Androgen and Anti-Mullerian Hormone Concentrations at Term in Newborns and Their Mothers with and without Polycystic Ovary Syndrome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Ethical Approval
2.3. Participants
2.4. Outcome Measures
2.5. Data Sources/Measurement
2.6. Sample Size
2.7. Statistical Methods
3. Results
3.1. Participants
3.2. Descriptive Data
3.3. Testosterone
3.4. Free Testosterone
3.5. Androstenedione
3.6. AMH
4. Discussion
4.1. Key Results
4.2. Interpretation
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Norman, R.J.; Dewailly, D.; Legro rs Hickey, T.E. Polycystic ovary syndrome. Lancet 2007, 370, 685–697. [Google Scholar] [CrossRef] [Green Version]
- Fauser, B.C.; Tarlatzis, B.C.; Rebar, R.W.; Legro, R.S.; Balen, A.H.; Lobo, R.; Carmina, E.; Chang, J.; Yildiz, B.O.; Laven, J.S.; et al. Consensus on women’s health aspects of polycystic ovary syndrome (PCOS): The Amsterdam ESHRE/ASRM-Sponsored 3rd PCOS Consensus Workshop Group. Fertil. Steril. 2012, 97, 28–38.e25. [Google Scholar] [CrossRef] [PubMed]
- Wild, R.A. Long-term health consequences of PCOS. Hum. Reprod. Update 2002, 8, 231–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kollmann, M.; Klaritsch, P.; Martins, W.P.; Guenther, F.; Schneider, V.; Herzog, S.A.; Craciunas, L.; Lang, U.; Obermayer-Pietsch, B.; Lerchbaum, E.; et al. Maternal and neonatal outcomes in pregnant women with PCOS: Comparison of different diagnostic definitions. Hum. Reprod. 2015, 30, 2396–2403. [Google Scholar] [CrossRef]
- Asunción, M.; Calvo, R.M.; San Millán, J.L.; Sancho, J.; Avila, S.; Escobar-Morreale, H.F. A prospective study of the prevalence of the polycystic ovary syndrome in unselected Caucasian women from Spain. J. Clin. Endocrinol. Metab. 2000, 85, 2434–2438. [Google Scholar] [CrossRef]
- Azziz, R.; Carmina, E.; Dewailly, D.; Diamanti-Kandarakis, E.; Escobar-Morreale, H.F.; Futterweit, W.; Janssen, O.E.; Legro, R.S.; Norman, R.J.; Taylor, A.E.; et al. The Androgen Excess and PCOS Society criteria for the polycystic ovary syndrome: The complete task force report. Fertil. Steril. 2009, 91, 456–488. [Google Scholar] [CrossRef]
- Group REA-SPCW. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil. Steril. 2004, 81, 19–25. [Google Scholar] [CrossRef]
- Wang, S.; Alvero, R. Racial and ethnic differences in physiology and clinical symptoms of polycystic ovary syndrome. Semin. Reprod. Med. 2013, 31, 365–369. [Google Scholar] [CrossRef]
- Li, R.; Zhang, Q.; Yang, D.; Li, S.; Lu, S.; Wu, X.; Wei, Z.; Song, X.; Wang, X.; Fu, S.; et al. Prevalence of polycystic ovary syndrome in women in China: A large community-based study. Hum. Reprod. 2013, 28, 2562–2569. [Google Scholar] [CrossRef]
- Alvarez-Blasco, F.; Botella-Carretero, J.I.; San Millán, J.L.; Escobar-Morreale, H.F. Prevalence and characteristics of the polycystic ovary syndrome in overweight and obese women. Arch. Intern. Med. 2006, 166, 2081–2086. [Google Scholar] [CrossRef]
