Utility of Novel Cardiorenal Biomarkers in the Prediction and Early Detection of Congestive Kidney Injury Following Cardiac Surgery
Abstract
:1. Introduction
2. Methods
2.1. Patients
2.2. Outcomes
- Difficult separation from CPB, characterized by
- Concurrent use of ≥1 vasopressor and ≥1 inotrope or ≥1 pulmonary vasodilator (i.e., nitric oxide or epoprostenol); or
- More than one CPB weaning attempt; or
- Mechanical support device (i.e., RV assist device); and
- >20% relative reduction in RV fractional area change measured by two-dimensional echocardiography.
- Hemodynamic criteria:
- CVP >18 mmHg or cardiac index <1.8 L/min/m2, in the absence of elevated left atrial and pulmonary capillary wedge pressure >18 mmHg, tamponade, ventricular arrhythmias, or pneumothorax; and
- RV stroke work index <4 g·min−1·m2. RVSWI = 0.136 × SVI × (mPAP − RAP); where SVI = stroke volume index = stroke volume/body surface area, mPAP = mean pulmonary artery pressure, and RAP = right atrial pressure.
2.3. Cases and Controls
2.4. Study Procedures
2.5. Biomarkers
2.6. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Biomarker Analysis Pre and Post Cardiac Surgery
3.3. Hemodynamics Pre and Post Cardiac Surgery
3.4. Biomarker and Hemodynamic Correlation
3.5. Performance of Biomarkers vs. Traditional Parameters for c-AKI Prediction and Detection
3.5.1. Prediction of c-AKI
3.5.2. Early Detection of c-AKI
3.5.3. Perioperative Changes in Biomarker Levels
3.6. Sample Size Calculation
3.7. Secondary Outcomes
4. Discussion
4.1. A New AKI Phenotype
4.2. Venous Congestion and CVP
4.3. Congestive AKI and Cardiorenal Biomarkers
4.4. Secondary Outcomes
4.5. Clinical Implications
4.6. Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Skhiri, M.; Hunt, S.A.; Denault, A.Y.; Haddad, F. Evidence-based management of right heart failure: A systematic review of an empiric field. Rev. Esp. Cardiol. 2010, 63, 451–471. [Google Scholar] [CrossRef]
- Gambardella, I.; Gaudino, M.; Ronco, C.; Lau, C.; Ivascu, N.; Girardi, L.N. Congestive kidney failure in cardiac surgery: The relationship between central venous pressure and acute kidney injury. Interact. Cardiovasc. Thorac. Surg. 2016, 23, 800–805. [Google Scholar] [CrossRef] [PubMed]
- Costachescu, T.; Denault, A.; Guimond, J.-G.; Couture, P.; Carignan, S.; Sheridan, P.; Hellou, G.; Blair, L.; Normandin, L.; Babin, D.; et al. The hemodynamically unstable patient in the intensive care unit: Hemodynamic vs. transesophageal echocardiographic monitoring. Crit. Care Med. 2002, 30, 1214–1223. [Google Scholar] [CrossRef] [PubMed]
- Denault, A.Y.; Haddad, F.; Jacobsohn, E.; Deschamps, A. Perioperative right ventricular dysfunction. Curr. Opin. Anaesthesiol. 2013, 26, 71–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maslow, A.D.; Regan, M.M.; Panzica, P.; Heindel, S.; Mashikian, J.; Comunale, M.E. Precardiopulmonary bypass right ventricular function is associated with poor outcome after coronary artery bypass grafting in patients with severe left ventricular systolic dysfunction. Anesth. Analg. 2002, 95, 1507–1518. [Google Scholar] [CrossRef] [PubMed]
