Magnetic Resonance Imaging for Translational Research in Oncology
Abstract
:1. Introduction
2. Animal Models in Oncology
2.1. Xenograft and Orthotopic Models
2.2. Patient-Derived Xenografts (PDX)
2.3. Genetically Engineered Mouse Models (GEMMs)
2.4. Chemical and Radiation-Induced Models
2.5. Metastatic Models
3. In Vivo Imaging
3.1. Computed Tomography (CT)
3.2. Positron Emission Tomography (PET)
3.3. Single-Photon Emission Computed Tomography (SPECT)
3.4. High-Frequency Ultrasonography (HFUS)
3.5. Magnetic Resonance Imaging (MRI)
3.6. Multimodality Imaging
4. Magnetic Resonance Imaging Sequences in the Translational Context
4.1. T1 and T2 Weighted Sequences
4.1.1. Thyroid
4.1.2. Breast
4.1.3. Prostate
4.2. Dynamic Contrast-Enhanced
4.2.1. Breast
4.2.2. Prostate
4.3. Arterial Spin Labeling
Breast
4.4. Blood Oxygen Level-Dependent Functional Magnetic Resonance Imaging
Breast
4.5. Oxygen-enhanced Magnetic Resonance Imaging
Prostate
4.6. Diffusion-Weighted Imaging
4.6.1. Thyroid
4.6.2. Breast
4.6.3. Prostate
4.7. Diffusion Kurtosis Imaging
Thyroid
4.8. Magnetic Resonance Spectroscopy
4.8.1. Thyroid
4.8.2. Breast
4.8.3. Prostate
4.9. Chemical Exchange Saturation Transfer
4.9.1. Breast
4.9.2. Prostate
4.10. Short Tau Inversion Recovery
Breast
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cohrs, R.J.; Martin, T.; Ghahramani, P.; Bidaut, L.; Higgins, P.J.; Shahzad, A. Translational medicine definition by the european society for translational medicine. New Horiz. Transl. Med. 2015, 2, 86–88. [Google Scholar] [CrossRef]
- Rubio, D.M.; Schoenbaum, E.E.; Lee, L.S.; Schteingart, D.E.; Marantz, P.R.; Anderson, K.E.; Platt, L.D.; Baez, A.; Esposito, K. Defining translational research: Implications for training. Acad. Med. 2010, 85, 470–475. [Google Scholar] [CrossRef] [PubMed]
- De Jong, M.; Maina, T. Of mice and humans: Are they the same?—Implications in cancer translational research. J. Nucl. Med. 2010, 51, 501–504. [Google Scholar] [CrossRef] [PubMed]
- De Jong, M.; Essers, J.; Van Weerden, W.M. Imaging preclinical tumour models: Improving translational power. Nat. Rev. Cancer 2014, 14, 481–493. [Google Scholar] [CrossRef]
- Denayer, T.; Stöhr, T.; Van Roy, M. Animal models in translational medicine: Validation and prediction. New Horiz. Transl. Med. 2014, 2, 5–11. [Google Scholar] [CrossRef]
- Emes, R.D.; Goodstadt, L.; Winter, E.E.; Ponting, C.P. Comparison of the genomes of human and mouse lays the foundation of genome zoology. Hum. Mol. Genet. 2003, 12, 701–709. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, Y.; Yamashita, R.; Shirota, M.; Sakakibara, Y.; Chiba, J.; Mizushima-Sugano, J.; Nakai, K.; Sugano, S. Sequence comparison of human and mouse genes reveals a homologous block structure in the promoter regions. Genome Res. 2004, 14, 1711–1718. [Google Scholar] [CrossRef]
- Koo, V.; Hamilton, P.W.; Williamson, K. Non-invasive in vivo imaging in small animal research. Cell Oncol. 2006, 28, 127–139. [Google Scholar]
- Cunha, L.; Horvath, I.; Ferreira, S.; Lemos, J.; Costa, P.; Vieira, D.; Veres, D.S.; Szigeti, K.; Summavielle, T.; Màthè, D.; et al. Preclinical imaging: An essential ally in modern biosciences. Mol. Diagn. Ther. 2014, 18, 153–173. [Google Scholar] [CrossRef]
- Mejia, J.; Camargo Miranda, A.C.; Ranucci Durante, A.C.; de Oliveira, L.R.; de Barboza, M.R.F.F.; Taboada Rosell, K.; Pereira Jardim, D.; Holthausen Campos, A.; dos Reis, M.A.; Forli Catanoso, M.; et al. Preclinical molecular imaging: Development of instrumentation for translational research with small laboratory animals. Einstein 2016, 14, 408–414. [Google Scholar] [CrossRef]
- Lewis, J.S.; Achilefu, S.; Garbow, J.R.; Laforest, R.; Welch, M.J. Small animal imaging: Current technology and perspectives for oncological imaging. Eur. J. Cancer 2002, 38, 2173–2188. [Google Scholar] [CrossRef]
- Pomper, M.G. Translational molecular imaging for cancer. Cancer Imaging 2005, 5, S16–S26. [Google Scholar] [CrossRef] [Green Version]
- Workman, P.; Aboagye, E.O.; Balkwill, F.; Balmain, A.; Bruder, G.; Chaplin, D.J.; Double, J.A.; Everitt, J.; Farningham, D.A.H.; Glennie, M.J.; et al. Guidelines for the welfare and use of animals in cancer research. Br. J. Cancer 2010, 102, 1555–1577. [Google Scholar] [CrossRef] [Green Version]
- Kircher, M.F.; Hricak, H.; Larson, S.M. Molecular imaging for personalized cancer care. Mol. Oncol. 2012, 6, 182–195. [Google Scholar] [CrossRef]
- Wolf, G.; Abolmaali, N. Preclinical molecular imaging using PET and MRI. Mol. Imaging Oncol. 2013, 187, 257–310. [Google Scholar]
- Grassi, R.; Cavaliere, C.; Cozzolino, S.; Mansi, L.; Cirillo, S.; Tedeschi, G.; Franchi, R.; Russo, P.; Cornacchia, S.; Rotondo, A. Small animal imaging facility: New perspectives for the radiologist. Radiol. Med. 2009, 114, 152–167. [Google Scholar] [CrossRef] [PubMed]
- James, M.L.; Gambhir, S.S. A molecular imaging primer: Modalities, imaging agents, and applications. Physiol. Rev. 2012, 92, 897–965. [Google Scholar] [CrossRef]
- Talmadge, J.E.; Singh, R.K.; Fidler, I.J.; Raz, A. Murine models to evaluate novel and conventional therapeutic strategies for cancer. Am. J. Pathol. 2007, 170, 793–804. [Google Scholar] [CrossRef] [PubMed]
