Biomarkers for Detecting Mitochondrial Disorders
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Biomarkers
3.1.1. Definition
3.1.2. Requirements
3.1.3. Classification
3.2. Dry Biomarkers
3.2.1. History and Clinical Examination
3.2.2. Imaging
Structural Imaging
(1) Muscle
(2) Brain
(3) Heart
Functional Imaging
(1) Muscle
(2) Brain
3.2.3. Cutaneous Respirometry
3.3. Wet Biomarkers
3.3.1. Lactate, Pyruvate, Creatine-Kinase, Amino A2cids, Organic Acids, Carnitines, Oxidative Stress Parameters
3.3.2. Circulating Cytokines (FGF21, GDF15)
3.3.3. microRNAs
3.3.4. Biopsy of Solid Tissues
3.3.5. Exercise Tests
3.3.6. Small Molecule Reporters
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Gorman, G.S.; Chinnery, P.F.; DiMauro, S.; Hirano, M.; Koga, Y.; McFarland, R.; Suomalainen, A.; Thorburn, D.R.; Zeviani, M.; Turnbull, D.M. Mitochondrial diseases. Nat. Rev. Dis. Prim. 2016, 2, 16080. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, P.; Engelstad, K.; Wei, Y.; Kulikova, R.; Oskoui, M.; Sproule, D.M.; Battista, V.; Koenigsberger, D.Y.; Pascual, J.M.; Shanske, S.; et al. Natural history of MELAS associated with mitochondrial DNA m.3243A>G genotype. Neurology 2011, 77, 1965–1971. [Google Scholar] [CrossRef] [PubMed]
- Steele, H.E.; Horvath, R.; Lyon, J.J.; Chinnery, P.F. Monitoring clinical progression with mitochondrial disease biomarkers. Brain 2017, 140, 2530–2540. [Google Scholar] [CrossRef] [PubMed]
- Strimbu, K.; Tavel, J.A. What are biomarkers? Curr. Opin. HIV AIDS 2010, 5, 463–466. [Google Scholar] [CrossRef] [PubMed]
- Finsterer, J. Biomarkers of peripheral muscle fatigue during exercise. BMC Musculoskelet. Disord. 2012, 13, 218. [Google Scholar] [CrossRef] [PubMed]
- Finsterer, J.; Drory, V.E. Wet, volatile, and dry biomarkers of exercise-induced muscle fatigue. BMC Musculoskelet. Disord. 2016, 17, 40. [Google Scholar] [CrossRef] [PubMed]
- Pennuto, M.; Greensmith, L.; Pradat, P.F.; Sorarù, G.; European SBMA Consortium. 210th ENMC International Workshop: Research and Clinical Management of Patients with Spinal and Bulbar Muscular Atrophy, 27–29 March, 2015, Naarden, The Netherlands. Neuromuscul. Disord. 2015, 25, 802–812. [Google Scholar] [CrossRef] [PubMed]
- Finsterer, J.; Zarrouk-Mahjoub, S. Mitochondrial multiorgan disorder syndrome score generated from definite mitochondrial disorders. Neuropsychiatr. Dis. Treat. 2017, 13, 2569–2579. [Google Scholar] [CrossRef] [PubMed]
- Pitceathly, R.D.; Morrow, J.M.; Sinclair, C.D.; Woodward, C.; Sweeney, M.G.; Rahman, S.; Plant, G.T.; Ali, N.; Bremner, F.; Davagnanam, I.; et al. Extra-ocular muscle MRI in genetically-defined mitochondrial disease. Eur. Radiol. 2016, 26, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Yu-Wai-Man, C.; Smith, F.E.; Firbank, M.J.; Guthrie, G.; Guthrie, S.; Gorman, G.S.; Taylor, R.W.; Turnbull, D.M.; Griffiths, P.G.; Blamire, A.M.; et al. Extraocular muscle atrophy and central nervous system involvement in chronic progressive external ophthalmoplegia. PLoS ONE 2013, 8, e75048. [Google Scholar] [CrossRef] [PubMed]
