Anti-Hypertensive Medication Use, Soluble Receptor for Glycation End Products and Risk of Pancreatic Cancer in the Women’s Health Initiative Study
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Ascertainment of Medication Use
2.3. Ascertainment of Pancreatic Cancer
2.4. Data Collection
2.5. Measurement of sRAGE
2.6. Statistical Analysis
3. Results
3.1. Baseline Characteristics of Participants
3.2. Anti-HT Medications and Risk of Pancreatic Cancer
3.3. Duration of CCB Use and Risk of Pancreatic Cancer
3.4. sRAGE, Anti-HT Medications and Risk of Pancreatic Cancer
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- National Center for Health Statistics. Health, United States, 2015: With Special Feature on Racial and Ethnic Health Disparities. Available online: https://www.ncbi.nlm.nih.gov/books/NBK367640 (accessed on 6 June 2018).
- Midha, S.; Chawla, S.; Garg, P.K. Modifiable and non-modifiable risk factors for pancreatic cancer: A review. Cancer Lett. 2016, 381, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.S.; Fryar, C.D.; Carroll, M.D. Hypertension Prevalence and Control among Adults: United States, 2011–2014; NCHS Data Brief, no 220; National Center for Health Statistics: Hyattsville, MD, USA, 2015.
- National Cancer Institute. Available online: https://seer.cancer.gov/statfacts/html/livibd.html (accessed on 6 June 2018).
- Bangalore, S.; Kumar, F.H. Antihypertensive drugs and risk of cancer: Network meta-analyses and trial sequential analyses of 324,168 participants from randomised trials. Lancet Oncol. 2011, 12, 65–82. [Google Scholar] [CrossRef]
- Jiao, L.; Weinstein, S.J.; Albanes, D.; Taylor, P.R.; Graubard, B.I.; Virtamo, J.; Stolzenberg, S.R.Z. Evidence that serum levels of the soluble receptor for advanced glycation end products are inversely associated with pancreatic cancer risk: A prospective study. Cancer Res. 2011, 71, 3582–3589. [Google Scholar] [CrossRef] [PubMed]
- White, D.L.; Hoogeveen, R.C.; Chen, L.; Richardson, P.; Ravishankar, M.; Shah, P.; Tinker, L.; Rohan, T.; Whitsel, E.A.; El, S.H.B.; et al. A prospective study of soluble receptor for advanced glycation end products and adipokines in association with pancreatic cancer in postmenopausal women. Cancer Med. 2018, 7, 2180–2191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vazzana, N.; Santilli, F.; Cuccurullo, C.; Davì, G. Soluble forms of RAGE in internal medicine. Intern. Emerg. Med. 2009, 4, 389–401. [Google Scholar] [CrossRef] [PubMed]
- Lanati, N.; Emanuele, E.; Brondino, N.; Geroldi, D. Soluble RAGE-modulating drugs: State-of-the-art and future perspectives for targeting vascular inflammation. Curr. Vasc. Pharmacol. 2010, 8, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Derosa, G.; Bonaventura, A.; Romano, D.; Bianchi, L.; Fogari, E.; D’Angelo, A.; Maffioli, P. Effects of enalapril/lercanidipine combination on some emerging biomarkers in cardiovascular risk stratification in hypertensive patients. J. Clin. Pharm. Ther. 2014, 39, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, H.K.; Mori, S.; Liu, K.; Wake, H.; Zhang, J.; Liu, R.; Yoshino, T.; Nishibori, M. Beta2-adrenoceptor stimulation inhibits advanced glycation end products-induced adhesion molecule expression and cytokine production in human peripheral blood mononuclear cells. Eur. J. Pharmacol. 2010, 627, 313–317. [Google Scholar] [CrossRef] [PubMed]
- Matsui, T.; Yamagishi, S.; Takeuchi, M.; Ueda, S.; Fukami, K.; Okuda, S. Nifedipine inhibits advanced glycation end products (AGEs) and their receptor (RAGE) interaction-mediated proximal tubular cell injury via peroxisome proliferator-activated receptor–gamma activation. Biochem. Biophys. Res. Commun. 2010, 398, 326–330. [Google Scholar] [CrossRef] [PubMed]
- Rossouw, J.; Anderson, G.; Oberman, A. Baseline Monograph—Foreword. Ann. Epidemiol. 2003, 13, S1–S4. [Google Scholar] [CrossRef]
- Anderson, G.; Cummings, S.; Freedman, L.S.; Furberg, C.; Henderson, M.; Johnson, S.R.; Kuller, L.; Manson, J.; Oberman, A.; Prentice, R.L.; et al. Design of the Women’s Health Initiative clinical trial and observational study. The Women’s Health Initiative Study Group. Control. Clin. Trials 1998, 19, 61–109. [Google Scholar]
- Women’s Health Intitiative (WHI) Dataset Documentation. Available online: https://www.whi.org/researchers/data/WhiDataDict/f44_ctos_inv.pdf (accessed on 8 February 2018).