- de Melo, A.S.; Dias, S.V.; Cavalli, R.E.C.; Cardoso, V.C.; Bettiol, H.; Barbieri, M.A.; Ferriani, R.A.; Vierira, C.S. Pathogenesis of polycystic ovary syndrome: Multifactorial assessment from the foetal stage to menopause. Reproduction 2015, 150, R11–R24. [Google Scholar] [CrossRef] [PubMed]
- Cooper, H.E.; Spellacy, W.N.; Prem, K.A.; Cohen, W.D. Hereditary factors in the Stein-Leventhal syndrome. Am. J. Obstet. Gynecol. 1968, 100, 371–387. [Google Scholar] [CrossRef]
- Jones, M.R.; Goodarzi, M.O. Genetic determinants of polycystic ovary syndrome: Progress and future directions. Fertil. Steril. 2016, 106, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhao, H.; Chen, Z.J. Genome-Wide Association Studies for Polycystic Ovary Syndrome. Semin. Reprod. Med. 2016, 34, 224–229. [Google Scholar] [CrossRef]
- Ilie, I.R.; Georgescu, C.E. Polycystic Ovary Syndrome-Epigenetic Mechanisms and Aberrant MicroRNA. Adv. Clin. Chem. 2015, 71, 25–45. [Google Scholar]
- Xu, N.; Kwon, S.; Abbott, D.H.; Abbott, D.H.; Geller, D.H.; Dumesic, D.A.; Azziz, R.; Guo, X.; Goodarzi, M.O. Epigenetic mechanism underlying the development of polycystic ovary syndrome (PCOS)-like phenotypes in prenatally androgenized rhesus monkeys. PLoS ONE 2011, 6, e27286. [Google Scholar] [CrossRef]
- Yu, Y.Y.; Sun, C.X.; Liu, Y.K.; Li, Y.; Wang, L.; Zhang, W. Genome-wide screen of ovary-specific DNA methylation in polycystic ovary syndrome. Fertil. Steril. 2015, 104, 145–153.e6. [Google Scholar] [CrossRef]
- Xu, N.; Azziz, R.; Goodarzi, M.O. Epigenetics in polycystic ovary syndrome: A pilot study of global DNA methylation. Fertil. Steril. 2010, 94, 781–783.e1. [Google Scholar] [CrossRef]
- Merkin, S.S.; Phy, J.L.; Sites, C.K.; Yang, D. Environmental determinants of polycystic ovary syndrome. Fertil. Steril. 2016, 106, 16–24. [Google Scholar] [CrossRef] [Green Version]
- Barker, D.J. Intrauterine programming of adult disease. Mol. Med. Today 1995, 1, 418–423. [Google Scholar] [CrossRef]
- Dumesic, D.A.; Abbott, D.H.; Padmanabhan, V. Polycystic ovary syndrome and its developmental origins. Rev. Endocr. Metab. Disord. 2007, 8, 127–141. [Google Scholar] [CrossRef] [PubMed]
- Dumesic, D.A.; Goodarzi, M.O.; Chazenbalk, G.D.; Abbott, D.H. Intrauterine environment and polycystic ovary syndrome. Semin. Reprod. Med. 2014, 32, 159–165. [Google Scholar] [PubMed]
- Abbott, D.H.; Dumesic, D.A.; Franks, S. Developmental origin of polycystic ovary syndrome—A hypothesis. J. Endocrinol. 2002, 174, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Abbott, D.H.; Barnett, D.K.; Bruns, C.M.; Dumesic, D.A. Androgen excess fetal programming of female reproduction: A developmental aetiology for polycystic ovary syndrome? Hum. Reprod. Update 2005, 11, 357–374. [Google Scholar] [CrossRef]
- Abbott, D.H.; Bacha, F. Ontogeny of polycystic ovary syndrome and insulin resistance in utero and early childhood. Fertil. Steril. 2013, 100, 2–11. [Google Scholar] [CrossRef] [Green Version]
- Melo, A.S.; Vieira, C.S.; Barbieri, M.A.; Rosa-E-Silva, A.C.; Silva, A.A.; Cardoso, V.C.; Reis, R.M.; Ferriani, R.A.; Silva-de-Sa, M.F.; Bettiol, H. High prevalence of polycystic ovary syndrome in women born small for gestational age. Hum. Reprod. 2010, 25, 2124–2131. [Google Scholar] [CrossRef] [Green Version]