- Finsterer, J.; Zarrouk-Mahjoub, S. Cerebral imaging in pediatric mitochondrial disorders. J. Neurol. Sci. 2017. submitted. [Google Scholar]
- Finsterer, J. Central nervous system imaging in mitochondrial disorders. Can. J. Neurol. Sci. 2009, 36, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Florian, A.; Ludwig, A.; Stubbe-Dräger, B.; Boentert, M.; Young, P.; Waltenberger, J.; Rösch, S.; Sechtem, U.; Yilmaz, A. Characteristic cardiac phenotypes are detected by cardiovascular magnetic resonance in patients with different clinical phenotypes and genotypes of mitochondrial myopathy. J. Cardiovasc. Magn. Reson. 2015, 17, 40. [Google Scholar] [CrossRef] [PubMed]
- Golla, S.; Ren, J.; Malloy, C.R.; Pascual, J.M. Intramyocellular lipid excess in the mitochondrial disorder MELAS: MRS determination at 7T. Neurol. Genet. 2017, 3, e160. [Google Scholar] [CrossRef] [PubMed]
- DeBrosse, C.; Nanga, R.P.; Wilson, N.; D’Aquilla, K.; Elliott, M.; Hariharan, H.; Yan, F.; Wade, K.; Nguyen, S.; Worsley, D.; et al. Muscle oxidative phosphorylation quantitation using creatine chemical exchange saturation transfer (CrCEST) MRI in mitochondrial disorders. JCI Insight 2016, 1, e88207. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.H.; Niu, F.N.; Chang, L.L.; Zhang, B.; Liu, Z.; Chen, J.Y.; Zhou, Q.; Wu, H.Y.; Xu, Y. High cytochrome c oxidase expression links to severe skeletal energy failure by 31P-MRS spectroscopy in mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes. CNS Neurosci. Ther. 2014, 20, 509–514. [Google Scholar] [CrossRef] [PubMed]
- Weiduschat, N.; Kaufmann, P.; Mao, X.; Engelstad, K.M.; Hinton, V.; DiMauro, S.; De Vivo, D.; Shungu, D. Cerebral metabolic abnormalities in A3243G mitochondrial DNA mutation carriers. Neurology 2014, 82, 798–805. [Google Scholar] [CrossRef] [PubMed]
- Chi, C.S.; Lee, H.F.; Tsai, C.R.; Chen, W.S.; Tung, J.N.; Hung, H.C. Lactate peak on brain MRS in children with syndromic mitochondrial diseases. J. Chin. Med. Assoc. 2011, 74, 305–309. [Google Scholar] [CrossRef] [PubMed]
- Nariai, T.; Ohno, K.; Ohta, Y.; Hirakawa, K.; Ishii, K.; Senda, M. Discordance between cerebral oxygen and glucose metabolism, and hemodynamics in a mitochondrial encephalomyopathy, lactic acidosis, and strokelike episode patient. J. Neuroimaging 2001, 11, 325–329. [Google Scholar] [CrossRef] [PubMed]
- Haginoya, K.; Kaneta, T.; Togashi, N.; Hino-Fukuyo, N.; Kobayashi, T.; Uematsu, M.; Kitamura, T.; Inui, T.; Okubo, Y.; Takezawa, Y.; et al. FDG-PET study of patients with Leigh syndrome. J. Neurol. Sci. 2016, 362, 309–313. [Google Scholar] [CrossRef] [PubMed]
- Frackowiak, R.S.; Herold, S.; Petty, R.K.; Morgan-Hughes, J.A. The cerebral metabolism of glucose and oxygen measured with positron tomography in patients with mitochondrial diseases. Brain 1988, 111, 1009–1024. [Google Scholar] [CrossRef] [PubMed]
