De-Ritis Ratio Improves Long-Term Risk Prediction after Acute Myocardial Infarction
Abstract
:1. Introduction
2. Experimental Section
2.1. Methods
2.1.1. Study Population
2.1.2. Data Acquisition and Follow-Up
2.1.3. Outcome Measures
2.2. Statistical Analysis
3. Results
3.1. Distribution of De-Ritis Ratio and Baseline Characteristics
3.2. De-Ritis Ratio and Risk Prediction—Discrimination and Reclassification
4. Discussion
4.1. The Impact of Transaminases on Patient Outcome after AMI
4.2. De-Ritis Ratio as a Potential Marker for End Organ Damage in the Acute Phase
4.3. A Novel Biomarker for Cardiac Tissue Damage?
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgements
Conflicts of interest
References
- Atlas Writing Group; Timmis, A.; Townsend, N.; Gale, C.; Grobbee, R.; Maniadakis, N.; Flather, M.; Wilkins, E.; Wright, L.; Vos, R.; et al. European society of cardiology: Cardiovascular disease statistics 2017. Eur. Heart J. 2018, 39, 508–579. [Google Scholar]
- Roger, V.L. Epidemiology of myocardial infarction. Med. Clin. North Am. 2007, 91, 537–552. [Google Scholar] [CrossRef] [PubMed]
- McAlister, F.A.; Lawson, F.M.; Teo, K.K.; Armstrong, P.W. Randomised trials of secondary prevention programmes in coronary heart disease: Systematic review. BMJ 2001, 323, 957–962. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Cheng, Y.; Zheng, Y.; Zhang, W.; Wang, L.; Qin, L. Association of serum transaminases with short- and long-term outcomes in patients with st-elevation myocardial infarction undergoing primary percutaneous coronary intervention. BMC Cardiovasc. Disord. 2017, 17, 43. [Google Scholar] [CrossRef] [PubMed]
- Batin, P.; Wickens, M.; McEntegart, D.; Fullwood, L.; Cowley, A.J. The importance of abnormalities of liver function tests in predicting mortality in chronic heart failure. Eur. Heart J. 1995, 16, 1613–1618. [Google Scholar] [CrossRef] [PubMed]
- Allen, L.A.; Felker, G.M.; Pocock, S.; McMurray, J.J.; Pfeffer, M.A.; Swedberg, K.; Wang, D.; Yusuf, S.; Michelson, E.L.; Granger, C.B.; et al. Liver function abnormalities and outcome in patients with chronic heart failure: Data from the candesartan in heart failure: Assessment of reduction in mortality and morbidity (charm) program. Eur. J. Heart Fail. 2009, 11, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Poelzl, G.; Ess, M.; Mussner-Seeber, C.; Pachinger, O.; Frick, M.; Ulmer, H. Liver dysfunction in chronic heart failure: Prevalence, characteristics and prognostic significance. Eur. J. Clin. Invest. 2012, 42, 153–163. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, A.M.; Mukherjee, D. Liver abnormalities in cardiac diseases and heart failure. Int. J. Angiol. 2011, 20, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Sulzgruber, P.; Koller, L.; Reiberger, T.; El-Hamid, F.; Forster, S.; Rothgerber, D.J.; Goliasch, G.; Wojta, J.; Niessner, A. Butyrylcholinesterase predicts cardiac mortality in young patients with acute coronary syndrome. PLoS One 2015, 10, e0123948. [Google Scholar] [CrossRef] [PubMed]