- Haddad, F.; Denault, A.Y.; Couture, P.; Cartier, R.; Pellerin, M.; Levesque, S.; Lambert, J.; Tardif, J.-C. Right ventricular myocardial performance index predicts perioperative mortality or circulatory failure in high-risk valvular surgery. J. Am. Soc. Echocardiogr. 2007, 20, 1065–1072. [Google Scholar] [CrossRef] [PubMed]
- Thiele, R.H.; Isbell, J.M.; Rosner, M.H. AKI associated with cardiac surgery. Clin. J. Am. Soc. Nephrol. 2015, 10, 500–514. [Google Scholar] [CrossRef] [PubMed]
- Karkouti, K.; Wijeysundera, D.N.; Yau, T.M.; Callum, J.L.; Cheng, D.C.; Crowther, M.; Dupuis, J.-Y.; Fremes, S.E.; Kent, B.; Laflamme, C.; et al. Acute kidney injury after cardiac surgery: Focus on modifiable risk factors. Circulation 2009, 119, 495–502. [Google Scholar] [CrossRef] [PubMed]
- Thomson, R.; Meeran, H.; Valencia, O.; Al-Subaie, N. Goal-directed therapy after cardiac surgery and the incidence of acute kidney injury. J. Crit. Care 2014, 29, 997–1000. [Google Scholar] [CrossRef]
- Pearse, R.; Dawson, D.; Fawcett, J.; Rhodes, A.; Grounds, R.M.; Bennett, E.D. Early goal-directed therapy after major surgery reduces complications and duration of hospital stay. A randomised, controlled trial [ISRCTN38797445]. Crit. Care 2005, 9, R687–R693. [Google Scholar] [CrossRef]
- Waikar, S.S.; Bonventre, J.V. Creatinine kinetics and the definition of acute kidney injury. J. Am. Soc. Nephrol. 2009, 20, 672–679. [Google Scholar] [CrossRef] [PubMed]
- Shiao, C.-C.; Wu, V.-C.; Li, W.-Y.; Lin, Y.-F.; Hu, F.-C.; Young, G.-H.; Kuo, C.-C.; Kao, T.-W.; Huang, D.-M.; Chen, Y.-M.; et al. Late initiation of renal replacement therapy is associated with worse outcomes in acute kidney injury after major abdominal surgery. Crit. Care 2009, 13, R171. [Google Scholar] [CrossRef] [PubMed]
- Karkouti, K.; Beattie, W.S.; Wijeysundera, D.N.; Rao, V.; Chan, C.; Dattilo, K.M.; Djaiani, G.; Ivanov, J.; Karski, J.; David, T.E. Hemodilution during cardiopulmonary bypass is an independent risk factor for acute renal failure in adult cardiac surgery. J. Thorac. Cardiovasc. Surg. 2005, 129, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Devarajan, P. Neutrophil gelatinase-associated lipocalin: A promising biomarker for human acute kidney injury. Biomark. Med. 2010, 4, 265–280. [Google Scholar] [CrossRef]
- Ronco, C.; McCullough, P.; Anker, S.D.; Anand, I.; Aspromonte, N.; Bagshaw, S.M.; Bellomo, R.; Berl, T.; Bobek, I.; Cruz, D.N.; et al. Cardio-renal syndromes: Report from the consensus conference of the Acute Dialysis Quality Initiative. Eur. Heart J. 2010, 31, 703–711. [Google Scholar] [CrossRef]
- Aronson, D.; Abassi, Z.; Allon, E.; Burger, A.J. Fluid loss, venous congestion, and worsening renal function in acute decompensated heart failure. Eur. J. Heart Fail. 2013, 15, 637–643. [Google Scholar] [CrossRef] [Green Version]