- Lindroos, M.M.; Borra, R.J.; Parkkola, R.; Virtanen, S.M.; Lepomäki, V.; Bucci, M.; Virta, J.R.; Rinne, J.O.; Nuutila, P.; Majamaa, K. Cerebral oxygen and glucose metabolism in patients with mitochondrial m.3243A>G mutation. Brain 2009, 132, 3274–3284. [Google Scholar] [CrossRef] [PubMed]
- Harms, F.A.; Bodmer, S.I.; Raat, N.J.; Mik, E.G. Cutaneous mitochondrial respirometry: Non-invasive monitoring of mitochondrial function. J. Clin. Monit. Comput. 2015, 29, 509–519. [Google Scholar] [CrossRef] [PubMed]
- Harms, F.A.; Stolker, R.J.; Mik, E.G. Cutaneous respirometry as novel technique to monitor mitochondrial function: A feasibility study in healthy volunteers. PLoS ONE 2016, 11, e0159544. [Google Scholar]
- Hall, A.M.; Vilasi, A.; Garcia-Perez, I.; Lapsley, M.; Alston, C.L.; Pitceathly, R.D.; McFarland, R.; Schaefer, A.M.; Turnbull, D.M.; Beaumont, N.J.; et al. The urinary proteome and metabonome differ from normal in adults with mitochondrial disease. Kidney Int. 2015, 87, 610–622. [Google Scholar] [CrossRef] [PubMed]
- Chao de la Barca, J.M.; Simard, G.; Amati-Bonneau, P.; Safiedeen, Z.; Prunier-Mirebeau, D.; Chupin, S.; Gadras, C.; Tessier, L.; Gueguen, N.; Chevrollier, A.; et al. The metabolomic signature of Leber’s hereditary optic neuropathy reveals endoplasmic reticulum stress. Brain 2016, 139, 2864–2876. [Google Scholar] [CrossRef] [PubMed]
- Tranchant, C.; Anheim, M. Movement disorders in mitochondrial diseases. Rev. Neurol. (Paris) 2016, 172, 524–529. [Google Scholar] [CrossRef] [PubMed]
- Rasool, N.; Lessell, S.; Cestari, D.M. Leber Hereditary Optic Neuropathy: Bringing the Lab to the Clinic. Semin. Ophthalmol. 2016, 31, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Morovat, A.; Weerasinghe, G.; Nesbitt, V.; Hofer, M.; Agnew, T.; Quaghebeur, G.; Sergeant, K.; Fratter, C.; Guha, N.; Mirzazadeh, M.; et al. Use of FGF-21 as a biomarker of mitochondrial disease in clinical practice. J. Clin. Med. 2017, 6, 80. [Google Scholar] [CrossRef] [PubMed]
- Koene, S.; de Laat, P.; van Tienoven, D.H.; Vriens, D.; Brandt, A.M.; Sweep, F.C.; Rodenburg, R.J.; Donders, A.R.; Janssen, M.C.; Smeitink, J.A. Serum FGF21 levels in adult m.3243A>G carriers: Clinical implications. Neurology 2014, 83, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Suomalainen, A.; Elo, J.M.; Pietiläinen, K.H.; Hakonen, A.H.; Sevastianova, K.; Korpela, M.; Isohanni, P.; Marjavaara, S.K.; Tyni, T.; Kiuru-Enari, S.; et al. FGF-21 as a biomarker for muscle-manifesting mitochondrial respiratory chain deficiencies: A diagnostic study. Lancet Neurol. 2011, 10, 806–818. [Google Scholar] [CrossRef]
- Lehtonen, J.M.; Forsström, S.; Bottani, E.; Viscomi, C.; Baris, O.R.; Isoniemi, H.; Höckerstedt, K.; Österlund, P.; Hurme, M.; Jylhävä, J.; et al. FGF21 is a biomarker for mitochondrial translation and mtDNA maintenance disorders. Neurology 2016, 87, 2290–2299. [Google Scholar] [CrossRef] [PubMed]
