5) | 6 (3–8) | 0.118 |
Variable | KI (n = 8) | Control (n = 8) | p Value |
---|---|---|---|
Acute kidney injury * | 1 (13%) | 5 (83%) | 0.026 |
Serum creatinine (mg/dL) | |||
Baseline | 0.81 ± 0.18 | 0.96 ± 0.18 | 0.146 |
2 h | 0.82 ± 0.22 | 1.06 ± 0.15 | 0.036 |
12 h | 0.87 ± 0.25 | 1.18 ± 0.17 | 0.023 |
24 h | 0.96 ± 0.25 | 1.29 ± 0.28 | 0.037 |
48 h | 0.80 ± 0.21 | 1.28 ± 0.29 | 0.005 |
72 h | 0.80 ± 0.18 | 1.14 ± 0.18 | 0.007 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kil, H.K.; Kim, J.Y.; Choi, Y.D.; Lee, H.S.; Kim, T.K.; Kim, J.E. Effect of Combined Treatment of Ketorolac and Remote Ischemic Preconditioning on Renal Ischemia-Reperfusion Injury in Patients Undergoing Partial Nephrectomy: Pilot Study. J. Clin. Med. 2018, 7, 470. https://doi.org/10.3390/jcm7120470
Kil HK, Kim JY, Choi YD, Lee HS, Kim TK, Kim JE. Effect of Combined Treatment of Ketorolac and Remote Ischemic Preconditioning on Renal Ischemia-Reperfusion Injury in Patients Undergoing Partial Nephrectomy: Pilot Study. Journal of Clinical Medicine. 2018; 7(12):470. https://doi.org/10.3390/jcm7120470
Chicago/Turabian StyleKil, Hae Keum, Ji Young Kim, Young Deuk Choi, Hye Sun Lee, Tae Kwang Kim, and Ji Eun Kim. 2018. "Effect of Combined Treatment of Ketorolac and Remote Ischemic Preconditioning on Renal Ischemia-Reperfusion Injury in Patients Undergoing Partial Nephrectomy: Pilot Study" Journal of Clinical Medicine 7, no. 12: 470. https://doi.org/10.3390/jcm7120470
APA StyleKil, H. K., Kim, J. Y., Choi, Y. D., Lee, H. S., Kim, T. K., & Kim, J. E. (2018). Effect of Combined Treatment of Ketorolac and Remote Ischemic Preconditioning on Renal Ischemia-Reperfusion Injury in Patients Undergoing Partial Nephrectomy: Pilot Study. Journal of Clinical Medicine, 7(12), 470. https://doi.org/10.3390/jcm7120470