- Palomba, S.; Marotta, R.; Di Cello, A.; Russo, T.; Falbo, A.; Orio, F.; Tolino, A.; Zullo, F.; Esposito, R.; La Sala, G.B. Pervasive developmental disorders in children of hyperandrogenic women with polycystic ovary syndrome: A longitudinal case-control study. Clin. Endocrinol. 2012, 77, 898–904. [Google Scholar] [CrossRef]
- van de Beek, C.; Thijssen, J.H.; Cohen-Kettenis, P.T.; van Goozen, S.H.; Buitelaar, J.K. Relationships between sex hormones assessed in amniotic fluid, and maternal and umbilical cord serum: What is the best source of information to investigate the effects of fetal hormonal exposure? Horm. Behav. 2004, 46, 663–669. [Google Scholar] [CrossRef]
- Maccoby, E.E.; Doering, C.H.; Jacklin, C.N.; Kraemer, H. Concentrations of sex hormones in umbilical-cord blood: Their relation to sex and birth order of infants. Child Dev. 1979, 50, 632–642. [Google Scholar] [CrossRef]
- Detti, L.; Christiansen, M.E.; Francillon, L.; Ikuwezunma, G.; Diamond, M.P.; Mari, G.; Tobiasz, A.M. Serum Anti-Müllerian hormone (AMH) in mothers with polycystic ovary syndrome (PCOS) and their term fetuses. Syst. Biol. Reprod. Med. 2019, 65, 147–154. [Google Scholar] [CrossRef]
- Barry, J.A.; Kay, A.R.; Navaratnarajah, R.; Iqbal, S.; Bamfo, J.E.; David, A.L.; Hines, M.; Hardiman, P.J. Umbilical vein testosterone in female infants born to mothers with polycystic ovary syndrome is elevated to male levels. J. Obstet. Gynaecol. 2010, 30, 444–446. [Google Scholar] [CrossRef] [PubMed]
- Caanen, M.R.; Kuijper, E.A.; Hompes, P.G.; Kushnir, M.M.; Rockwood, A.L.; Meikle, W.A.; Homburg, R.; Lambalk, C.B. Mass spectrometry methods measured androgen and estrogen concentrations during pregnancy and in newborns of mothers with polycystic ovary syndrome. Eur. J. Endocrinol. 2016, 174, 25–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, H.; Fogel, N.; Grebe, S.K.; Singh, R.J.; Taylor, R.L.; Dunaif, A. Infants of women with polycystic ovary syndrome have lower cord blood androstenedione and estradiol levels. J. Clin. Endocrinol. Metab. 2010, 95, 2180–2186. [Google Scholar] [CrossRef] [PubMed]
- Boutzios, G.; Livadas, S.; Piperi, C.; Vitoratos, N.; Adamopoulos, C.; Hassiakos, D.; Iavazzo, C.; Diamanti-Kandarakis, E. Polycystic ovary syndrome offspring display increased oxidative stress markers comparable to gestational diabetes offspring. Fertil. Steril. 2013, 99, 943–950. [Google Scholar] [CrossRef] [PubMed]
- Hickey, M.; Sloboda, D.M.; Atkinson, H.C.; Doherty, D.A.; Franks, S.; Norman, R.J.; Newnham, J.P.; Hart, R. The relationship between maternal and umbilical cord androgen levels and polycystic ovary syndrome in adolescence: A prospective cohort study. J. Clin. Endocrinol. Metab. 2009, 94, 3714–3720. [Google Scholar] [CrossRef] [PubMed]