- Meseguer, S.; Martínez-Zamora, A.; García-Arumí, E.; Andreu, A.L.; Armengod, M.E. The ROS-sensitive microRNA-9/9* controls the expression of mitochondrial tRNA-modifying enzymes and is involved in the molecular mechanism of MELAS syndrome. Hum. Mol. Genet. 2015, 24, 167–184. [Google Scholar] [CrossRef] [PubMed]
- Balasubramaniam, S.; Riley, L.G.; Bratkovic, D.; Ketteridge, D.; Manton, N.; Cowley, M.J.; Gayevskiy, V.; Roscioli, T.; Mohamed, M.; Gardeitchik, T.; et al. Unique presentation of cutis laxa with Leigh-like syndrome due to ECHS1 deficiency. J. Inherit. Metab. Dis. 2017, 40, 745–747. [Google Scholar] [CrossRef] [PubMed]
- Carmi, E.; Defossez, C.; Morin, G.; Fraitag, S.; Lok, C.; Westeel, P.F.; Canaple, S.; Denoeux, J.P. MELAS syndrome (mitochondrial encephalopathy with lactic acidosis and stroke-like episodes). Ann. Dermatol. Venereol. 2001, 128, 1031–1035. [Google Scholar] [PubMed]
- James, A.M.; Wei, Y.H.; Pang, C.Y.; Murphy, M.P. Altered mitochondrial function in fibroblasts containing MELAS or MERRF mitochondrial DNA mutations. Biochem. J. 1996, 318, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Jeppesen, T.D.; Schwartz, M.; Olsen, D.B.; Wibrand, F.; Krag, T.; Dunø, M.; Hauerslev, S.; Vissing, J. Aerobic training is safe and improves exercise capacity in patients with mitochondrial myopathy. Brain 2006, 129, 3402–3412. [Google Scholar] [CrossRef] [PubMed]
- Jeppesen, T.D.; Schwartz, M.; Frederiksen, A.L.; Wibrand, F.; Olsen, D.B.; Vissing, J. Muscle phenotype and mutation load in 51 persons with the 3243A>G mitochondrial DNA mutation. Arch. Neurol. 2006, 63, 1701–1706. [Google Scholar] [CrossRef] [PubMed]
- Finsterer, J.; Milvay, E. Stress lactate in mitochondrial myopathy under constant, unadjusted workload. Eur. J. Neurol. 2004, 11, 811–816. [Google Scholar] [CrossRef] [PubMed]
- Finsterer, J.; Milvay, E. Lactate stress testing in 155 patients with mitochondriopathy. Can. J. Neurol. Sci. 2002, 29, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Srikun, D.; Albers, A.E.; Nam, C.I.; Iavarone, A.T.; Chang, C.J. Organelle-targetable fluorescent probes for imaging hydrogen peroxide in living cells via SNAP-Tag protein labeling. J. Am. Chem. Soc. 2010, 132, 4455–4465. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Finsterer, J.; Zarrouk-Mahjoub, S. Biomarkers for Detecting Mitochondrial Disorders. J. Clin. Med. 2018, 7, 16. https://doi.org/10.3390/jcm7020016
Finsterer J, Zarrouk-Mahjoub S. Biomarkers for Detecting Mitochondrial Disorders. Journal of Clinical Medicine. 2018; 7(2):16. https://doi.org/10.3390/jcm7020016
Chicago/Turabian StyleFinsterer, Josef, and Sinda Zarrouk-Mahjoub. 2018. "Biomarkers for Detecting Mitochondrial Disorders" Journal of Clinical Medicine 7, no. 2: 16. https://doi.org/10.3390/jcm7020016
APA StyleFinsterer, J., & Zarrouk-Mahjoub, S. (2018). Biomarkers for Detecting Mitochondrial Disorders. Journal of Clinical Medicine, 7(2), 16. https://doi.org/10.3390/jcm7020016