- Curb, J.D.; McTiernan, A.; Heckbert, S.R.; Kooperberg, C.; Stanford, J.; Nevitt, M.; Johnson, K.C.; Proulx, B.L.; Pastore, L.; Criqui, M.; et al. WHI Morbidity and Mortality Committee Outcomes ascertainment and adjudication methods in the Women’s Health Initiative. Ann. Epidemiol. 2003, 13, S122–S128. [Google Scholar] [CrossRef]
- Anderson, G.L.; Manson, J.; Wallace, R.; Lund, B.; Hall, D.; Davis, S.; Shumaker, S.; Wang, C.Y.; Stein, E.; Prentice, R.L. Implementation of the Women’s Health Initiative study design. Ann. Epidemiol. 2003, 13, S5–S17. [Google Scholar] [CrossRef]
- Chen, L.; Duan, Z.; Tinker, L.; Sangi-Haghpeykar, H.; Strickler, H.; Ho, G.Y.F.; Gunter, M.J.; Rohan, T.; Logsdon, C.; White, D.L.; et al. A prospective study of soluble receptor for advanced glycation end-products and colorectal cancer risk in postmenopausal women. Cancer Epidemiol. 2016, 42, 115–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fine, J.; Grey, R. A proportional hazards model for the subdistribution of a competing risk. J. Am. Stat. Assoc. 1999, 94, 496–509. [Google Scholar] [CrossRef]
- Analysis of Survival Data|Taylor & Francis Group. Available online: https://www.taylorfrancis.com/books/9781351466615 (accessed on 17 May 2018).
- Šidák, Z. Rectangular confidence regions for the means of multivariate normal distributions. J. Am. Stat. Assoc. 1967, 62, 626–633. [Google Scholar] [CrossRef]
- Brookhart, M.A.; Wyss, R.; Layton, J.B.; Stürmer, T. Propensity score methods for confounding control in nonexperimental research. Circ. Cardiovasc. Qual. Outcomes 2013, 6, 604–611. [Google Scholar] [CrossRef] [PubMed]
- Elliott, W.J.; Ram, C.V.S. Calcium channel blockers. J. Clin. Hypertens. Greenwich Conn. 2011, 13, 687–689. [Google Scholar] [CrossRef] [PubMed]
- Al-Wadei, H.A.; Al-Wadei, M.H.; Schuller, H.M. Prevention of pancreatic cancer by the beta-blocker propranolol. Anticancer Drugs 2009, 20, 477–482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, X.; Luo, K.; Lv, Z.; Huang, J. Beta-adrenoceptor action on pancreatic cancer cell proliferation and tumor growth in mice. Hepatogastroenterology 2012, 59, 584–588. [Google Scholar] [PubMed]
