Preschoolers’ Technology-Assessed Physical Activity and Cognitive Function: A Cross-Sectional Study
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Measures and Procedures
2.3. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Esteban-Cornejo, I.; Tejero-Gonzalez, C.M.; Sallis, J.F.; Veiga, O.L. Physical activity and cognition in adolescents: A systematic review. J. Sci. Med. Sport 2015, 18, 534–539. [Google Scholar] [CrossRef] [PubMed]
- Moffitt, T.E.; Arseneault, L.; Belsky, D.; Dickson, N.; Hancox, R.J.; Harrington, H.L.; Houts, R.; Poulton, R.; Roberts, B.W.; Ross, S. A gradient of childhood self-control predicts health, wealth, and public safety. Proc. Natl. Acad. Sci. USA 2011, 108, 2693–2698. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, A.; Rea, I.M.; Parimon, T.; Cusack, B.J. Physical activity and cognitive function in individuals over 60 years of age: A systematic review. Clin. Interv. Aging 2014, 9, 661–682. [Google Scholar] [PubMed]
- Moreau, D.; Kirk, I.J.; Waldie, K.E. High-intensity training enhances executive function in children in a randomized, placebo-controlled trial. eLife 2017, 6, e25062. [Google Scholar] [CrossRef] [PubMed]
- Benzing, V.; Heinks, T.; Eggenberger, N.; Schmidt, M. Acute cognitively engaging exergame-based physical activity enhances executive functions in adolescents. PLoS ONE 2016, 11, e0167501. [Google Scholar] [CrossRef] [PubMed]
- Donnelly, J.E.; Hillman, C.H.; Castelli, D.; Etnier, J.L.; Lee, S.; Tomporowski, P.; Lambourne, K.; Szabo-Reed, A.N. This summary was written for the American College of Sports Medicine, b. Physical activity, fitness, cognitive function, and academic achievement in children: A systematic review. Med. Sci. Sports Exerc. 2016, 48, 1223–1224. [Google Scholar] [CrossRef] [PubMed]
- Dishman, R.K.; Berthoud, H.R.; Booth, F.W.; Cotman, C.W.; Edgerton, V.R.; Fleshner, M.R.; Gandevia, S.C.; Gomez-Pinilla, F.; Greenwood, B.N.; Hillman, C.H. Neurobiology of exercise. Obesity 2006, 14, 345–356. [Google Scholar] [CrossRef] [PubMed]
- Davis, C.L.; Tomporowski, P.D.; Mcdowell, J.E.; Austin, B.P.; Miller, P.H.; Yanasak, N.E.; Allison, J.D.; Naglieri, J.A. Exercise improves executive function and achievement and alters brain activation in overweight children: A randomized controlled trial. Health Psychol. Off. J. Div. Health Psychol. Am. Psychol. Assoc. 2011, 30, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Carson, V.; Hunter, S.; Kuzik, N.; Wiebe, S.A.; Spence, J.C.; Friedman, A.; Tremblay, M.S.; Slater, L.; Hinkley, T. Systematic review of physical activity and cognitive development in early childhood. J. Sci. Med. Sport 2016, 19, 573–578. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhou, G.; Wang, Y.; Ai, Y.; Pinto-Martin, J.; Liu, X. Sleep problems, fatigue, and cognitive performance in chinese kindergarten children. J. Pediatr. 2012, 161, 520–525.e2. [Google Scholar] [CrossRef] [PubMed]
