Low Volume, Home-Based Weighted Step Exercise Training Can Improve Lower Limb Muscle Power and Functional Ability in Community-Dwelling Older Women
Abstract
:1. Introduction
2. Experimental Section
2.1. Study Design
2.2. Anthropometric and Resting Measurements
2.3. Functional Tests
2.3.1. Stair Climb
2.3.2. Chair Rise
2.3.3. Four-Meter Walk
2.4. Lower Limb Muscle Strength
2.5. Lower Limb Power
2.6. Training Programme
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.P.; Rolland, Y.; Schneider, S.M.; et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef] [Green Version]
- Macaluso, A.; de Vito, G. Muscle strength, power and adaptations to resistance training in older people. Eur. J. Appl. Physiol. 2004, 91, 450–472. [Google Scholar] [CrossRef] [PubMed]
- Skelton, D.A.; Greig, C.A.; Davies, J.M.; Young, A. Strength, power and related functional ability of healthy people aged 65–89 years. Age Ageing 1994, 23, 371–377. [Google Scholar] [CrossRef] [PubMed]
- Guralnik, J.M.; Ferrucci, L.; Simonsick, E.M.; Salive, M.E.; Wallace, R.B. Lower-extremity function in persons over the age of 70 years as a predictor of subsequent disability. N. Engl. J. Med. 1995, 332, 556–561. [Google Scholar] [CrossRef] [PubMed]
- Miszko, T.A.; Cress, M.E.; Slade, J.M.; Covey, C.J.; Agrawal, S.K.; Doerr, C.E. Effect of strength and power training on physical function in community-dwelling older adults. J. Gerontol. A Biol. Sci. Med. Sci. 2003, 58, 171–175. [Google Scholar] [CrossRef]
- Lindle, R.S.; Metter, E.J.; Lynch, N.A.; Fleg, J.L.; Fozard, J.L.; Tobin, J.; Roy, T.A.; Hurley, B.F. Age and gender comparisons of muscle strength in 654 women and men aged 20–93 yr. J. Appl. Physiol. 1997, 83, 1581–1587. [Google Scholar] [CrossRef] [PubMed]
- Macaluso, A.; Nimmo, M.A.; Foster, J.E.; Cockburn, M.; McMillan, N.C.; de Vito, G. Contractile muscle volume and agonist antagonist coactivation account for differences in torque between young and older women. Muscle Nerve 2002, 25, 858–863. [Google Scholar] [CrossRef]
- Latham, N.K.; Bennett, D.A.; Stretton, C.M.; Anderson, C.S. Systematic review of progressive resistance strength training in older adults. J. Gerontol. A Biol. Sci. Med. Sci. 2004, 59, 48–61. [Google Scholar] [CrossRef]
- Seguin, R.; Nelson, M.E. The benefits of strength training for older adults. Am. J. Prev. Med. 2003, 25, 141–149. [Google Scholar] [CrossRef]
- Hazell, T.; Kenno, K.; Jakobi, J. Functional benefit of power training for older adults. J. Aging Phys. Act. 2007, 15, 349–359. [Google Scholar] [CrossRef]
- Tschopp, M.; Sattelmayer, M.K.; Hilfiker, R. Is power training or conventional resistance training better for function in elderly persons? A meta-analysis. Age Ageing 2011, 40, 549–556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zech, A.; Drey, M.; Freiberger, E.; Hentschke, C.; Bauer, J.M.; Sieber, C.C.; Pfeifer, K. Residual effects of muscle strength and muscle power training and detraining on physical function in community dwelling prefrail older adults: A randomized controlled trial. BMC Geriatr. 2012, 12, 68. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Recommendations on Physical Activity for Health; WHO: Geneva, Switzerland, 2010. [Google Scholar]