- Sato, K.; Ishizuka, J.; Cooper, C.W.; Chung, D.H.; Tsuchiya, T.; Uchida, T.; Rajaraman, S.; Townsend, C.M.; Thompson, J.C. Inhibitory effect of calcium channel blockers on growth of pancreatic cancer cells. Pancreas 1994, 9, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Ma, Q.; Wang, Z.; Zhang, M.; Guo, K.; Wang, F.; Wu, E. β2-adrenoceptor blockage induces G1/S phase arrest and apoptosis in pancreatic cancer cells via Ras/Akt/NFκB pathway. Mol. Cancer 2011, 10, 146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forbes, J.M.; Thorpe, S.R.; Thallas, B.V.; Pete, J.; Thomas, M.C.; Deemer, E.R.; Bassal, S.; El, O.A.; Long, D.M.; Panagiotopoulos, S.; et al. Modulation of soluble receptor for advanced glycation end products by angiotensin-converting enzyme-1 inhibition in diabetic nephropathy. JASN 2005, 16, 2363–2372. [Google Scholar] [CrossRef] [PubMed]
- Mandilaras, V.; Bouganim, N.; Yin, H.; Asselah, J.; Azoulay, L. The use of drugs acting on the renin-angiotensin system and the incidence of pancreatic cancer. Br. J. Cancer 2017, 116, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Chobanian, A.V.; Bakris, G.L.; Black, H.R.; Cushman, W.C.; Green, L.A.; Izzo, J.L.; Jones, D.W.; Materson, B.J.; Oparil, S.; Wright, J.T.; et al. Seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure. Hypertension 2003, 42, 1206–1252. [Google Scholar] [CrossRef] [PubMed]
- James, P.A.; Oparil, S.; Carter, B.L.; Cushman, W.C.; Dennison, H.C.; Handler, J.; Lackland, D.T.; LeFevre, M.L.; MacKenzie, T.D.; Ogedegbe, O.; et al. 2014 evidence-based guideline for the management of high blood pressure in adults: Report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA 2014, 311, 507–520. [Google Scholar] [CrossRef] [PubMed]
- Wassertheil, S.S.; Anderson, G.; Psaty, B.M.; Black, H.R.; Manson, J.; Wong, N.; Francis, J.; Grimm, R.; Kotchen, T.; Langer, R.; et al. Hypertension and its treatment in postmenopausal women: Baseline data from the Women’s Health Initiative. Hypertension 2000, 36, 780–789. [Google Scholar] [CrossRef]
- Marwick, C. FDA gives calcium channel blockers clean bill of health but warns of short-acting nifedipine hazards. JAMA 1996, 275, 423–424. [Google Scholar] [CrossRef] [PubMed]
- Chou, C.L.; Chou, C.Y.; Hsu, C.C.; Chou, Y.C.; Chen, T.J.; Chou, L.F. Old habits die hard: A nationwide utilization study of short-acting nifedipine in Taiwan. PLoS ONE 2014, 9, e91858. [Google Scholar] [CrossRef] [PubMed]
- Danaei, G.; Tavakkoli, M.; Hernán, M.A. Bias in observational studies of prevalent users: Lessons for comparative effectiveness research from a meta-analysis of statins. Am. J. Epidemiol. 2012, 175, 250–262. [Google Scholar] [CrossRef] [PubMed]
Characteristics Mean (SD) or % | CCB Use | Use of Non-CCB Anti-HT Drugs | Non-Use of Any Anti-HT Drugs |
---|---|---|---|
(n = 14,117) | (n = 27,991) | (n = 103,443) | |
Age, years | 65.4 (7.0) | 64.6 (7.0) | 62.3 (7.1) |