- Imaoka, T.; Nishimura, M.; Iizuka, D.; Daino, K.; Takabatake, T.; Okamoto, M.; Kakinuma, S.; Shimada, Y. Radiation-induced mammary carcinogenesis in rodent models: what’s different from chemical carcinogenesis? J. Radiat. Res. 2009, 50, 281–293. [Google Scholar] [CrossRef]
- Gargiulo, S.; Greco, A.; Gramanzini, M.; Esposito, S.; Affuso, A.; Brunetti, A.; Vesce, G. Mice anesthesia, analgesia, and care, part I: Anesthetic considerations in preclinical research. ILAR J. 2012, 53, E55–E69. [Google Scholar] [CrossRef] [PubMed]
- Becher, O.J.; Holland, E.C. Genetically engineered models have advantages over xenografts for preclinical studies. Cancer Res. 2006, 66, 3355–3359. [Google Scholar] [CrossRef] [PubMed]
- Lunardi, A.; Nardella, C.; Clohessy, J.C.; Pandolfi, P.P. Of model pets and cancer models: An introduction to mouse models of cancer. Cold Spring Harb. Protoc. 2014, 1, 17–31. [Google Scholar] [CrossRef] [PubMed]
- Teicher, B.A. Tumor models for efficacy determination. Mol. Cancer Ther. 2006, 5, 2435–2443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schreiber, R.D.; Old, L.J.; Smyth, M.J. Cancer Immunoediting: Integrating Immunity’s Roles in Cancer Suppression and Promotion. Science 2011, 331, 1565–1570. [Google Scholar] [CrossRef]
- Kim, S. Animal models of cancer in the head and neck region. Clin. Exp. Otorhinolaryngol. 2009, 2, 55–60. [Google Scholar] [CrossRef]
- Antonello, Z.A.; Nucera, C. Orthotopic mouse models for the preclinical and translational study of targeted therapies against metastatic human thyroid carcinoma with BRAFV600E or wild-type BRAF. Oncogene 2014, 33, 5397–5404. [Google Scholar] [CrossRef]
- Rubio-Viqueira, B.; Hidalgo, M. Direct in vivo xenograft tumor model for predicting chemotherapeutic drug response in cancer patients. Clin. Pharm. Ther. 2009, 85, 217–221. [Google Scholar] [CrossRef]
- Jung, J. Human Tumor Xenograft Models for Preclinical Assessment of Anticancer Drug Development. Toxicol. Res. 2014, 30, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Schweppe, R.E.; Klopper, J.P.; Korch, C.; Pugazhenthi, U.; Benezra, M.; Knauf, J.A.; Fagin, J.A.; Marlow, L.A.; Copland, J.A.; Smallridge, R.C.; et al. Deoxyribonucleic acid profiling analysis of 40 human thyroid cancer cell lines reveals cross-contamination resulting in cell line redundancy and misidentification. J. Clin. Endocrinol. Metab. 2008, 93, 4331–4341. [Google Scholar] [CrossRef]
- Schweppe, R.E. Thyroid cancer cell lines: Critical models to study thyroid cancer biology and new therapeutic targets. Front. Endocrinol. 2012, 3, 81. [Google Scholar] [CrossRef] [Green Version]
- Saiselet, M.; Floor, S.; Tarabichi, M.; Dom, G.; Hébrant, A.; van Staveren, W.G.C.; Maenhaut, C. Thyroid cancer cell lines: An overview. Front. Endocrinol. 2012, 3, 133. [Google Scholar] [CrossRef] [PubMed]
- Greco, A.; Auletta, L.; Orlandella, F.M.; Iervolino, P.L.C.; Klain, M.; Salvatore, G.; Mancini, M. Preclinical imaging for the study of mouse models of thyroid cancer. Int. J. Mol. Sci. 2017, 18, 2731. [Google Scholar] [CrossRef] [PubMed]
- Greco, A.; Albanese, S.; Auletta, L.; Mirabelli, P.; Zannetti, A.; D’Alterio, C.; Di Maro, G.; Orlandella, F.M.; Salvatore, G.; Soricelli, A.; et al. High-Frequency Ultrasound-Guided injection for the generation of a novel orthotopic mouse model of human thyroid carcinoma. Thyroid 2016, 26, 552–558. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Park, Y.W.; Schiff, B.A.; Doan, D.D.; Yazici, Y.; Jasser, S.A.; Younes, M.; Mandal, M.; Bekele, B.N.; Myers, J.N. An Orthotopic Model of Anaplastic Thyroid Carcinoma in Athymic Nude Mice. Clin. Cancer Res. 2005, 11, 1713–1721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nucera, C.; Nehs, M.A.; Mekel, M.; Zhang, X.; Hodin, R.; Lawler, J.; Nose, V.; Parangi, S. A novel orthotopic mouse model of human anaplastic thyroid carcinoma. Thyroid 2009, 19, 1077–1084. [Google Scholar] [CrossRef] [PubMed]
- Vargo-Gogola, T.; Rosen, J.M. Modelling breast cancer: One size does not fit all. Nat. Rev. Cancer 2007, 7, 659–672. [Google Scholar] [CrossRef]
- Dewan, M.Z.; Terunuma, H.; Ahmed, S.; Ohba, K.; Takada, M.; Tanaka, Y.; Toi, M.; Yamamoto, N. Natural killer cells in breast cancer cell growth and metastasis in SCID mice. Biomed. Pharm. 2005, 59, s375–s379. [Google Scholar] [CrossRef]
- Beckhove, P.; Schutz, F.; Diel, I.J.; Solomayer, E.F.; Bastert, G.; Foerster, J.; Feuerer, M.; Bai, L.; Sinn, H.P.; Umansky, V.; et al. Efficient engraftment of human primary breast cancer transplants in nonconditioned NOD/SCID mice. Int. J. Cancer 2003, 105, 444–453. [Google Scholar] [CrossRef]
- Puchalapalli, M.; Zeng, X.; Mu, L.; Anderson, A.; Glickman, L.X.; Zhang, M.; Sayyad, M.R.; Mosticone Wangensteen, S.; Clevenger, C.V.; Koblinski, J.E. NSG mice provide a better spontaneous model of breast cancer metastasis than athymic (nude) mice. PLoS ONE 2016, 11, e0163521. [Google Scholar] [CrossRef]
- Van Weerden, W.M.; Bangma, C.; de Wit, R. Human xenograft models as useful tools to assess the potential of novel therapeutics in prostate cancer. Br. J. Cancer 2009, 100, 13–18. [Google Scholar] [CrossRef]