- Marik, P.E.; Baram, M.; Vahid, B. Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest 2008, 134, 172–178. [Google Scholar] [CrossRef]
- Bulluck, H.; Maiti, R.; Chakraborty, B.; Candilio, L.; Clayton, T.; Evans, R.; Jenkins, D.P.; Kolvekar, S.; Kunst, G.; Laing, C.; et al. Neutrophil gelatinase-associated lipocalin prior to cardiac surgery predicts acute kidney injury and mortality. Heart 2018, 104, 313–317. [Google Scholar] [CrossRef]
- Daniels, L.B.; Barrett-Connor, E.; Clopton, P.; Laughlin, G.A.; Ix, J.H.; Maisel, A.S. Plasma neutrophil gelatinase-associated lipocalin is independently associated with cardiovascular disease and mortality in community-dwelling older adults: The Rancho Bernardo Study. J. Am. Coll. Cardiol. 2012, 59, 1101–1109. [Google Scholar] [CrossRef]
- Lindberg, S.; Pedersen, S.H.; Mogelvang, R.; Jensen, J.S.; Flyvbjerg, A.; Galatius, S.; Magnusson, N.E. Prognostic utility of neutrophil gelatinase-associated lipocalin in predicting mortality and cardiovascular events in patients with ST-segment elevation myocardial infarction treated with primary percutaneous coronary intervention. J. Am. Coll. Cardiol. 2012, 60, 339–345. [Google Scholar] [CrossRef]
- Patel, U.D.; Garg, A.X.; Krumholz, H.M.; Shlipak, M.G.; Coca, S.G.; Sint, K.; Thiessen-Philbrook, H.; Koyner, J.L.; Swaminathan, M.; Passik, C.S.; et al. Preoperative serum brain natriuretic peptide and risk of acute kidney injury after cardiac surgery. Circulation 2012, 125, 1347–1355. [Google Scholar] [CrossRef] [PubMed]
- Song, D.; de Zoysa, J.R.; Ng, A.; Chiu, W. Troponins in acute kidney injury. Ren. Fail. 2012, 34, 35–39. [Google Scholar] [CrossRef] [PubMed]
- Januzzi, J.L.; van Kimmenade, R.; Lainchbury, J.; Bayes-Genis, A.; Ordonez-Llanos, J.; Santalo-Bel, M.; Pinto, Y.M.; Richards, M. NT-proBNP testing for diagnosis and short-term prognosis in acute destabilized heart failure: An international pooled analysis of 1256 patients: The International Collaborative of NT-proBNP Study. Eur. Heart J. 2006, 27, 330–337. [Google Scholar] [CrossRef] [PubMed]
- Blyth, K.G.; Groenning, B.A.; Mark, P.B.; Martin, T.N.; Foster, J.E.; Steedman, T.; Morton, J.J.; Dargie, H.J.; Peacock, A.J. NT-proBNP can be used to detect right ventricular systolic dysfunction in pulmonary hypertension. Eur. Respir. J. 2007, 29, 737–744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagaya, N.; Nishikimi, T.; Okano, Y.; Uematsu, M.; Satoh, T.; Kyotani, S.; Kuribayashi, S.; Hamada, S.; Kakishita, M.; Nakanishi, N.; et al. Plasma brain natriuretic peptide levels increase in proportion to the extent of right ventricular dysfunction in pulmonary hypertension. J. Am. Coll. Cardiol. 1998, 31, 202–208. [Google Scholar] [CrossRef]
- Ricci, Z.; Cruz, D.N.; Ronco, C. Classification and staging of acute kidney injury: Beyond the RIFLE and AKIN criteria. Nat. Rev. Nephrol. 2011, 7, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Holman, W.L. Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS): What have we learned and what will we learn? Circulation 2012, 126, 1401–1406. [Google Scholar] [CrossRef]