- Sulzgruber, P.; El-Hamid, F.; Koller, L.; Forster, S.; Goliasch, G.; Wojta, J.; Niessner, A. Long-term outcome and risk prediction in patients suffering acute myocardial infarction complicated by post-infarction cardiac rupture. Int. J. Cardiol. 2017, 227, 399–403. [Google Scholar] [CrossRef] [PubMed]
- Van de Werf, F.; Bax, J.; Betriu, A.; Blomstrom-Lundqvist, C.; Crea, F.; Falk, V.; Filippatos, G.; Fox, K.; Huber, H.; Kastrati, A.; et al. Management of acute myocardial infarction in patients presenting with persistent ST-segment elevation: The task force on the management of ST-segment elevation acute myocardial infarction of the european society of cardiology. Eur. Heart J. 2008, 29, 2909–2945. [Google Scholar] [PubMed]
- Roffi, M.; Patrono, C.; Collet, J.P.; Mueller, C.; Valgimigli, M.; Andreotti, F.; Bax, J.J.; Borger, M.A.; Brotons, C.; Chew, D.P.; et al. 2015 ESC guidelines for the management of acute coronary syndromes in patients presenting without persistent st-segment elevation: Task force for the management of acute coronary syndromes in patients presenting without persistent st-segment elevation of the european society of cardiology (ESC). Eur. Heart J. 2016, 37, 267–315. [Google Scholar] [PubMed]
- Moon, J.; Kang, W.; Oh, P.C.; Seo, S.Y.; Lee, K.; Han, S.H.; Ahn, T.; Shin, E. Serum transaminase determined in the emergency room predicts outcomes in patients with acute ST-segment elevation myocardial infarction who undergo primary percutaneous coronary intervention. Int. J. Cardiol. 2014, 177, 442–447. [Google Scholar] [CrossRef] [PubMed]
- Lofthus, D.M.; Stevens, S.R.; Armstrong, P.W.; Granger, C.B.; Mahaffey, K.W. Pattern of liver enzyme elevations in acute ST-elevation myocardial infarction. Coron. Artery Dis. 2012, 23, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Jantti, T.; Tarvasmaki, T.; Harjola, V.P.; Parissis, J.; Pulkki, K.; Sionis, A.; Silva-Cardoso, J.; Kober, L.; Banaszewski, M.; Spinar, J.; et al. Frequency and prognostic significance of abnormal liver function tests in patients with cardiogenic shock. Am. J. Cardiol. 2017, 120, 1090–1097. [Google Scholar] [CrossRef] [PubMed]
- De Ritis, F.; Coltorti, M.; Giusti, G. An enzymic test for the diagnosis of viral hepatitis; the transaminase serum activities. Clin. Chim. Acta 1957, 2, 70–74. [Google Scholar] [CrossRef]
- Wroblewski, F. The clinical significance of alterations in transaminase activities of serum and other body fluids. Adv. Clin. Chem. 1958, 1, 313–351. [Google Scholar] [PubMed]
- Kamimoto, Y.; Horiuchi, S.; Tanase, S.; Morino, Y. Plasma clearance of intravenously injected aspartate aminotransferase isozymes: Evidence for preferential uptake by sinusoidal liver cells. Hepatology 1985, 5, 367–375. [Google Scholar] [CrossRef] [PubMed]