- Tuomela, J.; Härkönen, P. Tumor models for prostate cancer exemplified by fibroblast growth factor 8-induced tumorigenesis and tumor progression. Reprod. Biol. 2014, 14, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Bastide, C.; Bagnis, C.; Mannoni, P.; Hassoun, J.; Bladou, F. A Nod Scid mouse model to study human prostate cancer. Prostate Cancer Prostatic Dis. 2002, 5, 311–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koshida, K.; Konaka, H.; Imao, T.; Egawa, M.; Mizokami, A.; Namiki, M. Comparison of two in vivo models for prostate cancer: Orthotopic and intratesticular inoculation of LNCaP or PC-3 cells. Int. J. Urol. 2004, 11, 1114–1121. [Google Scholar] [CrossRef] [PubMed]
- Jackstadt, R.; Sansom, O.J. Mouse models of intestinal cancer. J. Pathol. 2016, 238, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Thalheimer, A.; Illert, B.; Bueter, M.; Gattenlohner, S.; Stehle, D.; Gasser, M.; Thiede, A.; Waaga-Gasser, A.M.; Meyer, D. Feasibility and Limits of an Orthotopic Human Colon Cancer Model in Nude Mice. Comp. Med. 2006, 56, 105–109. [Google Scholar] [PubMed]
- Donigan, M.; Norcross, L.S.; Aversa, J.; Colon, J.; Smith, J.; Madero-Visbal, R.; Li, S.; McCollum, N.; Ferrara, A.; Gallagher, J.T.; et al. Novel Murine Model for Colon Cancer: Non-Operative Trans-Anal Rectal Injection. J. Surg. Res. 2009, 154, 299–303. [Google Scholar] [CrossRef]
- Tentler, J.J.; Tan, A.C.; Weekes, C.D.; Jimeno, A.; Leong, S.; Pitts, T.M.; Arcaroli, J.J.; Messersmith, W.A.; Eckhardt, S.G. Patient-derived tumour xenografts as models for oncology drug development. Nat. Rev. Clin. Oncol. 2012, 9, 338–350. [Google Scholar] [CrossRef] [Green Version]
- Siolas, D.; Hannon, G.J. Patient-Derived Tumor Xenografts: Transforming clinical samples into mouse models. Cancer Res. 2013, 73, 5315–5319. [Google Scholar] [CrossRef]
- Hidalgo, M.; Amant, F.; Biankin, A.V.; Budinská, E.; Byrne, A.T.; Caldas, C.; Clarke, R.B.; De Jong, S.; Jonkers, J.; Mælandsmo, G.M.; et al. Patient derived xenograft models: An emerging platform for translational cancer research. Cancer Discov. 2014, 4, 998–1013. [Google Scholar] [CrossRef]
- Greco, A.; Albanese, S.; Auletta, L.; De Carlo, F.; Salvatore, M.; Howard, C.M.; Claudio, P.P. Advances in molecular preclinical therapy mediated by imaging. Q. J. Nucl. Med. Mol. Imaging 2017, 61, 76–94. [Google Scholar]
- Vitale, G.; Gaudenzi, G.; Circelli, L.; Manzoni, M.F.; Bassi, A.; Fioritti, N.; Faggiano, A.; Colao, A. Animal models of medullary thyroid cancer: State of the art and view to the future. Endocr. Relat. Cancer 2017, 24, R1–R12. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Claerhout, S.; Prat, A.; Dobrolecki, L.E.; Petrovic, I.; Lai, Q.; Landis, M.D.; Wiechmann, L.; Schiff, R.; Giuliano, M.; et al. A renewable tissue resource of phenotypically stable, biologically and ethnically diverse, patient-derived human breast cancer xenograft models. Cancer Res. 2013, 73, 4885–4897. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Lewis, M.T. Establishment of Patient-Derived Xenograft (PDX) Models of human breast cancer. Curr. Protoc. Mouse Biol. 2013, 3, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Rea, D.; del Vecchio, V.; Palma, G.; Barbieri, A.; Falco, M.; Luciano, A.; De Biase, D.; Perdonà, S.; Facchini, G.; Arra, C. Mouse models in prostate cancer translational research: From xenograft to PDX. BioMed Res. Int. 2016, 2016, 9750795. [Google Scholar] [CrossRef]
- Puig, I.; Chicote, I.; Tenbaum, S.P.; Arqués, O.; Herance, J.R.; Gispert, J.D.; Jimenez, J.; Landolfi, S.; Caci, K.; Allende, H.; et al. A personalized preclinical model to evaluate the metastatic potential of patient-derived colon cancer initiating cells. Clin. Cancer Res. 2013, 19, 6787–6801. [Google Scholar] [CrossRef]
- Sook Seol, H.; Kang, H.; Lee, S.I.; Kim, N.E.; Kim, T.I.; Chun, S.M.; Kim, T.W.; Yu, C.S.; Suh, Y.A.; Singh, S.R.; et al. Development and characterization of a colon PDX model that reproduces drug responsiveness and the mutation profiles of its original tumor. Cancer Lett. 2014, 345, 56–64. [Google Scholar] [CrossRef]
- Cook, N.; Jodrell, D.I.; Tuveson, D.A. Predictive in vivo animal models and translation to clinical trials. Drug Discov. Today 2012, 17, 253–260. [Google Scholar] [CrossRef]
- Valeri, N.; Braconi, C.; Gasparini, P.; Murgia, C.; Lampis, A.; Paulus-Hock, V.; Hart, J.R.; Ueno, L.; Grivennikov, S.I.; Lovat, F.; et al. MicroRNA-135b Promotes cancer progression by acting as a downstream effector of oncogenic pathways in colon cancer. Cancer Cell 2014, 24, 469–483. [Google Scholar] [CrossRef]
- Kim, J.B.; O’Hare, M.J.; Stein, R. Models of breast cancer: Is merging human and animal models the future? Breast Cancer Res. 2004, 6, 22–30. [Google Scholar] [CrossRef]
- Simmons, J.K.; Hildreth, B.E.; Supsavhad, W.; Elshafae, S.M.; Hassan, B.B.; Dirksen, W.P.; Toribio, R.E.; Rosol, T.J. Animal Models of Bone Metastasis. Vet. Pathol. 2015, 52, 827–841. [Google Scholar] [CrossRef]