- Maliqueo, M.; Lara, H.E.; Sánchez, F.; Echiburú, B.; Crisosto, N.; Sir-Petermann, T. Placental steroidogenesis in pregnant women with polycystic ovary syndrome. Eur. J. Obstet. Gynecol. Reprod. Biol. 2013, 166, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Vermeulen, A.; Verdonck, L.; Kaufman, J.M. A critical evaluation of simple methods for the estimation of free testosterone in serum. J. Clin. Endocrinol. Metab. 1999, 84, 3666–3672. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017. [Google Scholar]
- Abbott, D.H.; Nicol, L.E.; Levine, J.E.; Xu, N.; Goodarzi, M.O.; Dumesic, D.A. Nonhuman primate models of polycystic ovary syndrome. Mol. Cell. Endocrinol. 2013, 373, 21–28. [Google Scholar] [CrossRef] [Green Version]
- Dumesic, D.A.; Schramm, R.D.; Abbott, D.H. Early origins of polycystic ovary syndrome. Reprod. Fertil. Dev. 2005, 17, 349–360. [Google Scholar] [CrossRef]
- Abbott, D.H.; Zhou, R.; Bird, I.M.; Dumesic, D.A.; Conley, A.J. Fetal programming of adrenal androgen excess: Lessons from a nonhuman primate model of polycystic ovary syndrome. Endocr. Dev. 2008, 13, 145–158. [Google Scholar]
- Abbott, D.H.; Barnett, D.K.; Levine, J.E.; Padmanabhan, V.; Dumesic, D.A.; Jacoris, S.; Tarantal, A.F. Endocrine antecedents of polycystic ovary syndrome in fetal and infant prenatally androgenized female rhesus monkeys. Biol. Reprod. 2008, 79, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Abbott, D.H.; Tarantal, A.F.; Dumesic, D.A. Fetal, infant, adolescent and adult phenotypes of polycystic ovary syndrome in prenatally androgenized female rhesus monkeys. Am. J. Primatol. 2009, 71, 776–784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dumesic, D.A.; Abbott, D.H.; Eisner, J.R.; Goy, R.W. Prenatal exposure of female rhesus monkeys to testosterone propionate increases serum luteinizing hormone levels in adulthood. Fertil. Steril. 1997, 67, 155–163. [Google Scholar] [CrossRef]
- Crisosto, N.; Echiburú, B.; Maliqueo, M.; Pérez, V.; Ladrón de Guevara, A.; Preisler, J.; Sanchez, F.; Sir-Petermann, T. Improvement of hyperandrogenism and hyperinsulinemia during pregnancy in women with polycystic ovary syndrome: Possible effect in the ovarian follicular mass of their daughters. Fertil. Steril. 2012, 97, 218–224. [Google Scholar] [CrossRef]
- Hensleigh, P.A.; Carter, R.P.; Grotjan, H.E. Fetal protection against masculinization with hyperreactio luteinalis and virilization. J. Clin. Endocrinol. Metab. 1975, 40, 816–823. [Google Scholar] [CrossRef]
- Phelan, N.; Conway, G.S. Management of ovarian disease in pregnancy. Best Pract. Res. Clin. Endocrinol. Metab. 2011, 25, 985–992. [Google Scholar] [CrossRef]
- Kragie, L. Aromatase in primate pregnancy: A review. Endocr. Res. 2002, 28, 121–128. [Google Scholar] [CrossRef]
- Birrell, S.N.; Butler, L.M.; Harris, J.M.; Buchanan, G.; Tilley, W.D. Disruption of androgen receptor signaling by synthetic progestins may increase risk of developing breast cancer. FASEB J. 2007, 21, 2285–2293. [Google Scholar] [CrossRef] [Green Version]
- Slayden, O.D.; Nayak, N.R.; Burton, K.A.; Chwalisz, K.; Cameron, S.T.; Critchley, H.O.; Baird, D.T.; Brenner, R.M. Progesterone antagonists increase androgen receptor expression in the rhesus macaque and human endometrium. J. Clin. Endocrinol. Metab. 2001, 86, 2668–2679. [Google Scholar] [CrossRef]