- Denault, A.Y.; Bussières, J.S.; Arellano, R.; Finegan, B.; Gavra, P.; Haddad, F.; Nguyen, A.Q.N.; Varin, F.; Fortier, A.; Levesque, S.; et al. A multicentre randomized-controlled trial of inhaled milrinone in high-risk cardiac surgical patients. Can. J. Anaesth. J. 2016, 63, 1140–1153. [Google Scholar] [CrossRef]
- Rudski, L.G.; Lai, W.W.; Afilalo, J.; Hua, L.; Handschumacher, M.D.; Chandrasekaran, K.; Solomon, S.D.; Louie, E.K.; Schiller, N.B. Guidelines for the echocardiographic assessment of the right heart in adults: A report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J. Am. Soc. Echocardiogr. 2010, 23, 685–713, quiz 786–788. [Google Scholar]
- Giannitsis, E.; Kurz, K.; Hallermayer, K.; Jarausch, J.; Jaffe, A.S.; Katus, H.A. Analytical validation of a high-sensitivity cardiac troponin T assay. Clin. Chem. 2010, 56, 254–261. [Google Scholar] [CrossRef]
- Bolignano, D.; Lacquaniti, A.; Coppolino, G.; Donato, V.; Campo, S.; Fazio, M.R.; Nicocia, G.; Buemi, M. Neutrophil gelatinase-associated lipocalin (NGAL) and progression of chronic kidney disease. Clin. J. Am. Soc. Nephrol. 2009, 4, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Omar, A.S.; Mahmoud, K.; Hanoura, S.; Osman, H.; Sivadasan, P.; Sudarsanan, S.; Shouman, Y.; Singh, R.; AlKhulaifi, A. Acute kidney injury induces high-sensitivity troponin measurement changes after cardiac surgery. BMC Anesthesiol. 2017, 17, 15. [Google Scholar] [CrossRef] [PubMed]
- DeLong, E.R.; DeLong, D.M.; Clarke-Pearson, D.L. Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics 1988, 44, 837–845. [Google Scholar] [CrossRef] [PubMed]
- Bucholz, E.M.; Whitlock, R.P.; Zappitelli, M.; Devarajan, P.; Eikelboom, J.; Garg, A.X.; Philbrook, H.T.; Devereaux, P.J.; Krawczeski, C.D.; Kavsak, P.; et al. Cardiac biomarkers and acute kidney injury after cardiac surgery. Pediatrics 2015, 135, e945–e956. [Google Scholar] [CrossRef] [PubMed]
- Elíasdóttir, S.B.; Klemenzson, G.; Torfason, B.; Valsson, F. Brain natriuretic peptide is a good predictor for outcome in cardiac surgery. Acta Anaesthesiol. Scand. 2008, 52, 182–187. [Google Scholar] [CrossRef] [PubMed]
- Schrier, R.W.; Bansal, S. Pulmonary hypertension, right ventricular failure, and kidney: Different from left ventricular failure? Clin. J. Am. Soc. Nephrol. 2008, 3, 1232–1237. [Google Scholar] [CrossRef] [PubMed]
- Firth, J.D.; Raine, A.E.; Ledingham, J.G. Raised venous pressure: A direct cause of renal sodium retention in oedema? Lancet 1988, 331, 1033–1036. [Google Scholar] [CrossRef]
- Mullens, W.; Abrahams, Z.; Francis, G.S.; Sokos, G.; Taylor, D.O.; Starling, R.C.; Young, J.B.; Tang, W.H.W. Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J. Am. Coll. Cardiol. 2009, 53, 589–596. [Google Scholar] [CrossRef]