- Humphries, B.; Duncan, M.J.; Mummery, W.K. Prevalence and correlates of resistance training in a regional Australian population. Br. J. Sport Med. 2010, 44, 653–656. [Google Scholar] [CrossRef] [PubMed]
- Strain, T.; Fitzsimons, C.; Kelly, P.; Mutrie, N. The forgotten guidelines: Cross-sectional analysis of participation in muscle strengthening and balance & co-ordination activities by adults and older adults in Scotland. BMC Public Health 2016, 16, 1108. [Google Scholar]
- Bopp, M.; Wilcox, S.; Oberrecht, L.; Kammermann, S.; McElmurray, C.T. Correlates of strength training in older rural African American and Caucasian women. Women Health 2004, 40, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Burton, E.; Hill, A.; Pettigrew, S. Why do seniors leave resistance training programs? Clin. Interv. Aging 2017, 12, 585–592. [Google Scholar] [CrossRef] [PubMed]
- Bean, J.F.; Herman, S.; Kiely, D.K. Increased Velocity Exercise Specific to Task (InVEST) training: A pilot study exploring effects on leg power, balance, and mobility in community-dwelling older women. J. Am. Geriatr. Soc. 2004, 52, 799–804. [Google Scholar] [CrossRef]
- Earles, D.R.; Judge, J.O.; Gunnarsson, O.T. Velocity training induces power-specific adaptations in highly functioning older adults. Arch. Phys. Med. Rehabil. 2001, 82, 872–878. [Google Scholar] [CrossRef]
- Bean, J.; Herman, S.; Kiely, D.K. Weighted stair climbing in mobility-limited older people: A pilot study. J. Am. Geriatr. Soc. 2002, 50, 663–670. [Google Scholar] [CrossRef]
- Mair, J.L.; Nevill, A.M.; de Vito, G.; Boreham, C.A. Personalised Prescription of Scalable High Intensity Interval Training to Inactive Female Adults of Different Ages. PLoS ONE 2016, 11, e0148702. [Google Scholar] [CrossRef]
- Mair, J.L.; Boreham, C.A.; Ditroilo, M.; McKeown, D.; MLowery, M.; Caulfield, B.; de Vito, G. Benefits of a worksite or home-based bench stepping intervention for sedentary middle-aged adults—A pilot study. Clin. Physiol. Funct. Imaging 2014, 34, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Greig, C.A.; Young, A.; Skelton, D.A.; Pippet, E.; Butler, F.M.; Mahmud, S.M. Exercise studies with elderly volunteers. Age Ageing 1994, 23, 185–189. [Google Scholar] [CrossRef] [PubMed]
- Handley, M.A.; Schillinger, D.; Shiboski, S. Quasi-experimental designs in practice-based research settings: Design and implementation considerations. J. Am. Board Fam. Med. 2011, 24, 589–596. [Google Scholar] [CrossRef] [PubMed]
- Häkkinen, K.; Pakarinen, A.; Kraemer, W.J.; Häkkinen, A.; Valkeinen, H.; Alen, M. Selective muscle hypertrophy, changes in EMG and force, and serum hormones during strength training in older women. J. Appl. Physiol. 2001, 91, 569–580. [Google Scholar] [CrossRef] [PubMed]
- Bar-Or, O. The Wingate anaerobic test. An update on methodology, reliability and validity. Sports Med. 1987, 4, 381–394. [Google Scholar] [CrossRef] [PubMed]
- Laurent, C.M.; Meyers, M.C.; Robinson, C.A.; Green, J.M. Cross-validation of the 20- versus 30-s Wingate anaerobic test. Eur. J. Appl. Physiol. 2007, 100, 645–651. [Google Scholar] [CrossRef] [PubMed]
- Borg, G.A. Psychophysical bases of perceived exertion. Med. Sci. Sport Exerc. 1982, 14, 377–381. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioural Sciences; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1998. [Google Scholar]