- Grabowska, M.M.; DeGraff, D.J.; Yu, X.; Jin, R.J.; Chen, Z.; Borowsky, A.D.; Matusik, R.J. Mouse Models of Prostate Cancer: Picking the Best Model for the Question. Cancer Metastasis Rev. 2014, 33, 377–397. [Google Scholar] [CrossRef]
- Taketo, M.M.; Edelmann, W. Mouse models of colon cancer. Gastroenterology 2009, 136, 780–798. [Google Scholar] [CrossRef] [PubMed]
- Boltze, C.; Brabant, G.; Dralle, H.; Gerlach, R.; Roessner, A.; Hoang-Vu, C. radiation-induced thyroid carcinogenesis as a function of time and dietary iodine supply: An in vivo model of tumorigenesis in the rat. Endocrinology 2002, 143, 2584–2592. [Google Scholar] [CrossRef]
- Rusinek, D.; Krajewska, J.; Jarząb, M. Mouse models of papillary thyroid carcinoma—Short review. Endokrynol. Pol. 2016, 67, 212–223. [Google Scholar] [CrossRef] [PubMed]
- Rivina, L.; Davoren, M.J.; Schiestl, R.H. Mouse models for radiation-induced cancers. Mutagenesis 2016, 31, 491–509. [Google Scholar] [CrossRef] [PubMed]
- Rosol, T.J.; Tannehill-Gregg, S.H.; LeRoy, B.E.; Mandl, S.; Contag, C.H. Animal models of bone metastasis. Cancer Treat. Res. 2004, 118, 47–81. [Google Scholar]
- Heijstek, M.W.; Kranenburg, O.; Borel Rinkes, I.H.M. Mouse models of colorectal cancer and liver metastases. Dig. Surg. 2005, 22, 16–25. [Google Scholar] [CrossRef]
- Khanna, C.; Hunter, K. Modeling metastasis in vivo. Carcinogenesis 2005, 26, 513–523. [Google Scholar] [CrossRef]
- Hoffman, R.M. Orthotopic metastatic mouse models for anticancer drug discovery and evaluation: A bridge to the clinic. Investig. New Drug 1999, 17, 343–359. [Google Scholar] [CrossRef]
- Zhang, L.; Gaskins, K.; Yu, Z.; Xiong, Y.; Merino, M.J.; Kebebew, E. An in vivo mouse model of metastatic human thyroid cancer. Thyroid 2014, 24, 695–704. [Google Scholar] [CrossRef]
- Morrison, J.A.; Pike, L.A.; Lund, G.; Zhou, Q.; Kessler, B.E.; Bauerle, K.T.; Sams, S.B.; Haugen, B.R.; Schweppe, R.E. Characterization of thyroid cancer cell lines in murine orthotopic and intracardiac metastasis models. Horm. Cancer 2015, 6, 87–99. [Google Scholar] [CrossRef] [PubMed]
- Iorns, E.; Drews-Elger, K.; Ward, T.M.; Dean, S.; Clarke, J.; Berry, D.; El Ashry, D.; Lippman, M. A new mouse model for the study of human breast cancer metastasis. PLoS ONE 2012, 7, e47995. [Google Scholar] [CrossRef] [PubMed]
- Camorani, S.; Hill, B.S.; Fontanella, R.; Greco, A.; Gramanzini, M.; Auletta, L.; Gargiulo, S.; Albanese, S.; Lucarelli, E.; Cerchia, L.; et al. Inhibition of bone marrow-derived mesenchymal stem cells homing towards triple-negative breast cancer microenvironment using an anti-PDGFRβ aptamer. Theranostics 2017, 7, 3595–3607. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.H.; Krueger, U.; Henne-Bruns, D.; Kremer, B.; Kalthoff, H. Orthotopic transplantation model of human gastrointestinal cancer and detection of micrometastases. World J. Gastroenterol. 2001, 7, 381–386. [Google Scholar] [CrossRef]
- Cespedes, M.V.; Espina, C.; Garcia-Cabezas, M.A.; Trias, M.; Boluda, A.; Gomez del Pulgar, M.T.; Sancho, F.J.; Nistal, M.; Lacal, J.C.; Mangues, R. Orthotopic microinjection of human colon cancer cells in nude mice induces tumor foci in all clinically relevant metastatic sites. Am. J. Pathol. 2007, 3, 1077–1085. [Google Scholar] [CrossRef]
- Donigan, M.; Loh, B.D.; Norcross, L.S.; Li, S.; Williamson, P.R.; DeJesus, S. A metastatic colon cancer model using nonoperative transanal rectal injection. Surg. Endosc. 2010, 24, 642–647. [Google Scholar] [CrossRef]
- Rajput, A.; Agarwal, E.; Leiphrakpam, P.; Brattain, M.G.; Chowdhury, S. Establishment and validation of an orthotopic metastatic mouse model of colorectal cancer. ISRN Hepatol. 2013, 2013, 206875. [Google Scholar] [CrossRef]
- Young Oh, B.; Kyung Hong, H.; Lee, W.Y.; Cho, Y.B. Animal models of colorectal cancer with liver metastasis. Cancer Lett. 2017, 387, 114–120. [Google Scholar]
- Wong, F.C.; Kim, E.E. A review of molecular imaging studies reaching the clinical stage. Eur. J. Radiol. 2009, 70, 205–211. [Google Scholar] [CrossRef]
- Fruhwirth, G.O.; Kneilling, M.; de Vries, I.J.M.; Weigelin, B.; Srinivas, M.; Aarntzen, E.H.J.G. The potential of in vivo imaging for optimization of molecular and cellular anti-cancer immunotherapies. Mol. Imaging Biol. 2018, 20, 696–704. [Google Scholar] [CrossRef]
- Badea, C.T.; Drangova, M.; Holdsworth, D.W.; Johnson, G.A. In vivo small animal imaging using micro-CT and digital subtraction angiography. Phys. Med. Biol. 2008, 53, R319–R350. [Google Scholar] [CrossRef] [PubMed]
- Kagadis, G.C.; Loudos, G.; Katsanos, K.; Langer, S.G.; Nikiforidis, G.C. In vivo small animal imaging: Current status and future prospects. Med. Phys. 2010, 37, 6421–6442. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.Y.; Wang, Y.X.; Lin, Y.; Zhang, J.S.; Yang, F.; Zhou, Q.L.; Liao, Y.Y. Advance of molecular imaging technology and targeted imaging agent in imaging and therapy. BioMed Res. Int. 2014, 2014, 819324. [Google Scholar] [CrossRef]
- Gabrielson, K.; Maronpot, R.; Monette, S.; Mlynarczyk, C.; Ramot, Y.; Nyska, A.; Sysa-Shah, P. In vivo imaging with confirmation by histopathology for increased rigor and reproducibility in translational research: A review of examples, options, and resources. ILAR J. 2018, 59, 80–98. [Google Scholar] [CrossRef] [PubMed]