Non-Hispanic white, % | 72.2 | 81.5 | 84.1 |
Education status, % | |||
<high school | 2.5 | 1.7 | 1.5 |
High school but no college | 38.6 | 35.8 | 28.9 |
College or above | 58.9 | 62.5 | 69.6 |
Smoking status, % | |||
Never | 49.7 | 51.4 | 50.7 |
Former | 42.4 | 41.7 | 40.9 |
Current | 6.4 | 5.6 | 7.3 |
Missing | 1.5 | 1.3 | 1.1 |
Alcohol, ≥3 drinks/day, % | 9.6 | 10.2 | 12.3 |
BMI, kg/m2 | 30.1 (6.4) | 29.8 (6.4) | 27.2 (5.5) |
BMI in kg/m2, % | |||
<25 | 22.8 | 24.2 | 40.3 |
25–<30 | 33.2 | 33.8 | 34.9 |
≥30 | 44.0 | 42.0 | 24.8 |
Waist to hip ratio | 0.84 (0.08) | 0.83 (0.08) | 0.80 (0.08) |
Recreational physical activity, MET-h | 10.1 (12.1) | 10.7 (12.4) | 13.1 (14.2) |
Diagnosed Hypertension, % | 89.6 | 82.0 | 12.9 |
Pancreatitis, % | 1.1 | 0.9 | 0.6 |
Self-report type 2 diabetes, % | 13.5 | 10.3 | 3.5 |
Family history of cancer, % | 61.1 | 62.3 | 63.6 |
Total fat, g/1000 cal | 36.6 (9.4) | 37.0 (9.2) | 36.1 (9.3) |
Saturated fat, g/1000 cal | 12.0 (3.6) | 12.2 (3.6) | 12.1 (3.7) |
Red meat, servings/day | 0.73 (0.66) | 0.74 (0.62) | 0.68 (0.58) |
Clinical trial assignment, % | 44.4 | 44.8 | 44.4 |
Anti-HT medication type, % | |||
Short-acting CCBs | 30.8 | - | - |
Long-acting CCBs | 69.8 | - | - |
Dihydropyridine CCBs | 74.9 | - | - |
Non-dihydropyridine CCBs | 25.4 | - | - |
ACEi | 13.4 | 33.8 | - |
β-blockers | 11.6 | 34.4 | - |
Diuretics | 30.6 | 54.3 | - |
Medication Ever Use (Cases/P-yrs) | Reference Groups (Cases/P-yrs) | HR (95% CI) 1 | HR (95% CI) 2 | HR (95% CI) 3 |
---|---|---|---|---|
ACEi (66/143,598) | Use of other anti-HT meds 4 (205/399,060) | 0.92 (0.70–1.21) | 0.88 (0.66–1.16) | 0.86 (0.66–1.14) |
Non-use of any anti-HT meds (570/1,454,994) | 1.06 (0.83–1.38) | 0.91 (0.67–1.23) | 0.86 (0.64–1.16) | |
β-blockers (61/147,061) | Use of other anti-HT meds 4 (210/395,597) | 0.77 (0.58–1.03) | 0.80 (0.60–1.06) | 0.80 (0.60–1.07) |
Non-use of any anti-HT meds (570/1,454,994) | 0.94 (0.72–1.22) | 0.85 (0.64–1.14) | 0.82 (0.61–1.11) | |
CCBs (114/175,149) | Use of other anti-HT meds 4 (157/367,343) | 1.48 (1.16–1.88) | 1.44 (1.13–1.84) | 1.40 (1.10–1.78) |
Non-use of any anti-HT meds (570/1,454,994) | 1.45 (1.19–1.78) | 1.28 (1.00–1.64) | 1.20 (0.94–1.56) | |
Diuretics (124/248,454) | Use of other anti-HT meds 4 (147/294,204) | 0.99 (0.78–1.26) | 0.98 (0.77–1.24) | 0.94 (0.74–1.20) |
Non-use of any anti-HT meds (570/1,454,994) | 1.13 (0.93–1.38) | 0.99 (0.78–1.26) | 0.94 (0.73–1.20) |
Medication Use | Cases/P-yrs | HR (95% CI) 1 | HR (95% CI) 2 |
---|---|---|---|