- United Nations Population Fund (UNFPA). Ageing in the Twenty-First Century: A Celebration and A Challenge; UNFPA and HelpAge International: New York, NY, USA, 2012. [Google Scholar]
- La Croix, A.Z.; Newton, K.M.; Leveille, S.G.; Wallace, J. Healthy aging. A women’s issue. West. J. Med. 1997, 167, 220–232. [Google Scholar]
- Von Strauss, E.; Agüero-Torres, H.; Kåreholt, I.; Winblad, B.; Fratiglioni, L. Women are more disabled in basic activities of daily living than men only in very advanced ages: A study on disability, morbidity, and mortality from the Kungsholmen Project. J. Clin. Epidemiol. 2003, 56, 669–677. [Google Scholar] [CrossRef]
- Gale, C.R.; Cooper, C.; Sayer, A.A. Prevalence and risk factors for falls in older men and women: The English Longitudinal Study of Ageing. Age Ageing 2016, 45, 789–794. [Google Scholar] [CrossRef] [Green Version]
- Kirn, D.R.; Reid, K.F.; Hau, C.; Phillips, E.M.; Fielding, R.A. What is a Clinically Meaningful Improvement in Leg-Extensor Power for Mobility-limited Older Adults? J. Gerontol. A Biol. Sci. Med. Sci. 2016, 71, 632–636. [Google Scholar] [CrossRef] [PubMed]
- Bean, J.F.; Kiely, D.K.; Larose, S.; O’Neill, E.; Goldstein, R.; Frontera, W.R. Increased velocity exercise specific to task training versus the National Institute on Aging’s strength training program: Changes in limb power and mobility. J. Gerontol. A Biol. Sci. Med. Sci. 2009, 64, 983–991. [Google Scholar] [CrossRef] [PubMed]
- Shaw, J.M.; Snow, C.M. Weighted vest exercise improves indices of fall risk in older women. J. Gerontol. A Biol. Sci. Med. Sci. 1998, 53, M53–M58. [Google Scholar] [CrossRef] [PubMed]
- Kemp, G.J.; Birrell, F.; Clegg, P.D.; Cuthbertson, D.J.; de Vito, G.; van Dieën, J.H.; del Din, S.; Eastell, R.; Garnero, P.; Goljanek–Whysall, K.; et al. Developing a toolkit for the assessment and monitoring of musculoskeletal ageing. Age Ageing 2018, 47, iv1–iv19. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.; Perera, S.; Pahor, M.; Katula, J.A.; King, A.C.; Groessl, E.J.; Studenski, S.A. What is meaningful change in physical performance? Findings from a clinical trial in older adults (the LIFE-P study). J. Nutr. Health Aging 2009, 13, 538–544. [Google Scholar] [CrossRef] [PubMed]
- Bohannon, R.W. Reference values for the five-repetition sit-to-stand test: A descriptive meta-analysis of data from elders. Percept. Mot. Skills 2006, 103, 215–222. [Google Scholar] [CrossRef]
- Studenski, S.; Perera, S.; Patel, K.; Rosano, C.; Faulkner, K.; Inzitari, M.; Brach, J.; Chandler, J.; Cawthon, P.; Connor, E.B.; et al. Gait speed and survival in older adults. JAMA 2011, 305, 50–58. [Google Scholar] [CrossRef]
- Chevan, J. Demographic determinants of participation in strength training activities among U.S. adults. J. Strength Cond. Res. 2008, 22, 553–558. [Google Scholar] [CrossRef]
- Loy, S.F.; Conley, L.M.; Sacco, E.R.; Vincent, W.J.; Holland, G.J.; Sletten, E.G.; Trueblood, P.R. Effects of stairclimbing on VO2max and quadriceps strength in middle-aged females. Med. Sci. Sport Exerc. 1994, 26, 241–247. [Google Scholar] [CrossRef]
