Symbolic Recurrence Analysis of RR Interval to Detect Atrial Fibrillation
Abstract
1. Introduction
2. Materials and Methods
2.1. Symbolization
2.2. Symbolic Recurrence Analysis
2.3. Symbolic Recurrence Plots of RR Interval Time Series
2.4. Symbolic Recurrence Measures
2.5. A logistic Model to Clasify AF Patients
2.6. Data
3. Results
3.1. Model Estimation
3.2. Classification Power of the Model
- is the number of true positive classified by the model.
- is the number of true negative classified by the model.
- is the number of false negative classified by the model.
- is the number of false positive classified by the model.
- is the true positive rate computed as , also known as sensitivity.
- is the false positive rate computed as . Specificity is known as which measures the proportion of actual negatives that are correctly identified by the model as such.
- determines the model accuracy.
3.3. Model Validation
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Symbolic Recurrence Measures | N | AF |
---|---|---|
0.1567 | 0.0109 | |
0.0213 | 0.0213 | |
0.0109 | 0.0352 | |
0.0069 | 0.0278 | |
0.0017 | 0.0352 | |
0.0525 | 0.0434 | |
0.6629 | 0.5341 | |
0.8326 | 0.5873 | |
1.0397 | 0 | |
0.6365 | 0 | |
4 | 2 | |
2.333 | 2 |
w = 30 | w = 60 | w = 120 | w = 200 | |
---|---|---|---|---|
Coeff. | Coeff. | Coeff. | Coeff. | |
Intercept | 9.25 ** | 16.97 ** | 27.04 ** | 36.44 ** |
21.28 ** | 21.47 ** | 26.48 ** | 31.94 ** | |
−28.02 ** | −28.77 ** | −34.16 ** | −39.54 ** | |
−32.14 ** | −30.59 ** | −28.02 ** | −27.98 ** | |
75.62 ** | 72.96 ** | 69.41 ** | 67.30 ** | |
−37.69 ** | −63.26 ** | −106.97 ** | −133.84 ** | |
−27.90 ** | −67.43 ** | −119.86 ** | −142.83 ** | |
−25.13 ** | −58.88 ** | −102.33 ** | −128.14 ** | |
−27.53 ** | −62.50 ** | −108.35 ** | −139.10 ** | |
−30.21 ** | −68.41 ** | −117.66 ** | −145.21 ** | |
−27.42 ** | −62.58 ** | −114.04 ** | −153.05 ** | |
0.33 | 7.99 ** | 21.38 ** | 15.70 * | |
−2.91 ** | −10.37 ** | −21.45 ** | −20.98 ** | |
−0.17 | −0.51 ** | −0.74 ** | −0.64 * | |
0.13 | −0.31 * | −0.60 ** | −0.68 | |
−0.03 | 0.02 | −0.19 | −0.56 | |
0.02 | −0.04 | −0.16 | −0.20 |
References
- Go, A.S.; Hylek, E.M.; Phillips, K.A.; Chang, Y.; Henault, L.E.; Selby, J.V.; Singer, D.E. Prevalence of Diagnosed Atrial Fibrillation in Adults. JAMA 2001, 285, 2370–2375. [Google Scholar] [CrossRef] [PubMed]
- Das, M.K.; Zipes, D.P. Atrial Fibrillation. In Electrocardiography of Arrhythmias: A Comprehensive Review; Elsevier Saunders: Philadelphia, PA, USA, 2012; pp. 285–308. [Google Scholar]
- Caballero-Pintado, M.V.; Matilla-García, M.; Marín, M.R. Symbolic recurrence plots to analyze dynamical systems. Chaos Interdiscip. J. Nonlinear Sci. 2018, 28, 63112. [Google Scholar] [CrossRef] [PubMed]
- Goldberger, A.L.; Amaral, L.A.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 2000, 101, e215–e220. [Google Scholar] [CrossRef] [PubMed]
- Aytemir, K.; Ozer, N.; Atalar, E.; Sade, E.; Aksöyek, S.; Ovünç, K.; Oto, A.; Ozmen, F.; Kes, S. P wave dispersion on 12-lead electrocardiography in patients with paroxysmal atrial fibrillation. Pacing Clin. Electrophysiol. 2000, 23, 1109–1112. [Google Scholar] [CrossRef] [PubMed]
- Censi, F.; Corazza, I.; Reggiani, E.; Calcagnini, G.; Mattei, E.; Triventi, M.; Boriani, G. P-wave Variability and Atrial Fibrillation. Sci. Rep. 2016, 6, 26799. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Chang, E.; Yang, W.-H.; Jiang, B.; Yang, A.; Peng, C.-K. Automated Detection of Paroxysmal Atrial Fibrillation Using an Information-Based Similarity Approach. Entropy 2017, 19, 677. [Google Scholar] [CrossRef]
- Dilaveris, P.E.; Gialafos, E.J.; Sideris, S.K.; Theopistou, A.M.; Andrikopoulos, G.K.; Kyriakidis, M.; Gialafos, J.E.; Toutouzas, P.K. Simple electrocardiographic markers for the prediction of paroxysmal idiopathic atrial fibrillation. Am. Heart J. 1998, 135, 733–738. [Google Scholar] [CrossRef]
- Kennedy, A.; Finlay, D.D.; Guldenring, D.; Bond, R.R.; Moran, K.; Laughlin, J.M. Automated detection of atrial fibrillation using R-R intervals and multivariate-based classification. J. Electrocardiol. 2016, 49, 871–876. [Google Scholar] [CrossRef] [PubMed]