- Santos, D.N.; Assis, A.M.; Bastos, A.C.; Santos, L.M.; Santos, C.A.; Strina, A.; Prado, M.S.; Almeida-Filho, N.M.; Rodrigues, L.C.; Barreto, M.L. Determinants of cognitive function in childhood: A cohort study in a middle income context. BMC Public Health 2008, 8, 202. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Quan, M.; Su, L.; Zhang, H.; Zhang, J.; Zhang, J.; Fang, H.; Cao, Z.; Zhu, Z.; Niu, Z. Effect of physical activity on cognitive development: Protocol for a 15-year longitudinal follow-up study. Biomed. Res. Int. 2017, 2017, 8568459. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.-X.; Dai, X.-Y. China-wechsler younger children scale of intelligence (c-wycsi). Psychol. Sci. 1986, 2, 23–30. [Google Scholar]
- Kramer, M.S.; Aboud, F.; Mironova, E.; Vanilovich, I.; Platt, R.W.; Matush, L.; Igumnov, S.; Fombonne, E.; Bogdanovich, N.; Ducruet, T.; et al. Breastfeeding and child cognitive development: New evidence from a large randomized trial. Arch. Gen. Psychiatry 2008, 65, 578–584. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Atkins, M.S. Early childhood computer experience and cognitive and motor development. Pediatrics 2004, 113, 1715–1722. [Google Scholar] [CrossRef] [PubMed]
- Pate, R.R.; Almeida, M.J.; McIver, K.L.; Pfeiffer, K.A.; Dowda, M. Validation and calibration of an accelerometer in preschool children. Obesity 2006, 14, 2000–2006. [Google Scholar] [CrossRef] [PubMed]
- Cain, K.L.; Sallis, J.F.; Conway, T.L.; Van Dyck, D.; Calhoon, L. Using accelerometers in youth physical activity studies: A review of methods. J. Phys. Act. Health 2013, 10, 437–450. [Google Scholar] [CrossRef] [PubMed]
- Cole, T.J.; Bellizzi, M.C.; Flegal, K.M.; Dietz, W.H. Establishing a standard definition for child overweight and obesity worldwide: International survey. BMJ 2000, 320, 1240–1243. [Google Scholar] [CrossRef] [PubMed]
- Ek, A.; Sorjonen, K.; Nyman, J.; Marcus, C.; Nowicka, P. Child behaviors associated with childhood obesity and parents’ self-efficacy to handle them: Confirmatory factor analysis of the lifestyle behavior checklist. Int. J. Behav. Nutr. Phys. Act. 2015, 12, 36. [Google Scholar] [CrossRef] [PubMed]
- Ortega, F.B.; Cadenas-Sánchez, C.; Sánchez-Delgado, G.; Mora-González, J.; Martínez-Téllez, B.; Artero, E.G.; Castro-Piñero, J.; Labayen, I.; Chillón, P.; Löf, M. Systematic review and proposal of a field-based physical fitness-test battery in preschool children: The prefit battery. Sports Med. 2015, 45, 533–555. [Google Scholar] [CrossRef] [PubMed]
- Kwak, L.; Kremers, S.P.; Bergman, P.; Ruiz, J.R.; Rizzo, N.S.; Sjöström, M. Associations between physical activity, fitness, and academic achievement. J. Pediatr. 2009, 155, 914–918.e1. [Google Scholar] [CrossRef] [PubMed]
- Suwabe, K.; Hyodo, K.; Byun, K.; Ochi, G.; Fukuie, T.; Shimizu, T.; Kato, M.; Yassa, M.A.; Soya, H. Aerobic fitness associates with mnemonic discrimination as a mediator of physical activity effects: Evidence for memory flexibility in young adults. Sci. Rep. 2017, 7, 5140. [Google Scholar] [CrossRef] [PubMed]