- Boreham, C.A.; Wallace, W.F.; Nevill, A. Training effects of accumulated daily stair-climbing exercise in previously sedentary young women. Prev. Med. 2000, 30, 277–281. [Google Scholar] [CrossRef]
- Sayers, S.P. High velocity power training in older adults. Curr. Aging Sci. 2008, 1, 62–67. [Google Scholar] [CrossRef] [PubMed]
Week | Prescribed Load (% Body Mass) | Average External Load (kg) | Total Work Done (kJ) | Average RPE |
---|---|---|---|---|
1 | zero | zero | 47.8 ± 7.7 | 10.4 ± 0.8 |
2 | 5 | 3.32 ± 0.51 | 50.1 ± 8.0 | 11.5 ± 0.5 |
3 | 5 | 3.42 ± 0.52 | 50.2 ± 8.0 | 11.4 ± 0.8 |
4 | 7.5 | 5.16 ± 0.85 | 51.4 ± 8.3 | 12.3 ± 0.6 |
5 | 10 | 6.67 ± 1.04 | 52.5 ± 8.4 | 13.3 ± 0.5 |
6 | 10 | 6.75 ± 1.02 | 52.5 ± 8.4 | 13.1 ± 0.4 |
Baseline | Pre | Post | Change (%) | Effect Size | ||
---|---|---|---|---|---|---|
Baseline-Pre | Pre–Post | ηp2 | ||||
Age (years) | 67.4 ± 3.53 | |||||
Stature (m) | 1.59 ± 0.05 | |||||
Body Mass (kg) | 67.6 ± 10.9 | 67.7 ± 10.3 | 67.4 ± 9.9 | 0.1 | −0.4 | 0.015 |
Resting HR (bpm) | 80 ± 14 | 76 ± 14 | 75 ± 15 | −5.0 | −1.3 | 0.139 |
Systolic BP (mmHg) | 141 ± 23 | 132 ± 25 | 125 ± 16 | −6.2 | −5.3 | 0.379 |
Diastolic BP (mmHg) | 82 ± 13 | 80 ± 13 | 80 ± 12 | −4.2 | 0.4 | 0.054 |
Stair Climb Time (s) | 5.11 ± 0.76 | 4.79 ± 0.65 | 4.34 ± 0.61 ** | −6.3 | −9.4 | 0.556 |
Stair Climb Power (W) | 262.5 ± 44.4 | 267.4 ± 47.0 | 307.6 ± 44.3 | 1.9 | 15.0 | 0.381 |
Stair Climb Power (W/kg) | 3.92 ± 0.55 | 4.17 ± 0.57 | 4.61 ± 0.67 ** | 6.5 | 10.6 | 0.573 |
4-m walk (s) | 3.14 ± 0.40 | 3.26 ± 0.4 | 3.14 ± 0.3 | 3.8 | −3.7 | 0.033 |
Gait velocity (m/s) | 1.21 ± 0.12 | 1.19 ± 0.12 | 1.24 ± 0.10 | −1.7 | 4.2 | 0.165 |
Chair rise (s) | 10.70 ± 1.62 | 10.36 ± 1.06 | 9.69 ± 0.83 | −3.2 | −6.5 | 0.167 |
MVC (Nm) | 96.3 ± 11.9 | 98.1 ± 18.5 | 107.1 ± 17.3 | 1.9 | 9.2 | 0.231 |
Peak Power (W) | 582.1 ± 117.0 | 612.9 ± 135.2 | 675.5 ± 153.4 * | 5.3 | 10.2 | 0.566 |
Peak Power (W/kg) | 8.7 ± 1.3 | 9.1 ± 1.2 | 10.1 ± 1.8 * | 4.6 | 11.0 | 0.550 |
Mean Power (W) | 255.3 ± 63.5 | 290.7 ± 65.5 | 315.1 ± 79.7 | 13.9 | 8.4 | 0.526 |
Mean Power (W/kg) | 3.9 ± 1.1 | 4.4 ± 1.0 | 4.7 ± 1.1 | 12.8 | 6.8 | 0.532 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mair, J.L.; De Vito, G.; Boreham, C.A. Low Volume, Home-Based Weighted Step Exercise Training Can Improve Lower Limb Muscle Power and Functional Ability in Community-Dwelling Older Women. J. Clin. Med. 2019, 8, 41. https://doi.org/10.3390/jcm8010041
Mair JL, De Vito G, Boreham CA. Low Volume, Home-Based Weighted Step Exercise Training Can Improve Lower Limb Muscle Power and Functional Ability in Community-Dwelling Older Women. Journal of Clinical Medicine. 2019; 8(1):41. https://doi.org/10.3390/jcm8010041
Chicago/Turabian StyleMair, Jacqueline L., Giuseppe De Vito, and Colin A. Boreham. 2019. "Low Volume, Home-Based Weighted Step Exercise Training Can Improve Lower Limb Muscle Power and Functional Ability in Community-Dwelling Older Women" Journal of Clinical Medicine 8, no. 1: 41. https://doi.org/10.3390/jcm8010041
APA StyleMair, J. L., De Vito, G., & Boreham, C. A. (2019). Low Volume, Home-Based Weighted Step Exercise Training Can Improve Lower Limb Muscle Power and Functional Ability in Community-Dwelling Older Women. Journal of Clinical Medicine, 8(1), 41. https://doi.org/10.3390/jcm8010041