- Sorbi, D.; Boynton, J.; Lindor, K.D. The ratio of aspartate aminotransferase to alanine aminotransferase: Potential value in differentiating nonalcoholic steatohepatitis from alcoholic liver disease. Am. J. Gastroenterol. 1999, 94, 1018–1022. [Google Scholar] [CrossRef] [PubMed]
- Neuschwander-Tetri, B.A.; Clark, J.M.; Bass, N.M.; van Natta, M.L.; Unalp-Arida, A.; Tonascia, J.; Zein, C.O.; Brunt, E.M.; Kleiner, D.E.; McCullough, A.J.; et al. Clinical, laboratory and histological associations in adults with nonalcoholic fatty liver disease. Hepatology 2010, 52, 913–924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Botros, M.; Sikaris, K.A. The de ritis ratio: The test of time. Clin. Biochem. Rev. 2013, 34, 117–130. [Google Scholar] [PubMed]
- Hall, P.; Cash, J. What is the real function of the liver ‘function’ tests? Ulster Med. J. 2012, 81, 30–36. [Google Scholar] [PubMed]
- Giannini, E.G.; Testa, R.; Savarino, V. Liver enzyme alteration: A guide for clinicians. CMAJ 2005, 172, 367–379. [Google Scholar] [CrossRef] [PubMed]
- Goliasch, G.; Haschemi, A.; Marculescu, R.; Endler, G.; Maurer, G.; Wagner, O.; Huber, K.; Mannhalter, C.; Niessner, A. Butyrylcholinesterase activity predicts long-term survival in patients with coronary artery disease. Clin. Chem. 2012, 58, 1055–1058. [Google Scholar] [CrossRef] [PubMed]
- Pohl, J.; Hendgen-Cotta, U.B.; Stock, P.; Luedike, P.; Baba, H.A.; Kamler, M.; Rassaf, T. Myocardial expression of macrophage migration inhibitory factor in patients with heart failure. J. Clin. Med. 2017, 6, 95. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Candales, A.; Hernandez Burgos, P.M.; Hernandez-Suarez, D.F.; Harris, D. Linking chronic inflammation with cardiovascular disease: From normal aging to the metabolic syndrome. J. Nat. Sci. 2017, 3, e341. [Google Scholar] [PubMed]
- Libby, P.; Ridker, P.M.; Hansson, G.K. Inflammation in atherosclerosis: From pathophysiology to practice. J. Am. Coll. Cardiol. 2009, 54, 2129–2138. [Google Scholar] [CrossRef] [PubMed]
- Fuhrmann, V.; Kneidinger, N.; Herkner, H.; Heinz, G.; Nikfardjam, M.; Bojic, A.; Schellongowski, P.; Angermayr, B.; Kitzberger, R.; Warszawska, J.; et al. Hypoxic hepatitis: Underlying conditions and risk factors for mortality in critically ill patients. Intensive Care Med. 2009, 35, 1397–1405. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.B.; Park, G.M.; Lee, J.Y.; Lee, B.U.; Park, J.H.; Kim, B.G.; Jung, S.W.; Jeong, I.D.; Bang, S.J.; Shin, J.W.; et al. Association between non-alcoholic fatty liver disease and subclinical coronary atherosclerosis: An observational cohort study. J. Hepatol. 2018, 68l, 1018–1024. [Google Scholar] [CrossRef] [PubMed]
- Mihm, S. Danger-associated molecular patterns (damps): Molecular triggers for sterile inflammation in the liver. Int. J. Mol. Sci. 2018, 19, 3104. [Google Scholar] [CrossRef] [PubMed]