- Liang, K.V.; Williams, A.W.; Greene, E.L.; Redfield, M.M. Acute decompensated heart failure and the cardiorenal syndrome. Crit. Care Med. 2008, 36, S75–S88. [Google Scholar] [CrossRef]
- Liu, P.P. Cardiorenal syndrome in heart failure: A cardiologist’s perspective. Can. J. Cardiol. 2008, 24, 25B–29B. [Google Scholar] [CrossRef]
- Daquarti, G.; March Vecchio, N.; Mitrione, C.S.; Furmento, J.; Ametrano, M.C.; Dominguez Pace, M.P.; Costabel, J.P. High-sensitivity troponin and right ventricular function in acute pulmonary embolism. Am. J. Emerg. Med. 2016, 34, 1579–1582. [Google Scholar] [CrossRef] [PubMed]
- Allen, B.S.; Winkelmann, J.W.; Hanafy, H.; Hartz, R.S.; Bolling, K.S.; Ham, J.; Feinstein, S. Retrograde cardioplegia does not adequately perfuse the right ventricle. J. Thorac. Cardiovasc. Surg. 1995, 109, 1116–1126. [Google Scholar] [CrossRef]
- Kevin, L.G.; Barnard, M. Right ventricular failure. Contin. Educ. Anaesth. Crit. Care Pain 2007, 7, 89–94. [Google Scholar] [CrossRef]
- Aissaoui, N.; Salem, J.-E.; Paluszkiewicz, L.; Morshuis, M.; Guerot, E.; Gorria, G.M.; Fagon, J.-Y.; Gummert, J.; Diebold, B. Assessment of right ventricular dysfunction predictors before the implantation of a left ventricular assist device in end-stage heart failure patients using echocardiographic measures (ARVADE): Combination of left and right ventricular echocardiographic variables. Arch. Cardiovasc. Dis. 2015, 108, 300–309. [Google Scholar] [PubMed] [Green Version]
- Matthews, J.C.; Koelling, T.M.; Pagani, F.D.; Aaronson, K.D. The right ventricular failure risk score a pre-operative tool for assessing the risk of right ventricular failure in left ventricular assist device candidates. J. Am. Coll. Cardiol. 2008, 51, 2163–2172. [Google Scholar] [CrossRef] [PubMed]
- Brynildsen, J.; Petäjä, L.; Pettilä, V.; Nygård, S.; Vaara, S.T.; Linko, R.; Okkonen, M.; Hagve, T.-A.; Soininen, L.; Suojaranta-Ylinen, R.; et al. The predictive value of NT-proBNP and hs-TnT for risk of death in cardiac surgical patients. Clin. Biochem. 2018, 53, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Cuthbertson, B.H.; Croal, B.L.; Rae, D.; Gibson, P.H.; McNeilly, J.D.; Jeffrey, R.R.; Smith, W.C.; Prescott, G.J.; Buchan, K.G.; El-Shafei, H.; et al. N-terminal pro-B-type natriuretic peptide levels and early outcome after cardiac surgery: A prospective cohort study. Br. J. Anaesth. 2009, 103, 647–653. [Google Scholar] [CrossRef]
- Domanski, M.J.; Mahaffey, K.; Hasselblad, V.; Brener, S.J.; Smith, P.K.; Hillis, G.; Engoren, M.; Alexander, J.H.; Levy, J.H.; Chaitman, B.R.; et al. Association of myocardial enzyme elevation and survival following coronary artery bypass graft surgery. JAMA 2011, 305, 585–591. [Google Scholar] [CrossRef]
- Mohammed, A.A.; Agnihotri, A.K.; van Kimmenade, R.R.J.; Martinez-Rumayor, A.; Green, S.M.; Quiroz, R.; Januzzi, J.L. Prospective, comprehensive assessment of cardiac troponin T testing after coronary artery bypass graft surgery. Circulation 2009, 120, 843–850. [Google Scholar] [CrossRef]