Use of other anti-HT drugs 3 | 201/419,944 | 1.00 (ref.) | 1.00 (ref.) |
Long-acting CCBs ever use | 70/122,713 | 1.14 (0.87–1.51) | 1.12 (0.85–1.47) |
Long-acting CCBs use <3 years | 35/60,987 | 1.16 (0.81–1.67) | 1.14 (0.79–1.63) |
Long-acting CCBs use ≥3 years | 35/61,726 | 1.12 (0.78–1.61) | 1.10 (0.77–1.58) |
p trend | 0.810 | 0.652 | |
Use of other anti-HT drugs 3 | 226/488,958 | 1.00 (ref.) | 1.00 (ref.) |
Short-acting CCBs ever use | 45/53,700 | 1.73 (1.25–2.38) | 1.66 (1.20–2.28) |
Short-acting CCBs use <3 years | 14/24,916 | 1.20 (0.70–2.06) | 1.15 (0.67–1.97) |
Short-acting CCBs use ≥3 years | 31/28,784 | 2.16 (1.48–3.15) | 2.07 (1.42–3.02) |
p trend | 0.004 | <0.001 |
CCB Ever Use (Cases/P-yrs) | Reference Groups (Cases/P-yrs) | HR (95% CI) 1 | HR (95% CI) 2 | p-Interaction |
---|---|---|---|---|
All (61/2284) | Use of other anti-HT drugs 3 (90/5260) | 1.41 (1.00–1.97) | 1.38 (0.98–1.94) | 0.26 |
Non-use of any anti-HT drugs (338/19,109) | 1.12 (0.79–1.59) | 1.11 (0.78–1.58) | 0.12 | |
sRAGE < 1346 pg/mL (45/1298) | Use of other anti-HT drugs 3 (57/2783) | 1.63 (1.08–2.46) | 1.64 (1.08–2.48) | |
Non-use of any anti-HT drugs (184/8939) | 1.58 (1.01–2.46) | 1.59 (1.02–2.48) | ||
sRAGE ≥ 1346 pg/mL (16/986) | Use of other anti-HT drugs 3 (33/2476) | 1.02 (0.54–1.92) | 1.01 (0.54–1.91) | |
Non-use of any anti-HT drugs (154/10,169) | 0.63 (0.34–1.18) | 0.63 (0.34–1.18) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; White, D.L.; Hoogeveen, R.; Chen, L.; Whitsel, E.A.; Richardson, P.A.; Virani, S.S.; Garcia, J.M.; El-Serag, H.B.; Jiao, L. Anti-Hypertensive Medication Use, Soluble Receptor for Glycation End Products and Risk of Pancreatic Cancer in the Women’s Health Initiative Study. J. Clin. Med. 2018, 7, 197. https://doi.org/10.3390/jcm7080197
Wang Z, White DL, Hoogeveen R, Chen L, Whitsel EA, Richardson PA, Virani SS, Garcia JM, El-Serag HB, Jiao L. Anti-Hypertensive Medication Use, Soluble Receptor for Glycation End Products and Risk of Pancreatic Cancer in the Women’s Health Initiative Study. Journal of Clinical Medicine. 2018; 7(8):197. https://doi.org/10.3390/jcm7080197
Chicago/Turabian StyleWang, Zhensheng, Donna L. White, Ron Hoogeveen, Liang Chen, Eric A. Whitsel, Peter A. Richardson, Salim S. Virani, Jose M. Garcia, Hashem B. El-Serag, and Li Jiao. 2018. "Anti-Hypertensive Medication Use, Soluble Receptor for Glycation End Products and Risk of Pancreatic Cancer in the Women’s Health Initiative Study" Journal of Clinical Medicine 7, no. 8: 197. https://doi.org/10.3390/jcm7080197