- Cabeza, M.; Gutiérrez, E.; Miranda, R.; Heuze, I.; Bratoeff, E.; Flores, G.; Ramirez, E. Androgenic and anti-androgenic effects of progesterone derivatives with different halogens as substituents at the C-6 position. Steroids 1999, 64, 413–421. [Google Scholar] [CrossRef]
- Hodgins, M.B. Binding of androgens in 5 alpha-reductase-deficient human genital skin fibroblasts: Inhibition by progesterone and its metabolites. J. Endocrinol. 1982, 94, 415–427. [Google Scholar] [CrossRef] [PubMed]
- Xu, N.; Chua, A.K.; Jiang, H.; Liu, N.A.; Goodarzi, M.O. Early embryonic androgen exposure induces transgenerational epigenetic and metabolic changes. Mol. Endocrinol. 2014, 28, 1329–1336. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Cong, J.; Shen, H.; Wu, Q.; Wu, X. Genome-wide identification of aberrantly methylated promoters in ovarian tissue of prenatally androgenized rats. Fertil. Steril. 2014, 102, 1458–1467. [Google Scholar] [CrossRef]
- Hollier, L.P.; Keelan, J.A.; Hickey, M.; Maybery, M.T.; Whitehouse, A.J. Measurement of androgen and estrogen concentrations in cord blood: Accuracy, biological interpretation, and applications to understanding human behavioral development. Front. Endocrinol. 2014, 5, 64. [Google Scholar] [CrossRef]
- Ishimoto, H.; Jaffe, R.B. Development and function of the human fetal adrenal cortex: A key component in the feto-placental unit. Endocr. Rev. 2011, 32, 317–355. [Google Scholar] [CrossRef] [PubMed]
- Pašková, A.; Pařízek, A.; Hill, M.; Velíková, M.; Kubátová, J.; Dušková, M.; Adamcova, K.; Kouchy, M.; Simjak, P.; Cerny, A.; et al. Steroid metabolome in the umbilical cord: Is it necessary to differentiate between arterial and venous blood? Physiol. Res. 2014, 63, 115–126. [Google Scholar] [PubMed]
- Albrecht, E.D.; Pepe, G.J. Placental steroid hormone biosynthesis in primate pregnancy. Endocr. Rev. 1990, 11, 124–150. [Google Scholar] [CrossRef]
- Hickey, M.; Hart, R.; Keelan, J.A. The relationship between umbilical cord estrogens and perinatal characteristics. Cancer Epidemiol. Prev. Biomark. 2014, 23, 946–952. [Google Scholar] [CrossRef]
- Keelan, J.A.; Mattes, E.; Tan, H.; Dinan, A.; Newnham, J.P.; Whitehouse, A.J.; Jacoby, P.; Hickey, M. Androgen concentrations in umbilical cord blood and their association with maternal, fetal and obstetric factors. PLoS ONE 2012, 7, e42827. [Google Scholar] [CrossRef]
- Moreno, S.A.; Shyam, A.; Morgentaler, A. Comparison of free testosterone results by analog radioimmunoassay and calculated free testosterone in an ambulatory clinical population. J. Sex. Med. 2010, 7, 1948–1953. [Google Scholar] [CrossRef]
PCOS Women n = 79 | non-PCOS Women n = 354 | ||||
---|---|---|---|---|---|
Mean n | ±SD % | Mean n | ±SD % | p-Value | |
Maternal characteristics | |||||
Maternal Age (years) | 30.6 | ±4.6 | 30.3 | ±5.1 | 0.660 |
Body mass index (kg/m2) | 29.8 | ±6.1 | 28.9 | ±5.0 | 0.241 |
Smoking | 3 | 3.8% | 31 | 8.8% | 0.169 |
Gestational diabetes | 12 | 15.2% | 21 | 5.9% | 0.009 |
Pregnancy-induced hypertension | 8 | 3.8% | 17 | 4.8% | 0.103 |
