Positive Programmed Cell Death-Ligand 1 Expression Predicts Poor Treatment Outcomes in Esophageal Squamous Cell Carcinoma Patients Receiving Neoadjuvant Chemoradiotherapy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient and Tumor Materials
2.2. Immunohistochemistry (IHC)
2.3. Statistical Analysis
3. Results
3.1. Patient Clinicopathological Characteristics
3.2. Associations between Pathological Complete Respoznse with Clinicopathological Characteristics
3.3. Associations between Patient Survival with Clinicopathological Characteristics
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed]
- Li, S.H.; Chen, C.H.; Lu, H.I.; Huang, W.T.; Tien, W.Y.; Lan, Y.C.; Lee, C.C.; Chen, Y.H.; Huang, H.Y.; Chang, A.Y.; et al. Phosphorylated p70S6K expression is an independent prognosticator for patients with esophageal squamous cell carcinoma. Surgery 2015, 157, 570–580. [Google Scholar] [CrossRef] [PubMed]
- Li, S.H.; Lu, H.I.; Chang, A.Y.; Huang, W.T.; Lin, W.C.; Lee, C.C.; Tien, W.Y.; Lan, Y.C.; Tsai, H.T.; Chen, C.H. Angiotensin II type I receptor (AT1R) is an independent prognosticator of esophageal squamous cell carcinoma and promotes cells proliferation via mTOR activation. Oncotarget 2016, 7, 67150–67165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sherman, C.A.; Turrisi, A.T.; Wallace, M.B.; Reed, C.E. Locally advanced esophageal cancer. Curr. Treat. Options Oncol. 2002, 3, 475–485. [Google Scholar] [CrossRef] [PubMed]
- Van der Werf, L.R.; Dikken, J.L.; van Berge Henegouwen, M.I.; Lemmens, V.; Nieuwenhuijzen, G.A.P.; Wijnhoven, B.P.L.; Dutch Upper GI Cancer Audit Group. A Population-based Study on Lymph Node Retrieval in Patients with Esophageal Cancer: Results from the Dutch Upper Gastrointestinal Cancer Audit. Ann. Surg. Oncol. 2018, 25, 1211–1220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, H.I.; Li, S.H.; Huang, W.T.; Rau, K.M.; Fang, F.M.; Wang, Y.M.; Lin, W.C.; Tien, W.Y. A comparative study of isolated and metachronous oesophageal squamous cell carcinoma with antecedent upper aerodigestive tract cancer. Eur. J. Cardiothorac. Surg. 2013, 44, 860–865. [Google Scholar] [CrossRef] [Green Version]
- Bedenne, L.; Michel, P.; Bouche, O.; Milan, C.; Mariette, C.; Conroy, T.; Pezet, D.; Roullet, B.; Seitz, J.F.; Herr, J.P.; et al. Chemoradiation followed by surgery compared with chemoradiation alone in squamous cancer of the esophagus: FFCD 9102. J. Clin. Oncol. 2007, 25, 1160–1168. [Google Scholar] [CrossRef]
- Toxopeus, E.; van der Schaaf, M.; van Lanschot, J.; Lagergren, J.; Lagergren, P.; van der Gaast, A.; Wijnhoven, B. Outcome of Patients Treated Within and Outside a Randomized Clinical Trial on Neoadjuvant Chemoradiotherapy Plus Surgery for Esophageal Cancer: Extrapolation of a Randomized Clinical Trial (CROSS). Ann. Surg. Oncol. 2018, 25, 2441–2448. [Google Scholar] [CrossRef]