- Huebener, P.; Pradere, J.P.; Hernandez, C.; Gwak, G.Y.; Caviglia, J.M.; Mu, X.; Loike, J.D.; Jenkins, R.E.; Antoine, D.J.; Schwabe, R.F. The HMGB1/rage axis triggers neutrophil-mediated injury amplification following necrosis. J. Clin. Invest. 2015, 125, 539–550. [Google Scholar] [CrossRef] [PubMed]
- Kataoka, H.; Kono, H.; Patel, Z.; Kimura, Y.; Rock, K.L. Evaluation of the contribution of multiple damps and damp receptors in cell death-induced sterile inflammatory responses. PLoS ONE 2014, 9, e104741. [Google Scholar] [CrossRef] [PubMed]
- Colussi, G.; Zuttion, F.; Bais, B.; Dolso, P.; Valente, M.; Gigli, G.L.; Gasparini, D.; Sponza, M.; Catena, C.; Sechi, L.A.; et al. Pre-procedural statin use is associated with improved long-term survival and reduced major cardiovascular events in patients undergoing carotid artery stenting: A retrospective study. J. Clin. Med. 2018, 7, 286. [Google Scholar] [CrossRef] [PubMed]
- Cirillo, P.; Pacileo, M.; de Rosa, S.; Calabro, P.; Gargiulo, A.; Angri, V.; Prevete, N.; Fiorentino, I.; Ucci, G.; Sasso, L.; et al. HMG-CoA reductase inhibitors reduce nicotine-induced expression of cellular adhesion molecules in cultured human coronary endothelial cells. J. Vasc. Res. 2007, 44, 460–470. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.; Lamberts, M.; Olsen, A.M.; Fosboll, E.; Niessner, A.; Tamargo, J.; Rosano, G.; Agewall, S.; Kaski, J.C.; Kjeldsen, K.; et al. Cardiovascular safety of non-aspirin non-steroidal anti-inflammatory drugs: Review and position paper by the working group for cardiovascular pharmacotherapy of the european society of cardiology. Eur. Heart J. 2016, 37, 1015–1023. [Google Scholar] [CrossRef] [PubMed]
- Mythili, S.; Malathi, N. Diagnostic markers of acute myocardial infarction. Biomed. Rep. 2015, 3, 743–748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bodor, G.S. Biochemical markers of myocardial damage. EJIFCC 2016, 27, 95–111. [Google Scholar] [PubMed]
- Pacileo, M.; Cirillo, P.; de Rosa, S.; Ucci, G.; Petrillo, G.; Musto D’Amore, S.; Sasso, L.; Maietta, P.; Spagnuolo, R.; Chiariello, M. The role of neopterin in cardiovascular disease. Monaldi Arch. Chest Dis. 2007, 68, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Cirillo, P.; Golino, P.; Calabro, P.; Cali, G.; Ragni, M.; de Rosa, S.; Cimmino, G.; Pacileo, M.; de Palma, R.; Forte, L.; et al. C-reactive protein induces tissue factor expression and promotes smooth muscle and endothelial cell proliferation. Cardiovasc. Res. 2005, 68, 47–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
1st Tertile (n = 452) | 2nd Tertile (n = 452) | 3rd Tertile (n = 451) | p | r | * p | ||
---|---|---|---|---|---|---|---|
De–Ritis Ratio, ratio (IQR) | 0.8 (0.6–1.0) | 1.5 (1.3–1.7) | 3.6 (2.6–5.0) | <0.001 | |||
AST, U/L (IQR) | 29 (17–42) | 35 (26–57) | 107 (65–215) | <0.001 | |||
ALT, U/L (IQR) | 36 (22–60) | 24 (17–38) | 29 (18–50) | <0.001 | |||
Age, years (IQR) | 64 (40–72) | 71 (44–83) | 75 (45–83) | <0.001 | 0.291 | <0.001 | |