- Lauber, D.T.; Fulop, A.; Kovacs, T.; Szigeti, K.; Mathe, D.; Szijarto’, A. State of the art in vivo imaging techniques for laboratory animals. Lab. Anim. 2017, 51, 465–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Es, S.C.; Venema, C.M.; Glaudemans, A.W.J.M.; Lub-de Hooge, M.N.; Elias, S.G.; Boellaard, R.; Hospers, G.A.P.; Schröder, C.P.; de Vries, E.G.E. Translation of new molecular imaging approaches to the clinical setting: Bridging the gap to implementation. J. Nucl. Med. 2016, 57, 96S–104S. [Google Scholar] [CrossRef] [PubMed]
- Rowland, D.J.; Lewis, J.S.; Welch, M.J. Molecular Imaging: The application of small animal positron emission tomography. J. Cell. Biochem. 2002, 39 (Suppl. 39), 110–115. [Google Scholar] [CrossRef]
- Kiessling, F.; Fokong, S.; Koczera, P.; Lederle, W.; Lammers, T. Ultrasound microbubbles for molecular diagnosis, therapy, and theranostics. J. Nucl. Med. 2012, 53, 345–348. [Google Scholar] [CrossRef]
- Loveless, M.E.; Li, X.; Huamani, J.; Lyshchik, A.; Dawant, B.; Hallahan, D.; Gore, J.C.; Yankeelov, T.E. A Method for Assessing the Microvasculature in a Murine Tumor Model Using Contrast-Enhanced Ultrasonography. J. Ultrasound Med. 2008, 27, 1699–1709. [Google Scholar] [CrossRef] [Green Version]
- Palmowski, M.; Huppert, J.; Hauff, P.; Reinhardt, M.; Schreiner, K.; Socher, M.A.; Hallscheidt, P.; Kauffmann, G.W.; Semmler, W.; Kiessling, F. Vessel fractions in tumor xenografts depicted by flow- or contrast-sensitive three-dimensional high-frequency doppler ultrasound respond differently to antiangiogenic treatment. Cancer Res. 2008, 68, 7042–7049. [Google Scholar] [CrossRef]
- Willmann, J.K.; Paulmurugan, R.; Chen, K.; Gheysens, O.; Rodriguez-Porcel, M.; Lutz, A.M.; Chen, I.Y.; Chen, X.; Gambhir, S.S. US imaging of tumor angiogenesis with microbubbles targeted to vascular endothelial growth factor receptor type 2 in mice. Radiology 2008, 246, 508–518. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Zhan, Y.; Rutkowski, J.L.; Feuerstein, G.Z.; Wang, X. Correlation between 2- and 3-dimensional assessment of tumor volume and vascular density by ultrasonography in a transgenic mouse model of mammary carcinoma. J. Ultrasound Med. 2010, 29, 587–595. [Google Scholar] [CrossRef] [PubMed]
- Hormuth, D.A.; Sorace, A.G.; Virostko, J.; Abramson, R.G.; Bhujwalla, Z.M.; Enriquez-Navas, P.; Gillies, R.; Hazle, J.D.; Mason, R.P.; Quarles, C.C.; et al. Translating preclinical MRI methods to clinical oncology. J. Magn. Reson. Imaging 2019. [Google Scholar] [CrossRef] [PubMed]
- Hildebrandt, I.J.; Su, H.; Weber, W.A. Anesthesia and other considerations for in vivo imaging of small animals. ILAR J. 2008, 49, 17–26. [Google Scholar] [CrossRef]
- Brockmann, M.A.; Kemmling, A.; Groden, C. Current issues and perspectives in small rodent magnetic resonance imaging using clinical MRI scanners. Methods 2007, 43, 79–87. [Google Scholar] [CrossRef]
- Pichler, B.J.; Wehrl, H.F.; Kolb, A.; Judenhofer, M.S. PET/MRI: The next generation of multi-modality imaging? Semin. Nucl. Med. 2008, 38, 199–208. [Google Scholar] [CrossRef]
- Pichler, B.J.; Kolb, A.; Nagele, T.; Schlemmer, H.P. PET/MRI: Paving the way for the next generation of clinical multimodality imaging applications. J. Nucl. Med. 2010, 51, 333–336. [Google Scholar] [CrossRef]
- Judenhofer, M.S.; Cherry, S.R. Applications for Preclinical PET/MRI. Semin. Nucl. Med. 2013, 43, 19–29. [Google Scholar] [CrossRef]
- De Souza, R.; Spence, T.; Huang, H.; Allen, C. Preclinical imaging and translational animal models of cancer for accelerated clinical implementation of nanotechnologies and macromolecular agents. J. Control. Release 2015, 219, 313–330. [Google Scholar] [CrossRef]
- Auletta, L.; Gramanzini, M.; Gargiulo, S.; Albanese, S.; Salvatore, M.; Greco, A. Advances in multimodal molecular imaging. Q. J. Nucl. Med. Mol. Imaging 2017, 61, 19–32. [Google Scholar]
- Kauppinen, R.A.; Peet, A.C. Using magnetic resonance imaging and spectroscopy in cancer diagnostics and monitoring. Preclinical and clinical approaches. Cancer Biol. Ther. 2011, 12, 665–679. [Google Scholar] [CrossRef] [PubMed]
- Felder, J.; Celik, A.A.; Choi, C.H.; Schwan, S.; Shah, N.J. 9.4 T small animal MRI using clinical components for direct translational studies. Transl. Med. 2017, 15, 264. [Google Scholar] [CrossRef] [PubMed]
- Scherzinger, A.L.; Hendee, W.R. Basic principles of magnetic resonance imaging an update. West J. Med. 1985, 143, 782–792. [Google Scholar] [PubMed]
- Moser, E.; Stadlbauer, A.; Windischberger, C.; Quick, H.H.; Ladd, M.E. Magnetic resonance imaging methodology. Eur. J. Nucl. Med. Mol. Imaging 2009, 36, S30–S41. [Google Scholar] [CrossRef]
- Mills, A.F.; Sakai, O.; Anderson, S.W.; Jara, H. Principles of quantitative MR imaging with illustrated review of applicable modular pulse diagrams. RadioGraphics 2017, 37, 2083–2105. [Google Scholar] [CrossRef]
- Chavhan, G.B.; Babyn, P.S.; Thomas, B.; Shroff, M.M.; Haacke, E.M. Principles, techniques, and applications of T2*- based MR imaging and its special applications. RadioGraphics 2009, 29, 1433–1449. [Google Scholar] [CrossRef]