- Nygaard, K.; Hagen, S.; Hansen, H.S.; Hatlevoll, R.; Hultborn, R.; Jakobsen, A.; Mantyla, M.; Modig, H.; Munck-Wikland, E.; Rosengren, B.; et al. Pre-operative radiotherapy prolongs survival in operable esophageal carcinoma: A randomized, multicenter study of pre-operative radiotherapy and chemotherapy. The second Scandinavian trial in esophageal cancer. World J. Surg. 1992, 16, 1104–1109. [Google Scholar] [CrossRef]
- Gebski, V.; Burmeister, B.; Smithers, B.M.; Foo, K.; Zalcberg, J.; Simes, J. Survival benefits from neoadjuvant chemoradiotherapy or chemotherapy in oesophageal carcinoma: A meta-analysis. Lancet Oncol. 2007, 8, 226–234. [Google Scholar] [CrossRef]
- Donington, J.S.; Miller, D.L.; Allen, M.S.; Deschamps, C.; Nichols, F.C., III; Pairolero, P.C. Tumor response to induction chemoradiation: Influence on survival after esophagectomy. Eur. J. Cardiothorac. Surg. 2003, 24, 631–636. [Google Scholar] [CrossRef]
- Jones, D.R.; Detterbeck, F.C.; Egan, T.M.; Parker, L.A., Jr.; Bernard, S.A.; Tepper, J.E. Induction chemoradiotherapy followed by esophagectomy in patients with carcinoma of the esophagus. Ann. Thorac. Surg. 1997, 64, 185–191. [Google Scholar] [CrossRef]
- Stahl, M.; Stuschke, M.; Lehmann, N.; Meyer, H.J.; Walz, M.K.; Seeber, S.; Klump, B.; Budach, W.; Teichmann, R.; Schmitt, M.; et al. Chemoradiation with and without surgery in patients with locally advanced squamous cell carcinoma of the esophagus. J. Clin. Oncol. 2005, 23, 2310–2317. [Google Scholar] [CrossRef] [PubMed]
- Li, S.H.; Huang, E.Y.; Lu, H.I.; Huang, W.T.; Yen, C.C.; Huang, W.C.; Chen, C.H. Phosphorylated mammalian target of rapamycin expression is associated with the response to chemoradiotherapy in patients with esophageal squamous cell carcinoma. J. Thorac. Cardiovasc. Surg. 2012, 144, 1352–1359. [Google Scholar] [CrossRef] [PubMed]
- Steyerberg, E.W.; Neville, B.A.; Koppert, L.B.; Lemmens, V.E.; Tilanus, H.W.; Coebergh, J.W.; Weeks, J.C.; Earle, C.C. Surgical mortality in patients with esophageal cancer: Development and validation of a simple risk score. J. Clin. Oncol. 2006, 24, 4277–4284. [Google Scholar] [CrossRef]
- Butte, M.J.; Keir, M.E.; Phamduy, T.B.; Sharpe, A.H.; Freeman, G.J. Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity 2007, 27, 111–122. [Google Scholar] [CrossRef]
- Dong, H.; Zhu, G.; Tamada, K.; Chen, L. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat. Med. 1999, 5, 1365–1369. [Google Scholar] [CrossRef]
- Ceeraz, S.; Nowak, E.C.; Noelle, R.J. B7 family checkpoint regulators in immune regulation and disease. Trends Immunol. 2013, 34, 556–563. [Google Scholar] [CrossRef] [Green Version]
- Ritprajak, P.; Azuma, M. Intrinsic and extrinsic control of expression of the immunoregulatory molecule PD-L1 in epithelial cells and squamous cell carcinoma. Oral Oncol. 2015, 51, 221–228. [Google Scholar] [CrossRef] [Green Version]