- Moody, G.B.; Mark, R.G. A new method for detecting atrial fibrillation using R-R intervals. Comput. Cardiol. 1983, 10, 227–230. [Google Scholar]
- Teijeiro, T.; Garcia, C.A.; Castro, D.; Félix, P. Arrhythmia Classification from the Abductive Interpretation of Short Single-Lead ECG Records. In Proceedings of the Computing in Cardiology Conference (CinC), Rennes, France, 24–27 September 2017. [Google Scholar]
- Andreotti, F.; Carr, O.; Pimentel, M.A.F.; Mahdi, A.; De Vos, M. Comparing Feature Based Classifiers and Convolutional Neural Networks to Detect Arrhythmia from Short Segments of ECG. In Proceedings of the Computing in Cardiology Conference (CinC), Rennes, France, 24–27 September 2017. [Google Scholar]
- Limam, M.; Precioso, F. AF Detection and ECG Classification based on Convolutional Recurrent Neural Network. In Proceedings of the Computing in Cardiology Conference (CinC), Rennes, France, 24–27 September 2017. [Google Scholar]
- Bin, G.; Shao, M.; Bin, G.; Huang, J.; Zheng, D.; Wu, S. Detection of atrial fibrillation using decision tree ensemble. In Proceedings of the Computing in Cardiology Conference (CinC), Rennes, France, 24–27 September 2017. [Google Scholar]
- Lian, J.; Wang, L.; Muessig, D. A Simple Method to Detect Atrial Fibrillation Using RR Intervals. Am. J. Cardiol. 2011, 107, 1494–1497. [Google Scholar] [CrossRef] [PubMed]
- Tateno, K.; Glass, L. A method for detection of atrial fibrillation using RR intervals. In Proceedings of the Computers in Cardiology, Cambridge, MA, USA, 24–27 September 2000; Volume 27, pp. 391–394. [Google Scholar]
- Dash, S.; Chon, K.H.; Lu, S.; Raeder, E.A. Automatic Real Time Detection of Atrial Fibrillation. Ann. Biomed. Eng. 2009, 37, 1701–1709. [Google Scholar] [CrossRef] [PubMed]
w = 30 | w = 60 | w = 120 | w = 200 | |
---|---|---|---|---|
0.414 | 0.448 | 0.513 | 0.510 | |
Se | 0.961 | 0.970 | 0.976 | 0.979 |
Sp | 0.948 | 0.960 | 0.971 | 0.976 |
ACC | 0.954 | 0.964 | 0.973 | 0.977 |
w = 30 | w = 60 | w = 120 | w = 200 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
P25 | Me | P75 | P25 | Me | P75 | P25 | Me | P75 | P25 | Me | P75 | |
0.399 | 0.417 | 0.420 | 0.419 | 0.457 | 0.465 | 0.460 | 0.479 | 0.510 | 0.498 | 0.505 | 0.526 | |
Se | 0.927 | 0.965 | 0.992 | 0.942 | 0.969 | 0.991 | 0.962 | 0.973 | 0.988 | 0.975 | 0.979 | 0.986 |
Sp | 0.940 | 0.956 | 0.973 | 0.936 | 0.962 | 0.976 | 0.957 | 0.965 | 0.982 | 0.962 | 0.967 | 0.980 |
ACC | 0.929 | 0.945 | 0.965 | 0.950 | 0.956 | 0.965 | 0.967 | 0.969 | 0.975 | 0.967 | 0.974 | 0.984 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Valero, J.; Caballero Pintado, M.V.; Melgarejo, F.; García-Sánchez, A.-J.; Garcia-Haro, J.; García Córdoba, F.; García Córdoba, J.A.; Pinar, E.; García Alberola, A.; Matilla-García, M.; et al. Symbolic Recurrence Analysis of RR Interval to Detect Atrial Fibrillation. J. Clin. Med. 2019, 8, 1840. https://doi.org/10.3390/jcm8111840
Pérez-Valero J, Caballero Pintado MV, Melgarejo F, García-Sánchez A-J, Garcia-Haro J, García Córdoba F, García Córdoba JA, Pinar E, García Alberola A, Matilla-García M, et al. Symbolic Recurrence Analysis of RR Interval to Detect Atrial Fibrillation. Journal of Clinical Medicine. 2019; 8(11):1840. https://doi.org/10.3390/jcm8111840
Chicago/Turabian StylePérez-Valero, Jesús, M. Victoria Caballero Pintado, Francisco Melgarejo, Antonio-Javier García-Sánchez, Joan Garcia-Haro, Francisco García Córdoba, José A. García Córdoba, Eduardo Pinar, Arcadio García Alberola, Mariano Matilla-García, and et al. 2019. "Symbolic Recurrence Analysis of RR Interval to Detect Atrial Fibrillation" Journal of Clinical Medicine 8, no. 11: 1840. https://doi.org/10.3390/jcm8111840
APA StylePérez-Valero, J., Caballero Pintado, M. V., Melgarejo, F., García-Sánchez, A.-J., Garcia-Haro, J., García Córdoba, F., García Córdoba, J. A., Pinar, E., García Alberola, A., Matilla-García, M., Curtin, P., Arora, M., & Ruiz Marín, M. (2019). Symbolic Recurrence Analysis of RR Interval to Detect Atrial Fibrillation. Journal of Clinical Medicine, 8(11), 1840. https://doi.org/10.3390/jcm8111840