- Wilke, P.; Masuch, A.; Fahron, O.; Zylla, S.; Leipold, T.; Petersmann, A. Diagnostic performance of point-of-care and central laboratory cardiac troponin assays in an emergency department. PLoS ONE 2017, 12, e0188706. [Google Scholar] [CrossRef]
- Fellner, S.; Hentze, S.; Kempin, U.; Richter, E.; Rocktäschel, J.; Langer, B. Analytical evaluation of a BNP assay on the new point-of-care platform respons® IQ. Pract. Lab. Med. 2015, 2, 15–21. [Google Scholar] [CrossRef] [PubMed]
Control (n = 89) | c-AKI (n = 18) | p-Value | |
---|---|---|---|
Baseline Characteristics | |||
Male | 61 (68.5%) | 11 (61.1%) | 0.54 |
Age (years) | 66.0 (63.8–68.2) | 67.1 (61.1–73.2) | 0.57 |
Body Mass Index (kg/m2) | 28.5 (27.4–29.7) | 30.5 (27.3–33.6) | 0.35 |
eGFR (mL/min/1.73 m2) | 89.8 (83.4–96.1) | 75.2 (60.6–89.7) | 0.03 |
Serum Creatinine (µmol/L) | 84.3 (79.5–89.1) | 100.7 (87.3–114.1) | 0.009 |
Cardiac Index (L/min/m2) | 2.18 (2.03–2.33) | 1.93 (1.66- 2.19) | 0.08 |
Central Venous Pressure (mmHg) | 13.9 (12.9–14.9) | 16.6 (14.1–19.1) | 0.06 |
Left Ventricle Ejection Fraction (%) | 53.1 (51.4–54.9) | 49.6 (44.3–54.8) | 0.14 |
Comorbidities | |||
Hypertension | 57 (64%) | 12 (67%) | 0.83 |
Diabetes | 20 (22%) | 12 (67%) | 0.0002 |
COPD | 8 (9%) | 1 (6%) | 1.0 |
Pre-existing Right Heart Dysfunction | 1 (1.1%) | 1 (6%) | 0.31 |
Coronary Artery Disease | 57 (64%) | 11 (61%) | 0.81 |
Medications | |||
ASA | 54 (61%) | 11 (62%) | 0.97 |
Beta Blocker | 59 (66%) | 11 (62%) | 0.67 |
ACE Inhibitor | 50 (56%) | 8 (44%) | 0.36 |
Lipid Lowering agents | 55 (62%) | 11 (62%) | 0.96 |
Intraoperative Characteristics | |||
Surgery Type | 0.0006 | ||
CABG | 43 (48%) | 5 (28%) | |
Single Valve | 33 (37%) | 3 (17%) | |
Combined CABG/Valve/Other | 13 (15%) | 10 (56%) | |
Cardiopulmonary Bypass Duration (min) | 89.1 (82.1–96.0) | 141.1 (114.5–167.7) | 0.0002 |
Aortic Cross Clamp Duration (min) | 64.6 (58.4–70.8) | 102.1 (78.8–125.4) | 0.003 |
Postoperative characteristics | |||
Length of Hospital Stay (days) | 11.8 (9.5–14.1) | 23.3 (14.2–32.4) | 0.0001 |
Length of Intensive Care Unit Stay (days) | 2.1 (1.3–2.8) | 6.1 (3.4–8.8) | <0.0001 |
Mechanical Ventilation Duration (hours) | 9.7 (3.6–15.7) | 63.0 (1.23–124.7) | <0.0001 |
Unadjusted | Adjusted a | |||
---|---|---|---|---|
OR (95% CI) | p Value | OR (95% CI) | p Value | |
Baseline | ||||
NGAL | 1.37 (1.05–1.78) | 0.02 | 1.19 (0.88–1.61) | 0.25 |
NT-proBNP | 1.17 (1.06–1.29) | 0.001 | 1.10 (0.97–1.24) | 0.12 |
hs-cTnT | 1.06 (0.98–1.15) | 0.15 | 0.99 (0.87–1.11) | 0.81 |
CVP | 1.12 (1.01–1.25) | 0.03 | 1.20 (1.04–1.38) | 0.01 |
Postoperative | ||||
NGAL | 1.11 (0.93–1.33) | 0.25 | 1.02 (0.83–1.26) | 0.86 |
NT-proBNP | 1.21 (1.09–1.34) | 0.0005 | 1.13 (1.00–1.29) | 0.05 |
hs-cTnT | 1.26 (1.10–1.45) | 0.0009 | 1.22 (1.05–1.42) | 0.008 |
CVP | 1.17 (1.03–1.32) | 0.01 | 1.15 (0.98–1.35) | 0.09 |
Change (Postoperative–Baseline) | ||||
∆NGAL | 1.23 (0.96–1.57) | 0.09 | 1.26 (0.93–1.71) | 0.13 |