Gender (male), n (%) | 326 (72.1) | 252 (55.8) | 218 (48.3) | <0.001 | |||
Body mass index, kg/m2 (IQR) | 27.6 (25.1–30.4) | 25.8 (23.8–28.9) | 25.3 (23.3–28.1) | <0.001 | –0.212 | <0.001 | |
Systolic Blood Pressure, mmHg (IQR) | 127 (112–140) | 127 (113–145) | 124 (110–140) | 0.031 | –0.056 | 0.047 | |
Diastolic Blood Pressure, mmHg (IQR) | 76 (68–84) | 75 (63–81) | 71 (62–80) | 0.001 | –0.096 | 0.001 | |
Heart rate, bpm (IQR) | 75 (65–86) | 76 (66–89) | 78 (66–90) | 0.159 | 0.061 | 0.031 | |
Cardiogenic Shock, n (%) | 54 (11.9) | 45 (9.9) | 40 (8.8) | 0.125 | |||
Previous AMI, n (%) | 88 (19.5) | 99 (21.9) | 72 (15.9) | 0.176 | |||
Vessel Disease | 0.001 | ||||||
1–VD, n (%) | 201 (40.8) | 151 (30.6) | 141 (28.6) | ||||
2–VD, n (%) | 101 (34.1) | 94 (31.8) | 101 (34.1) | ||||
3–VD, n (%) | 109 (28.7) | 134 (35.3) | 137 (36.1) | ||||
STEMI, n (%) | 181 (40.0) | 242 (53.5) | 261 (57.9) | <0.001 | |||
Stenting, n (%) | 321 (71.0) | 302 (66.8) | 308 (68.1) | 0.351 | |||
Fibrinolysis, n (%) | 77 (17.0) | 60 (13.3) | 54 (11.9) | 0.074 | |||
Hypertension, n (%) | 300 (66.4) | 303 (67.0) | 308 (68.3) | 0.571 | |||
Diabetes mellitus, n (%) | 96 (21.2) | 91 (20.1) | 94 (20.8) | 0.870 | |||
Hypercholesterolemia, n (%) | 322 (71.2) | 277 (61.3) | 255 (56.5) | <0.001 | |||
Renal function failure, n (%) | 29 (6.4) | 29 (6.4) | 48 (10.6) | 0.019 | |||
Chronic heart failure, n (%) | 21 (4.6) | 29 (6.4) | 29 (6.4) | 0.256 | |||
Current smoker, n (%) | 285 63.1) | 212 (46.9) | 212 (46.9) | <0.001 | |||
Family history of CVD, n (%) | 177 (39.2) | 138 (30.6) | 148 (32.8) | 0.042 | |||
Peak–Troponin T, µg/L (IQR) | 1.3 (0.3–4.1) | 1.4 (0.5–3.9) | 3.1 (1.3–6.2) | <0.001 | 0.262 | <0.001 | |
Peak–CK, U/L (IQR) | 448 (161–1393) | 553 (218–1327) | 1010 (508–2166) | <0.001 | 0.264 | <0.001 | |
Peak–LDH, U/L (IQR) | 338 (235–611) | 368 (278–600) | 551 (381–811) | <0.001 | 0.302 | <0.001 | |
Quick Test % (IQR) | 96 (80–108) | 90 (80–101) | 90 (75–104) | 0.001 | −0.107 | <0.001 | |
Fibrinogen mg/dL (IQR) | 374 (324–442) | 391 (335–470) | 418 (349–490) | <0.001 | 0.133 | <0.001 | |
Gamma–GT U/L (IQR) | 38 (23–61) | 32 (19–54) | 26 (17–44) | <0.001 | –0.183 | <0.001 | |
Butyrylcholinesterase, U/L (IQR) | 7.0 (5.6–8.6) | 6.8 (5.5–8.2) | 6.5 (5.4–7.9) | 0.005 | –0.086 | 0.002 | |
Total Bilirubin, mg/dL (IQR) | 0.49 (0.36–0.75) | 0.55 (0.38–0.82) | 0.64 (0.46–0.89) | <0.001 | 0.173 | <0.001 | |
eGFR, (IQR) | 101.9 (67.6–122.0) | 65.5 (45.5–104.2) | 66.7 (45.2–103.2) | <0.001 | –0.245 | <0.001 | |
C–reactive protein, mg/dL (IQR) | 0.5 (0.4–1.2 | 0.5 (0.4–1.3) | 1.0 (0.5–2.8) | <0.001 | 0.166 | <0.001 | |
Creatinin, (IQR) | 1.05 (0.93–1.21) | 1.07 (0.92–1.31) | 1.03 (0.85–1.30) | 0.045 | –0.020 | 0.451 | |
NT–proBNP, (IQR) | 519 (163–3548) | 986 (281–5033) | 2230 (1036–6543) | <0.001 | 0.475 | <0.001 | |
LVEF <40% at discharge, n (%) | 37 (8.2) | 61 (13.5) | 80 (17.7) | <0.001 |