- Tremblay, M.S.; Chaput, J.P.; Adamo, K.B.; Aubert, S.; Barnes, J.D.; Choquette, L.; Duggan, M.; Faulkner, G.; Goldfield, G.S.; Gray, C.E. Canadian 24-h movement guidelines for the early years (0–4 years): An integration of physical activity, sedentary behaviour, and sleep. BMC Public Health 2017, 17, 874. [Google Scholar] [CrossRef] [PubMed]
- Carlson, S.A.; Fulton, J.E.; Lee, S.M.; Maynard, L.M.; Brown, D.R.; Kohl, H.W., 3rd.; Dietz, W.H. Physical education and academic achievement in elementary school: Data from the early childhood longitudinal study. Am. J. Public Health 2008, 98, 721–727. [Google Scholar] [CrossRef] [PubMed]
- Zoladz, J.A.; Pilc, A. The effect of physical activity on the brain derived neurotrophic factor: From animal to human studies. J. Physiol. Pharmacol. 2010, 61, 533–541. [Google Scholar] [PubMed]
- Park, H.; Poo, M.M. Neurotrophin regulation of neural circuit development and function. Nat. Rev. Neurosci. 2013, 14, 7–23. [Google Scholar] [CrossRef] [PubMed]
- Baker, L.D.; Frank, L.L.; Foster-Schubert, K.; Green, P.S.; Wilkinson, C.W.; McTiernan, A.; Plymate, S.R.; Fishel, M.A.; Watson, G.S.; Cholerton, B.A. Effects of aerobic exercise on mild cognitive impairment: A controlled trial. Arch. Neurol. 2010, 67, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.S.; Sawa, A. Environmental stressors and epigenetic control of the hypothalamic-pituitary-adrenal axis. Neuroendocrinology 2014, 100, 278–287. [Google Scholar] [CrossRef] [PubMed]
- Ogilvie, K.M.; Rivier, C. Gender difference in hypothalamic-pituitary-adrenal axis response to alcohol in the rat: Activational role of gonadal steroids. Brain Res. 1997, 766, 19–28. [Google Scholar] [CrossRef]
- Cliff, D.P.; Reilly, J.J.; Okely, A.D. Methodological considerations in using accelerometers to assess habitual physical activity in children aged 0–5 years. J. Sci. Med. Sport 2009, 12, 557–567. [Google Scholar] [CrossRef] [PubMed]
Total (n = 260) | Boys (n = 144) | Girls (n = 116) | p for Sex | |
---|---|---|---|---|
Age (month) | 57.2 ± 5.4 | 57.6 ± 5.4 | 56.7 ± 5.3 | 0.200 |
BMI (kg/m2) | 16.2 ± 1.9 | 16.5 ± 1.9 | 15.9 ± 1.8 | 0.001 |
Normal | 206 | 106 | 100 | 0.013 |
Overweight/Obesity | 54 | 38 | 16 | |
Mother’s education | 0.236 | |||
Less than high school | 10 | 3 | 7 | |
High school | 44 | 28 | 16 | |
College/associate degree | 82 | 42 | 40 | |
Bachelor’s degree | 94 | 57 | 37 | |
Master’s degree | 19 | 8 | 11 | |
Doctor degree | 11 | 6 | 5 | |
Family structure | 0.502 | |||
Living with both parents | 251 | 140 | 111 | |
Others | 9 | 4 | 5 | |
Household income (RMB/month) | 0.866 | |||
<4000 | 5 | 3 | 2 | |
4000–8000 | 42 | 22 | 20 | |
8001–15,000 | 115 | 65 | 50 | |
15,001–30,000 | 80 | 46 | 34 | |
>30,000 | 18 | 8 | 10 | |
Child behavior scores (count) | <0.001 | |||
Low (4–6 scores) | 165 | 77 | 88 | |
Median (7–9 scores) | 88 | 60 | 28 | |
High (10–12 scores) | 7 | 7 | 0 | |
Cardiorespiratory Fitness (lap) | 11.0 (10–14) | 11 (9.25–14.0) | 12 (10.0–14.75) | 0.328 |