∆NT-proBNP | 0.99 (0.96–1.03) | 0.85 | 0.99 (0.94–1.05) | 0.84 |
∆hs-cTnT | 1.15 (1.07–1.24) | 0.0002 | 1.25 (1.09–1.44) | 0.001 |
∆CVP | 1.00 (0.91–1.10) | 0.94 | 0.93 (0.83–1.04) | 0.20 |
Unadjusted AUC (95% CI) Biomarker Only | a Adjusted AUC (95%CI) Biomarker + Clinical Model | |
---|---|---|
Clinical Model | - | 0.83 (0.72, 0.94) |
Baseline | ||
NGAL | 0.67 (0.51–0.82) | 0.84 (0.73–0.95) |
NT-proBNP | 0.74 (0.60–0.89) | 0.84 (0.75–0.94) |
hs-cTnT | 0.67 (0.53–0.81) | 0.82 (0.71–0.94) |
CVP | 0.64 (0.50–0.78) | 0.88 (0.80–0.96) |
Postoperative | ||
NGAL | 0.60 (0.43–0.77) | 0.83 (0.72–0.94) |
NT-proBNP | 0.78 (0.66–0.91) | 0.86 (0.76–0.96) |
hs-cTnT | 0.75 (0.58–0.92) | 0.88 (0.80–0.96) |
CVP | 0.68 (0.55–0.81) | 0.87 (0.80–0.95) |
Change (Postoperative-Baseline) | ||
∆NGAL | 0.61 (0.42–0.79) | 0.82 (0.72–0.93) |
∆NT-proBNP | 0.69 (0.54–0.85) | 0.83 (0.71–0.94) |
∆hs-cTnT | 0.80 (0.64–0.96) | * 0.94 (0.89–0.99) |
∆CVP | 0.49 (0.34–0.63) | 0.84 (0.72–0.96) |
Combined Model | ||
∆Hs-cTnT + Preoperative Creatinine | 0.87 (0.76–0.99) | - |
∆Hs-cTnT + Diabetes | 0.93 (0.88–0.99) | - |
Cutoff | Sensitivity | Specificity | |
---|---|---|---|
Baseline | |||
NGAL (pg/mL) | 140.2 | 64.7 | 69.7 |
NT-proBNP (pg/mL) | 476.0 | 76.5 | 71.9 |
hs-cTnT (pg/mL) | 25.0 | 47.1 | 84.3 |
CVP | 15.5 | 61.1 | 67.8 |
Postoperative | |||
NGAL (pg/mL) | 440.9 | 41.2 | 84.3 |
NT-proBNP (pg/mL) | 599.5 | 72.2 | 79.5 |
hs-cTnT (pg/mL) | 1089.0 | 66.7 | 84.1 |
CVP | 10.5 | 44.4 | 84.3 |
Change (Postoperative-Baseline) | |||
∆NGAL (pg/mL) | 181.7 | 50.0 | 77.5 |
∆NT-proBNP (pg/mL) | −38.8 | 76.5 | 62.5 |
∆hs-cTnT (pg/mL) | 730.9 | 82.4 | 75.0 |
∆CVP | −9.5 | 88.9 | 26.4 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zelt, J.G.E.; Mielniczuk, L.M.; Liu, P.P.; Dupuis, J.-Y.; Chih, S.; Akbari, A.; Sun, L.Y. Utility of Novel Cardiorenal Biomarkers in the Prediction and Early Detection of Congestive Kidney Injury Following Cardiac Surgery. J. Clin. Med. 2018, 7, 540. https://doi.org/10.3390/jcm7120540
Zelt JGE, Mielniczuk LM, Liu PP, Dupuis J-Y, Chih S, Akbari A, Sun LY. Utility of Novel Cardiorenal Biomarkers in the Prediction and Early Detection of Congestive Kidney Injury Following Cardiac Surgery. Journal of Clinical Medicine. 2018; 7(12):540. https://doi.org/10.3390/jcm7120540
Chicago/Turabian StyleZelt, Jason G. E., Lisa M. Mielniczuk, Peter P. Liu, Jean-Yves Dupuis, Sharon Chih, Ayub Akbari, and Louise Y. Sun. 2018. "Utility of Novel Cardiorenal Biomarkers in the Prediction and Early Detection of Congestive Kidney Injury Following Cardiac Surgery" Journal of Clinical Medicine 7, no. 12: 540. https://doi.org/10.3390/jcm7120540
APA StyleZelt, J. G. E., Mielniczuk, L. M., Liu, P. P., Dupuis, J. -Y., Chih, S., Akbari, A., & Sun, L. Y. (2018). Utility of Novel Cardiorenal Biomarkers in the Prediction and Early Detection of Congestive Kidney Injury Following Cardiac Surgery. Journal of Clinical Medicine, 7(12), 540. https://doi.org/10.3390/jcm7120540