- Pilones, K.A.; Vanpouille-Box, C.; Demaria, S. Combination of radiotherapy and immune checkpoint inhibitors. Semin. Radiat. Oncol. 2015, 25, 28–33. [Google Scholar] [CrossRef]
- Afreen, S.; Dermime, S. The immunoinhibitory B7-H1 molecule as a potential target in cancer: Killing many birds with one stone. Hematol. Oncol. Stem Cell Ther. 2014, 7, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brahmer, J.R.; Tykodi, S.S.; Chow, L.Q.; Hwu, W.J.; Topalian, S.L.; Hwu, P.; Drake, C.G.; Camacho, L.H.; Kauh, J.; Odunsi, K.; et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 2012, 366, 2455–2465. [Google Scholar] [CrossRef] [PubMed]
- Topalian, S.L.; Hodi, F.S.; Brahmer, J.R.; Gettinger, S.N.; Smith, D.C.; McDermott, D.F.; Powderly, J.D.; Carvajal, R.D.; Sosman, J.A.; Atkins, M.B.; et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 2012, 366, 2443–2454. [Google Scholar] [CrossRef] [PubMed]
- Kojima, T.; Doi, T. Immunotherapy for Esophageal Squamous Cell Carcinoma. Curr. Oncol. Rep. 2017, 19, 33. [Google Scholar] [CrossRef]
- Kudo, T.; Hamamoto, Y.; Kato, K.; Ura, T.; Kojima, T.; Tsushima, T.; Hironaka, S.; Hara, H.; Satoh, T.; Iwasa, S.; et al. Nivolumab treatment for oesophageal squamous-cell carcinoma: An open-label, multicentre, phase 2 trial. Lancet Oncol. 2017, 18, 631–639. [Google Scholar] [CrossRef]
- Sznol, M.; Chen, L. Antagonist antibodies to PD-1 and B7-H1 (PD-L1) in the treatment of advanced human cancer. Clin. Cancer Res. 2013, 19, 1021–1034. [Google Scholar] [CrossRef]
- Chiu, T.J.; Lu, H.I.; Chen, C.H.; Huang, W.T.; Wang, Y.M.; Lin, W.C.; Li, S.H. Osteopontin Expression Is Associated with the Poor Prognosis in Patients with Locally Advanced Esophageal Squamous Cell Carcinoma Receiving Preoperative Chemoradiotherapy. BioMed. Res. Int. 2018, 2018, 9098215. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, F.; Liu, L. Prognostic significance of PD-L1 in solid tumor: An updated meta-analysis. Medicine 2017, 96, 6369. [Google Scholar] [CrossRef]
- Hatogai, K.; Fujii, S.; Kojima, T.; Daiko, H.; Nomura, S.; Doi, T.; Kitano, S.; Ohtsu, A.; Takiguchi, Y.; Yoshino, T.; et al. Large-scale comprehensive immunohistochemical biomarker analyses in esophageal squamous cell carcinoma. J. Cancer Res. Clin. Oncol. 2017, 143, 2351–2361. [Google Scholar] [CrossRef]
- Qu, H.X.; Zhao, L.P.; Zhan, S.H.; Geng, C.X.; Xu, L.; Xin, Y.N.; Jiang, X.J. Clinicopathological and prognostic significance of programmed cell death ligand 1 (PD-L1) expression in patients with esophageal squamous cell carcinoma: A meta-analysis. J. Thorac. Dis. 2016, 8, 3197–3204. [Google Scholar] [CrossRef]