- Pautler, R.G. Mouse MRI: Concepts and applications in physiology. Physiology 2004, 19, 168–175. [Google Scholar] [CrossRef]
- Meyer, H.J.; Schob, S.; Hohn, A.K.; Surov, A. MRI texture analysis reflects histopathology parameters in thyroid cancer—A first preliminary study. Transl. Oncol. 2017, 10, 911–916. [Google Scholar] [CrossRef]
- Aliu, S.O.; Wilmes, L.J.; Moasser, M.M.; Hann, B.C.; Li, K.L.; Wang, D.; Hylton, N.M. MRI methods for evaluating the effects of tyrosine kinase inhibitor administration used to enhance chemotherapy efficiency in a breast tumor xenograft model. J. Magn. Res. Imaging 2009, 29, 1071–1079. [Google Scholar] [CrossRef] [Green Version]
- Holli-Helenius, K.; Salminen, A.; Rinta-Kiikka, I.; Koskivuo, I.; Brück, N.; Boström, P.; Parkkola, R. MRI texture analysis in differentiating luminal A and luminal B breast cancer molecular subtypes—A feasibility study. BMC Med. Imaging 2017, 17, 69. [Google Scholar] [CrossRef]
- Nastiuk, K.L.; Liu, H.; Hamamura, M.; Muftuler, L.T.; Nalcioglu, O.; Krolewski, J.J. In vivo MRI volumetric measurement of prostate regression and growth in mice. BMC Urol. 2007, 7, 12. [Google Scholar] [CrossRef]
- Ullrich, R.T.; Jikeli, J.F.; Diedenhofen, M.; Böhm-Sturm, P.; Unruh, M.; Vollmar, S.; Hoehn, M. In-vivo visualization of tumor microvessel density and response to anti-angiogenic treatment by high resolution MRI in mice. PLoS ONE 2011, 6, e19592. [Google Scholar] [CrossRef]
- Khalifa, F.; Soliman, A.; El-Baz, A.; El-Ghar, M.A.; El-Diasty, T.; Gimel’farb, G.; Ouseph, R.; Dwyer, A.C. Models and methods for analyzing DCE-MRI: A review. Med. Phys. 2014, 41, 124301. [Google Scholar] [CrossRef]
- Fiordelisi, M.F.; Auletta, L.; Meomartino, L.; Basso, L.; Fatone, G.; Salvatore, M.; Mancini, M.; Greco, A. preclinical molecular imaging for precision medicine in breast cancer mouse models. Contrast Media Mol. Imaging 2019, 2019, 8946729. [Google Scholar] [CrossRef]
- Pickles, M.D.; Lowry, M.; Manton, D.J.; Gibbs, P.; Turnbull, L.W. Role of dynamic contrast enhanced MRI in monitoring early response of locally advanced breast cancer to neoadjuvant chemotherapy. Breast Cancer Res. Treat. 2005, 91, 1–10. [Google Scholar] [CrossRef]
- Ah-See, M.L.W.; Makris, A.; Taylor, N.J.; Harrison, M.; Richman, P.I.; Burcombe, R.J.; Stirling, J.J.; d’Arcy, J.A.; Collins, D.J.; Pittam, M.R.; et al. Early changes in functional dynamic magnetic resonance imaging predict for pathologic response to neoadjuvant chemotherapy in primary breast cancer. Clin. Cancer Res. 2008, 14, 6580–6589. [Google Scholar] [CrossRef]
- Howe, F.A.; Mcphail, L.D.; Griffiths, J.R.; Mcintyre, D.J.O.; Robinson, S.P. Vessel size index magnetic resonance imaging to monitor the effect of antivascular treatment in a rodent tumor model. Int. J. Radiat. Oncol. Biol. Phys. 2008, 71, 1470–1476. [Google Scholar] [CrossRef]
- Xu, J.; Li, K.; Smith, R.A.; Waterton, J.C.; Zhao, P.; Ding, Z.; Does, M.D.; Manning, H.C.; Gore, J.C. A comparative assessment of preclinical chemotherapeutic response of tumors using quantitative non-Gaussian diffusion MRI. Magn. Reson. Imaging 2017, 37, 195–202. [Google Scholar] [CrossRef]
- Dassler, K.; Scholle, F.D.; Schütz, G. Dynamic Gadobutrol-Enhanced MRI predicts early response to antivascular but not to antiproliferation therapy in a mouse xenograft model. Magn. Reson. Med. 2014, 71, 826–1833. [Google Scholar] [CrossRef]
- Rajendran, R.; Huang, W.; Tang, A.M.Y.; Liang, J.M.; Choo, S.; Reese, T.; Hentze, H.; van Boxtel, S.; Cliffe, A.; Rogers, K.; et al. Early detection of antiangiogenic treatment responses in a mouse xenograft tumor model using quantitative perfusion MRI. Cancer Med. 2014, 3, 47–60. [Google Scholar] [CrossRef]
- Cho, H.J.; Ackerstaff, E.; Carlin, S.; Lupu, M.E.; Wang, Y.; Rizwan, A.; O’Donoghue, J.; Ling, C.C.; Humm, J.L.; Zanzonico, P.B.; et al. Noninvasive multimodality imaging of the tumor microenvironment: Registered dynamic magnetic resonance imaging and positron emission tomography studies of a preclinical tumor model of tumor hypoxia. Neoplasia 2009, 11, 247–259. [Google Scholar] [CrossRef]
- Kang, H.; Hainline, A.; Arlinghaus, L.R.; Elderidge, S.; Li, X.; Abramson, V.G.; Chakravarthy, A.B.; Abramson, R.G.; Bingham, B.; Fakhoury, K.; et al. Combining multiparametric MRI with receptor information to optimize prediction of pathologic response to neoadjuvant therapy in breast cancer: Preliminary results. J. Med. Imaging 2018, 5, 011015. [Google Scholar] [CrossRef]
- Røe, K.; Kakar, M.; Seierstad, T.; Ree, A.H.; Olsen, D.R. Early prediction of response to radiotherapy and androgen-deprivation therapy in prostate cancer by repeated functional MRI: A preclinical study. Radiat. Oncol. 2011, 6, 65. [Google Scholar] [CrossRef]
- Golay, X.; Hendrikse, J.; Lim, T.C.C. Perfusion imaging using arterial spin labeling. Top. Magn. Reson. Imaging 2004, 15, 10–27. [Google Scholar] [CrossRef]
- Rajendran, R.; Lewa, S.K.; Yonga, C.X.; Tana, J.; Wangb, D.J.J.; Chuanga, K.H. Quantitative mouse renal perfusion using arterial spin labeling. NMR Biomed 2013, 26, 1225–1232. [Google Scholar] [CrossRef] [Green Version]