Physical activity (min/day) | ||||
LPA | 98.4 ± 17.1 | 100.6 ± 17.9 | 95.6 ± 15.7 | 0.021 |
MVPA | 71.8 ± 17.3 | 74.1 ± 18.7 | 69.0 ± 15.0 | 0.021 |
Cognitive function | ||||
VIQ | 23 (19.0–26.0) | 22 (19.0–26.0) | 23 (19.0–26.0) | 0.558 |
FIQ | 25 (22.0–27.0) | 25 (21.0–27.0) | 25 (23.0–27.75) | 0.255 |
FIQ | 110.5 ± 12.4 | 110.0 ± 13.0 | 111.3 ± 11.6 | 0.370 |
Predictor Variables | VIQ | PIQ | FIQ | |||
---|---|---|---|---|---|---|
β | 95% CI | β | 95% CI | β | 95% CI | |
Boys | ||||||
Model 1 * | ||||||
LPA | 0.203 | −0.009, 0.407 | 0.191 | −0.031, 0.416 | 0.224 | 0.008, 0.441 |
MVPA | 0.162 | −0.048, 0.356 | −0.001 | −0.218, 0.217 | 0.082 | −0.130, 0.290 |
R2 | 0.099 | 0.022 | 0.069 | |||
Model 2 † | ||||||
LPA | 0.197 | 0.009, 0.377 | 0.188 | −0.019, 0.398 | 0.218 | 0.029, 0.408 |
MVPA | 0.064 | −0.120, 0.242 | −0.076 | −0.280, 0.131 | −0.016 | −0.202, 0.171 |
R2 | 0.300 | 0.152 | 0.291 | |||
Model 3 ‡ | ||||||
LPA | 0.211 | 0.018, 0.395 | 0.218 | 0.007, 0.433 | 0.242 | 0.048, 0.435 |
MVPA | 0.043 | −0.150, 0.232 | −0.122 | −0.335, 0.096 | −0.051 | −0.245, 0.146 |
R2 | 0.297 | 0.157 | 0.293 | |||
Girls | ||||||
Model 1 * | ||||||
LPA | −0.028 | −0.271, 0.212 | 0.064 | −0.161, 0.289 | 0.007 | −0.225, 0.240 |
MVPA | −0.009 | −0.265, 0.245 | 0.108 | −0.124, 0.353 | 0.037 | −0.206, 0.286 |
R2 | −0.017 | 0.006 | −0.016 | |||
Model 2 † | ||||||
LPA | −0.073 | −0.311, 0.156 | 0.025 | −0.205, 0.255 | −0.038 | −0.268, 0.191 |
MVPA | −0.025 | −0.276, 0.220 | 0.103 | −0.134, 0.353 | 0.029 | −0.212, 0.274 |
R2 | 0.090 | 0.011 | 0.060 | |||
Model 3 ‡ | ||||||
LPA | −0.023 | −0.252, 0.203 | 0.027 | −0.206, 0.261 | −0.003 | −0.232, 0.226 |
MVPA | −0.143 | −0.414, 0.092 | 0.097 | −0.157, 0.363 | −0.053 | −0.312, 0.196 |
R2 | 0.157 | 0.002 | 0.087 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quan, M.; Zhang, H.; Zhang, J.; Zhou, T.; Zhang, J.; Zhao, G.; Fang, H.; Sun, S.; Wang, R.; Chen, P. Preschoolers’ Technology-Assessed Physical Activity and Cognitive Function: A Cross-Sectional Study. J. Clin. Med. 2018, 7, 108. https://doi.org/10.3390/jcm7050108
Quan M, Zhang H, Zhang J, Zhou T, Zhang J, Zhao G, Fang H, Sun S, Wang R, Chen P. Preschoolers’ Technology-Assessed Physical Activity and Cognitive Function: A Cross-Sectional Study. Journal of Clinical Medicine. 2018; 7(5):108. https://doi.org/10.3390/jcm7050108
Chicago/Turabian StyleQuan, Minghui, Hanbin Zhang, Jiayi Zhang, Tang Zhou, Jinming Zhang, Guanggao Zhao, Hui Fang, Shunli Sun, Ru Wang, and Peijie Chen. 2018. "Preschoolers’ Technology-Assessed Physical Activity and Cognitive Function: A Cross-Sectional Study" Journal of Clinical Medicine 7, no. 5: 108. https://doi.org/10.3390/jcm7050108
APA StyleQuan, M., Zhang, H., Zhang, J., Zhou, T., Zhang, J., Zhao, G., Fang, H., Sun, S., Wang, R., & Chen, P. (2018). Preschoolers’ Technology-Assessed Physical Activity and Cognitive Function: A Cross-Sectional Study. Journal of Clinical Medicine, 7(5), 108. https://doi.org/10.3390/jcm7050108