Yes | No | p-Value | Crude HR (95% CI) | p-Value | |
---|---|---|---|---|---|
Gender (male) | 1.3 (0.8–2.2) | 1.7 (1.1–3.0) | <0.001 | 1.32 (1.17–1.44) | <0.001 |
STEMI | 1.7 (1.1–2.9) | 1.3 (0.8–2.5) | <0.001 | 1.22 (1.07–1.51) | 0.002 |
Stenting | 1.4 (0.9–2.7) | 1.6 (1.0–2.5) | 0.285 | 1.39 (1.22–1.38) | <0.001 |
Thrombolysis | 1.3 (0.8–2.4) | 1.5 (1.0–2.6) | 0.005 | 1.26 (0.99–1.56) | 0.060 |
Previous AMI | 1.4 (1.0–2.2) | 1.5 (1.0–2.8) | 0.159 | 1.35 (1.13–1.63) | 0.001 |
Cardiogenic shock | 2.3 (1.3–4.7) | 1.0 (0.6–2.1) | <0.001 | 1.47 (1.11–1.63) | 0.007 |
Hypertension | 1.5 (0.9–2.6) | 1.5 (1.0–2.7) | 0.897 | 1.29 (1.16–1.95) | <0.001 |
Diabetes mellitus | 1.5 (1.0–2.6) | 1.5 (1.0–2.5) | 0.937 | 1.24 (1.05–1.44) | 0.011 |
Hypercholesterolemia | 1.4 (0.9–2.5) | 1.7 (1.1–2.9) | <0.001 | 1.33 (1.19–1.47) | <0.001 |
Renal function failure | 1.9 (1.1–4.4) | 1.4 (0.9–2.5) | <0.001 | 1.02 (0.80–1.49) | 0.853 |
Chronic heart failure | 1.6 (1.1–2.7) | 1.4 (1.0–2.7) | <0.001 | 1.49 (1.12–1.99) | 0.006 |
Family history of CVD | 1.4 (0.9–2.5) | 1.5 (1.0–2.8) | 0.052 | 1.32 (1.09–1.99) | 0.003 |
LVEF <40% at discharge | 1.8 (1.2–3.2) | 1.4 (0.9–2.5) | <0.001 | 1.07 (0.87–1.59) | 0.497 |
Crude HR (95% CI) | p-value | Adjusted HR (95% CI) * | p-Value | |
---|---|---|---|---|
AST | 1.21 (1.10–1.32) | <0.001 | 1.15 (1.00–1.33) | 0.051 |
ALT | 0.99 (0.89–1.09) | 0.987 | 0.98 (0.85–1.33) | 0.811 |
De-Ritis Ratio | 1.31 (1.19–1.44) | <0.001 | 1.24 (1.08–1.44) | 0.002 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Steininger, M.; Winter, M.-P.; Reiberger, T.; Koller, L.; El-Hamid, F.; Forster, S.; Schnaubelt, S.; Hengstenberg, C.; Distelmaier, K.; Goliasch, G.; et al. De-Ritis Ratio Improves Long-Term Risk Prediction after Acute Myocardial Infarction. J. Clin. Med. 2018, 7, 474. https://doi.org/10.3390/jcm7120474
Steininger M, Winter M-P, Reiberger T, Koller L, El-Hamid F, Forster S, Schnaubelt S, Hengstenberg C, Distelmaier K, Goliasch G, et al. De-Ritis Ratio Improves Long-Term Risk Prediction after Acute Myocardial Infarction. Journal of Clinical Medicine. 2018; 7(12):474. https://doi.org/10.3390/jcm7120474
Chicago/Turabian StyleSteininger, Matthias, Max-Paul Winter, Thomas Reiberger, Lorenz Koller, Feras El-Hamid, Stefan Forster, Sebastian Schnaubelt, Christian Hengstenberg, Klaus Distelmaier, Georg Goliasch, and et al. 2018. "De-Ritis Ratio Improves Long-Term Risk Prediction after Acute Myocardial Infarction" Journal of Clinical Medicine 7, no. 12: 474. https://doi.org/10.3390/jcm7120474
APA StyleSteininger, M., Winter, M. -P., Reiberger, T., Koller, L., El-Hamid, F., Forster, S., Schnaubelt, S., Hengstenberg, C., Distelmaier, K., Goliasch, G., Wojta, J., Toma, A., Niessner, A., & Sulzgruber, P. (2018). De-Ritis Ratio Improves Long-Term Risk Prediction after Acute Myocardial Infarction. Journal of Clinical Medicine, 7(12), 474. https://doi.org/10.3390/jcm7120474