- Alsop, D.V.; Detre, J.A.; Golay, X.; Günther, M.; Hendrikse, J.; Hernandez-Garcia, L.; Lu, H.; MacIntosh, B.J.; Parkes, L.M.; Smits, M.; et al. Recommended implementation of arterial spin-labeled perfusion mri for clinical applications: A consensus of the ISMRM perfusion study group and the european consortium for ASL in dementia. Magn. Reson. Med. 2015, 73, 102–116. [Google Scholar] [CrossRef]
- Johnson, S.P.; Ramasawmy, R.; Campbell-Washburn, A.E.; Wells, J.A.; Robson, M.; Rajkumar, V.; Lythgoe, M.F.; Pedley, R.B.; Walker-Samuel, S. Acute changes in liver tumour perfusion measured non-invasively with arterial spin labelling. Br. J. Cancer 2016, 114, 897–904. [Google Scholar] [CrossRef]
- Buchbender, S.; Obenauer, S.; Mohrmann, S.; Martirosian, P.; Buchbender, C.; Miese, F.R.; Wittsack, H.J.; Miekley, M.; Antoch, G.; Lanzman, R.S. Arterial spin labelling perfusion MRI of breast cancer using FAIR TrueFISP: Initial results. Clin. Radiol. 2013, 68, e123–e127. [Google Scholar] [CrossRef]
- Rakow-Penner, R.; Daniel, B.; Glover, G.H. Detecting blood oxygen level-dependent (bold) contrast in the breast. J. Magn. Res. Imaging 2010, 32, 120–129. [Google Scholar] [CrossRef]
- Al-Hallaq, H.A.; Fan, X.; Zamora, M.; River, J.N.; Moulder, J.E.; Karczmar, G.S. Spectrally inhomogeneous BOLD contrast changes detected in rodent tumors with high spectral and spatial resolution MRI. NMR Biomed. 2002, 15, 28–36. [Google Scholar] [CrossRef]
- O’Connor, J.P.B.; Naish, J.H.; Parker, G.J.M.; Waterton, J.C.; Watson, Y.; Jayson, G.C.; Buonaccorsi, G.A.; Cheung, S.; Buckley, D.L.; Mcgrath, D.M.; et al. Preliminary study of oxygen-enhanced longitudinal relaxation in MRI: A potential novel biomarker of oxygenation changes in solid tumors. Int. J. Radiat. Oncol. Biol. Phys. 2009, 75, 1209–1215. [Google Scholar] [CrossRef]
- Linnik, I.V.; Scott, M.L.J.; Holliday, K.F.; Woodhouse, N.; Waterton, J.C.; O’Connor, J.P.B.; Barjat, H.; Liess, C.; Ulloa, J.; Young, H.; et al. Noninvasive tumor hypoxia measurement using magnetic resonance imaging in murine U87 glioma xenografts and in patients with glioblastoma. Magn. Res. Med. 2014, 71, 1854–1862. [Google Scholar] [CrossRef]
- O’Connor, J.P.B.; Boult, J.K.R.; Jamin, Y.; Babur, M.; Finegan, K.G.; Williams, K.J.; Little, R.A.; Jackson, A.; Parker, G.J.M.; Reynolds, A.R.; et al. Oxygen-enhanced mri accurately identifies, quantifies, and maps tumor hypoxia in preclinical cancer models. Cancer Res. 2016, 76, 787–795. [Google Scholar] [CrossRef]
- Jiang, L.; Weatherall, P.T.; McColl, R.W.; Tripathy, D.; Mason, R.P. Blood Oxygenation Level-Dependent (BOLD) contrast magnetic resonance imaging (MRI) for prediction of breast cancer chemotherapy response: A pilot study. J. Magn. Res. Imaging 2013, 37, 1083–1092. [Google Scholar] [CrossRef]
- White, D.A.; Zhang, Z.; Li, L.; Gerberich, J.; Stojadinovic, S.; Peschke, P.; Mason, R.P. Developing Oxygen-Enhanced Magnetic Resonance Imaging as a Prognostic Biomarker of Radiation Response. Cancer Lett. 2016, 380, 69–77. [Google Scholar] [CrossRef]
- Zhao, M.; Pipe, J.G.; Bonnett, J.; Evelhoch, J.L. Early detection of treatment response by diffusion weighted H-NMR spectroscopy in a murine tumour in vivo. Br. J. Cancer 1996, 73, 61–64. [Google Scholar] [CrossRef]
- Koh, D.M.; Collins, D.J. Diffusion-Weighted MRI in the Body: Applications and Challenges in Oncology. Am. J. Roentgenol. 2007, 188, 1622–1635. [Google Scholar] [CrossRef] [Green Version]
- Ross, B.D.; Moffat, B.A.; Lawrence, T.S.; Mukherji, S.K.; Gebarski, S.S.; Quint, D.J.; Johnson, T.D.; Junck, L.; Robertson, P.L.; Muraszko, K.M.; et al. Evaluation of cancer therapy using diffusion magnetic resonance imaging. Mol. Cancer Ther. 2003, 2, 581–587. [Google Scholar]
- Curvo-Semedo, L.; Lambregts, D.M.J.; Maas, M.; Beets, G.L.; Caseiro-Alves, F.; Beets-Tan, R.G.H. Diffusion-Weighted MRI in rectal cancer: Apparent diffusion coefficient as a potential noninvasive marker of tumor aggressiveness. J. Magn. Res. Imaging 2012, 35, 1365–1371. [Google Scholar] [CrossRef]
- Moffat, B.A.; Hall, D.E.; Stojanovska, J.; McConville, P.J.; Moody, J.B.; Chenevert, T.L.; Rehemtulla, A.; Ross, B.D. Diffusion imaging for evaluation of tumor therapies in preclinical animal models. Magn. Reson. Mater. Phys. Biol. Med. 2004, 17, 249–259. [Google Scholar] [CrossRef] [Green Version]
- Padhani, A.R.; Liu, G.; Mu-Koh, D.; Chenevert, T.L.; Thoeny, H.C.; Takahara, T.; Dzik-Jurasz, A.; Ross, B.D.; Van Cauteren, M.; Collins, D.; et al. Diffusion-weighted magnetic resonance imaging as a cancer biomarker: Consensus and recommendations. Neoplasia 2009, 11, 102–125. [Google Scholar] [CrossRef]
- Li, X.; Abramson, R.G.; Arlinghaus, L.R.; Kang, H.; Chakravarthy, A.B.; Abramson, V.G.; Farley, J.; Mayer, I.A.; Kelley, M.C.; Meszoely, I.M.; et al. Combined DCE-MRI and DW-MRI for Predicting Breast Cancer Pathological Response After the First Cycle of Neoadjuvant Chemotherapy. Investig. Radiol. 2015, 50, 195–204. [Google Scholar] [CrossRef]