Operative delivery | 41 | 51.89% | 148 | 41.8% | 0.259 |
Neonatal characteristics | |||||
Gestational age (days) at delivery | 279 | ±9.6 | 281.2 | ±6.9 | 0.058 |
Large for gestational age (>90th percentile) | 3 | 3.8% | 19 | 5.37% | 0.779 |
Small for gestational age (<10th percentile) | 9 | 11.39% | 44 | 12.43% | 1.0 |
PCOS Women n = 67/79 | non-PCOS Women n = 316/354 | p-Value | |||
---|---|---|---|---|---|
Testosterone (ng/mL) | 1.17 | 0.44–4.23 | 0.97 | 0.18–5.56 | <0.001 |
Fee testosterone (pg/mL) | 6.79 | 1.37–26.8 | 6.72 | 0.48–27.9 | 0.563 |
Androstenedione (ng/mL) | 3.44 | 1.06–10.0 | 2.74 | 0.49–10.0 | 0.002 |
AMH (ng/mL) | 1.10 | 0.10–25.0 | 0.72 | 0.02–49.0 | 0.001 |
SHBG (nmol/L) | 200.00 | 173.49–494.89 | 637.67 | 200.00–997.25 | 0.029 |
PCOS Girls n = 27/36 | non-PCOS Girls n = 151/178 | p-Value * | PCOS Boys n = 29/43 | non-PCOS Boys n = 149/176 | p-Value ** | p-Value *** | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Testosterone (ng/mL) | 1.54 | 0.84–5.82 | 1.82 | 0.88–13.05 | 0.230 | 2.17 | 1.16–10.10 | 1.76 | 0.95–9.52 | 0.120 | 0.021 |
Fee testosterone (pg/mL) | 22.66 | 10.52–47.0 | 23.89 | 6.12–72.01 | 0.196 | 29.94 | 6.39–61.41 | 24.08 | 5.23–73.07 | 0.094 | 0.012 |
Androstenedione (ng/mL) | 2.19 | 1.08–7.77 | 2.78 | 0.83–8.06 | 0.113 | 3.47 | 126–7.93 | 2.92 | 0.83–9.24 | 0.039 | 0.018 |
AMH (ng/mL) | 0.20 | 0.00–9.2 | 0.20 | 0.00–25.0 | 0.975 | 22.0 | 14.4–45.6 | 20.01 | 1.6–124.2 | 0.395 | 0.001 |
SHBG (nmol/L) | 32 | 20.17–39.0 | 35 | 1.2–81.6 | 0.292 | 38.5 | 20.1–62.0 | 37.85 | 18.3–105.9 | 0.919 | 0.021 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kollmann, M.; Obermayer-Pietsch, B.; Lerchbaum, E.; Lang, U.; Herzog, S.A.; Trummer, C.; Scheuchenegger, A.; Ulrich, D.; Klaritsch, P. Androgen and Anti-Mullerian Hormone Concentrations at Term in Newborns and Their Mothers with and without Polycystic Ovary Syndrome. J. Clin. Med. 2019, 8, 1817. https://doi.org/10.3390/jcm8111817
Kollmann M, Obermayer-Pietsch B, Lerchbaum E, Lang U, Herzog SA, Trummer C, Scheuchenegger A, Ulrich D, Klaritsch P. Androgen and Anti-Mullerian Hormone Concentrations at Term in Newborns and Their Mothers with and without Polycystic Ovary Syndrome. Journal of Clinical Medicine. 2019; 8(11):1817. https://doi.org/10.3390/jcm8111817
Chicago/Turabian StyleKollmann, Martina, Barbara Obermayer-Pietsch, Elisabeth Lerchbaum, Uwe Lang, Sereina A. Herzog, Christian Trummer, Anna Scheuchenegger, Daniela Ulrich, and Philipp Klaritsch. 2019. "Androgen and Anti-Mullerian Hormone Concentrations at Term in Newborns and Their Mothers with and without Polycystic Ovary Syndrome" Journal of Clinical Medicine 8, no. 11: 1817. https://doi.org/10.3390/jcm8111817
APA StyleKollmann, M., Obermayer-Pietsch, B., Lerchbaum, E., Lang, U., Herzog, S. A., Trummer, C., Scheuchenegger, A., Ulrich, D., & Klaritsch, P. (2019). Androgen and Anti-Mullerian Hormone Concentrations at Term in Newborns and Their Mothers with and without Polycystic Ovary Syndrome. Journal of Clinical Medicine, 8(11), 1817. https://doi.org/10.3390/jcm8111817