- Tamaoki, M.; Komatsuzaki, R.; Komatsu, M.; Minashi, K.; Aoyagi, K.; Nishimura, T.; Chiwaki, F.; Hiroki, T.; Daiko, H.; Morishita, K.; et al. Multiple roles of single-minded 2 in esophageal squamous cell carcinoma and its clinical implications. Cancer Sci. 2018, 109, 1121–1134. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, Y.; Aoyagi, K.; Minashi, K.; Komatsuzaki, R.; Komatsu, M.; Chiwaki, F.; Tamaoki, M.; Nishimura, T.; Takahashi, N.; Oda, I.; et al. Discovery of a Good Responder Subtype of Esophageal Squamous Cell Carcinoma with Cytotoxic T-Lymphocyte Signatures Activated by Chemoradiotherapy. PLoS ONE 2015, 10, e0143804. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.H.; Hong, M.; Ahn, S.; Choi, Y.L.; Kim, K.M.; Oh, D.; Ahn, Y.C.; Jung, S.H.; Ahn, M.J.; Park, K.; et al. Changes in tumour expression of programmed death-ligand 1 after neoadjuvant concurrent chemoradiotherapy in patients with squamous oesophageal cancer. Eur. J. Cancer 2016, 52, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Antonia, S.J.; Villegas, A.; Daniel, D.; Vicente, D.; Murakami, S.; Hui, R.; Yokoi, T.; Chiappori, A.; Lee, K.H.; de Wit, M.; et al. Durvalumab after Chemoradiotherapy in Stage III Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2017, 377, 1919–1929. [Google Scholar] [CrossRef]
Parameters | No. of Cases (Percentage) |
---|---|
Age (years) (mean: 53.6, median: 52, range 37–77) | |
<50 | 40 (37%) |
50 ≤ Age < 60 | 36 (34%) |
60 ≤ Age< 70 | 27 (25%) |
70 ≤ Age | 4 (4%) |
Clinical seventh American Joint Committee on Cancer (AJCC) stage | |
II | 21 (20%) |
III | 86 (80%) |
Clinical T classification | |
T2 | 11 (10%) |
T3 | 46 (43%) |
T4 | 50 (47%) |
Clinical N classification | |
N0 | 22 (21%) |
N1 | 36 (34%) |
N2 | 35 (33%) |
N3 | 14 (13%) |
Histologic grade (Tumor differentiation) | |
Grade 1 (Well differentiated) | 22 (21%) |
Grade 2 (Moderately differentiated) | 58 (54%) |
Grade 3 (poorly differentiated, undifferentiated) | 27 (25%) |
Primary tumor location | |
Upper | 20 (19%) |
Middle | 43 (40%) |
Lower | 44 (41%) |
PD-L1 expression | |
Negative | 75 (70%) |
Positive | 32 (30%) |
pCR | |
Absent | 79 (74%) |
Present | 28 (26%) |
Parameters | PD-L1 Expression | |||
---|---|---|---|---|
Negative | Positive | p value | ||
Age | ≤52 years old | 40 | 15 | 0.54 |
>52 years old | 35 | 17 | ||
Clinical seventh AJCC stage | II | 15 | 6 | 0.88 |
III | 60 | 26 | ||
Clinical T classification | T2/3 | 39 | 18 | 0.69 |
T4 | 36 | 14 | ||
Clinical N classification | N0 | 18 | 4 | 0.18 |
N1/2/3 | 57 | 28 | ||
Clinical N classification | N0/1 | 40 | 18 | 0.78 |
N2/3 | 35 | 14 | ||
Histologic grade | Grade 1/2 | 56 | 24 | 0.97 |
Grade 3 | 19 | 8 | ||
Histologic grade | Grade 1 | 18 | 4 | 0.18 |
Grade 2/3 | 57 | 28 | ||
Primary tumor location | Upper/Middle | 44 | 19 | 0.95 |
Lower | 31 | 13 |
Parameters | Pathological Complete Response | |||
Present | Absent | p value | ||
Age | ≤52 years old | 11 | 44 | 0.14 |
>52 years old | 17 | 35 | ||
Clinical seventh AJCC stage | II | 8 | 13 | 0.17 |
III | 20 | 66 | ||
Clinical T classification | T2/3 | 20 | 37 | 0.025* |
T4 | 8 | 42 | ||
Clinical N classification | N0 | 9 | 13 | 0.078 |
N1/2/3 | 19 | 66 | ||
Clinical N classification | N0/1 | 17 | 41 | 0.42 |
N2/3 | 11 | 38 | ||
Histologic grade | Grade 1/2 | 19 | 61 | 0.87 |
Grade 3 | 6 | 21 | ||
Histologic grade | Grade 1 | 8 | 14 | 0.22 |
Grade 2/3 | 20 | 65 | ||
Primary tumor location | Upper/Middle | 12 | 51 | 0.21 |
Lower | 13 | 31 | ||
PD-L1 expression | Negative | 24 | 51 | 0.036* |
Positive | 4 | 28 |
Factors | No. of Patients | Overall Survival (OS) | Disease-Free Survival (DFS) | ||
---|---|---|---|---|---|
3-Year OS Rate (%) | p Value | 3-Year DFS Rate (%) | p Value | ||
Age | |||||
≤52 years old | 55 | 35% | 0.51 | 29% | 0.86 |
>52 years old | 52 | 40% | 35% | ||
Clinical seventh AJCC stage | |||||
II | 21 | 52% | 0.14 | 52% | 0.084 |
III | 86 | 34% | 27% | ||
Clinical T classification | |||||
T2/3 | 57 | 49% | 0.015* | 42% | 0.006* |
T4 | 50 | 24% | 20% | ||
Clinical N classification | |||||
N0 | 22 | 55% | 0.10 | 55% | 0.046* |
N1/2/3 | 85 | 33% | 26% | ||
Clinical N classification | |||||
N0/1 | 58 | 47% | 0.025* | 38% | 0.044* |
N2/3 | 49 | 27% | 25% | ||
Histologic grade | |||||
Grade 1/2 | 80 | 39% | 0.18 | 33% | 0.82 |
Grade 3 | 27 | 33% | 30% | ||
Histologic grade | |||||
Grade 1 | 22 | 50% | 0.17 | 50% | 0.24 |
Grade 2/3 | 85 | 34% | 27% | ||
Primary tumor location | |||||
Upper/Middle | 63 | 38% | 0.89 | 30% | 0.75 |
Lower | 44 | 36% | 34% | ||
PD-L1 expression | |||||
Negative | 75 | 47% | 0.004* | 43% | <0.001* |
Positive | 32 | 16% | 6% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, W.-T.; Lu, H.-I.; Wang, Y.-M.; Chen, Y.-H.; Lo, C.-M.; Lin, W.-C.; Lan, Y.-C.; Tseng, L.-H.; Li, S.-H. Positive Programmed Cell Death-Ligand 1 Expression Predicts Poor Treatment Outcomes in Esophageal Squamous Cell Carcinoma Patients Receiving Neoadjuvant Chemoradiotherapy. J. Clin. Med. 2019, 8, 1864. https://doi.org/10.3390/jcm8111864
Huang W-T, Lu H-I, Wang Y-M, Chen Y-H, Lo C-M, Lin W-C, Lan Y-C, Tseng L-H, Li S-H. Positive Programmed Cell Death-Ligand 1 Expression Predicts Poor Treatment Outcomes in Esophageal Squamous Cell Carcinoma Patients Receiving Neoadjuvant Chemoradiotherapy. Journal of Clinical Medicine. 2019; 8(11):1864. https://doi.org/10.3390/jcm8111864
Chicago/Turabian StyleHuang, Wan-Ting, Hung-I Lu, Yu-Ming Wang, Yen-Hao Chen, Chien-Ming Lo, Wei-Che Lin, Ya-Chun Lan, Ling-Huei Tseng, and Shau-Hsuan Li. 2019. "Positive Programmed Cell Death-Ligand 1 Expression Predicts Poor Treatment Outcomes in Esophageal Squamous Cell Carcinoma Patients Receiving Neoadjuvant Chemoradiotherapy" Journal of Clinical Medicine 8, no. 11: 1864. https://doi.org/10.3390/jcm8111864
APA StyleHuang, W.-T., Lu, H.-I., Wang, Y.-M., Chen, Y.-H., Lo, C.-M., Lin, W.-C., Lan, Y.-C., Tseng, L.-H., & Li, S.-H. (2019). Positive Programmed Cell Death-Ligand 1 Expression Predicts Poor Treatment Outcomes in Esophageal Squamous Cell Carcinoma Patients Receiving Neoadjuvant Chemoradiotherapy. Journal of Clinical Medicine, 8(11), 1864. https://doi.org/10.3390/jcm8111864