- Erdem, G.; Erdem, T.; Karakas, H.M.; Mutlu, D.; Fırat, A.K.; Sahin, I.; Alkan, A. Diffusion-Weighted Images differentiate benign from malignant thyroid nodules. J. Magn. Res. Imaging 2010, 31, 94–100. [Google Scholar] [CrossRef]
- Schob, S.; Voigt, P.; Bure, L.; Meyer, H.J.; Wickenhauser, C.; Behrmann, C.; Höhn, A.; Kachel, P.; Dralle, H.; Hoffmann, K.T.; et al. Diffusion-Weighted Imaging Using a Readout-Segmented, Multishot EPI Sequence at 3 T Distinguishes between Morphologically Differentiated and Undifferentiated Subtypes of Thyroid Carcinoma—A Preliminary Study. Transl. Oncol. 2016, 9, 403–410. [Google Scholar] [CrossRef]
- Aydın, H.; Kızılgöz, V.; Tatar, I.; Damar, C.; Güzel, H.; Hekimoğlu, B.; Delibaşı, T. The role of proton MR spectroscopy and apparent diffusion coefficient values in the diagnosis of malignant thyroid nodules: Preliminary results. Clin. Imaging 2012, 36, 323–333. [Google Scholar] [CrossRef]
- Zhai, G.; Kim, H.; Sarver, D.; Samuel, S.; Whitworth, L.; Umphrey, H.; Oelschlager, D.K.; Beasley, T.M.; Zinn, K.R. Early therapy assessment of combined anti-DR5 Antibody and Carboplatin in triple-negative breast cancer xenografts in mice using diffusion- weighted imaging and 1H MR Spectroscopy. J. Magn. Res. Imaging 2014, 39, 1588–1594. [Google Scholar] [CrossRef]
- Simões, R.V.; Martinez-Aranda, A.; Martín, B.; Cerdán, S.; Sierra, A.; Arús, C. Preliminary characterization of an experimental breast cancer cells brain metastasis mouse model by MRI/MRS. Magn. Reson. Mater. Phys. 2008, 21, 237–249. [Google Scholar] [CrossRef]
- Jennings, D.; Hatton, B.N.; Guo, J.; Galons, J.P.; Trouard, T.P.; Raghunand, N.; Marshall, J.; Gillies, R.G. Early response of prostate carcinoma xenografts to docetaxel chemotherapy monitored with diffusion MRI. Neoplasia 2002, 4, 255–262. [Google Scholar] [CrossRef]
- Penet, M.F.; Pathak, A.P.; Raman, V.; Ballesteros, P.; Artemov, D.; Bhujwalla, Z.M. Noninvasive multiparametric imaging of metastasis-permissive microenvironments in a human prostate cancer xenograft. Cancer Res. 2009, 69, 8822–8829. [Google Scholar] [CrossRef]
- Shi, R.Y.; Yao, Q.Y.; Zhou, Q.Y.; Lu, Q.; Suo, S.T.; Chen, J.; Zheng, W.J.; Dai, Y.M.; Wu, L.M.; Xu, J.R. Preliminary study of diffusion kurtosis imaging in thyroid nodules and its histopathologic correlation. Eur. Radiol. 2017, 27, 4710–4720. [Google Scholar] [CrossRef]
- McPhail, L.D.; Chung, Y.L.; Madhu, B.; Clark, S.; Griffiths, J.R.; Kelland, L.R.; Robinson, S.P. Tumor dose response to the vascular disrupting agent, 5,6-dimethylxanthenone-4-acetic acid, using in vivo magnetic resonance spectroscopy. Clin. Cancer Res. 2005, 11, 3705–3713. [Google Scholar] [CrossRef]
- Chung, Y.L.; Troy, H.; Banerji, U.; Jackson, L.E.; Walton, M.I.; Stubbs, M.; Griffiths, J.R.; Judson, I.R.; Leach, M.O.; Workman, P.; et al. Magnetic resonance spectroscopic pharmacodynamic markers of the heat shock protein 90 inhibitor 17-allylamino,17-demethoxygeldanamycin (17AAG) in human colon cancer models. J. Natl. Cancer Inst. 2003, 95, 1624–1633. [Google Scholar] [CrossRef]
- Jensen, L.R.; Huuse, E.M.; Bathena, T.F.; Goab, P.E.; Bofin, A.M.; Pedersen, T.B.; Lundgren, S.; Gribbestad, I.S. Assessment of early docetaxel response in an experimental model of human breast cancer using DCE-MRI, ex vivo HR MAS, and in vivo 1H MRS. NMR Biomed. 2010, 23, 56–65. [Google Scholar] [CrossRef]
- Castagnoli, L.; Iorio, E.; Dugo, M.; Koschorke, A.; Faraci, S.; Canese, R.; Casalini, P.; Nanni, P.; Vernieri, C.; Di Nicola, M.; et al. Intratumor lactate levels reflect HER2 addiction status in HER2-positive breast cancer. J. Cell Physiol. 2019, 234, 1768–1779. [Google Scholar] [CrossRef]
- Esmaeili, M.; Bathen, T.F.; Engebraten, O.; Mælandsmo, G.M.; Gribbestad, I.S.; Moestue, S.A. Quantitative 31P HR-MAS MR spectroscopy for detection of response to PI3K/mTOR inhibition in breast cancer xenografts. Magn. Res. Med. 2014, 71, 1973–1981. [Google Scholar] [CrossRef]
- Meisamy, S.; Bolan, P.J.; Baker, E.H.; Bliss, R.L.; Gulbahce, E.; Everson, L.I.; Nelson, M.T.; Emory, T.H.; Tuttle, T.M.; Yee, D.; et al. Neoadjuvant chemotherapy of locally advanced breast cancer: Predicting response with in vivo 1H MR Spectroscopy—A pilot study at 4 T. Radiology 2004, 233, 424–431. [Google Scholar] [CrossRef]
- Ward, K.M.; Aletras, A.H.; Balaban, R.S. A new class of contrast agents for mri based on proton chemical exchange dependent saturation transfer (CEST). J. Magn. Res. 2000, 143, 79–87. [Google Scholar] [CrossRef]
- Rivlin, M.; Horev, J.; Tsarfaty, I.; Navon, G. Molecular imaging of tumors and metastases using chemical exchange saturation transfer (CEST) MRI. Sci. Rep. 2013, 3, 3045. [Google Scholar] [CrossRef]
- Vinogradov, E.; Sherry, A.D.; Lenkinski, R.E. CEST: From basic principles to applications, challenges and opportunities. J. Magn. Res. 2013, 229, 155–172. [Google Scholar] [CrossRef]
- Jones, K.M.; Pollard, A.C.; Pagel, M.K. Clinical applications of chemical exchange saturation transfer (CEST) MRI. J. Magn. Reson. Imaging 2018, 47, 11–27. [Google Scholar] [CrossRef]
- Rivlin, M.; Navon, G. CEST MRI of 3-o-methyl-d-glucose on different breast cancer models. Magn. Res. Med. 2018, 79, 1061–1069. [Google Scholar] [CrossRef]
- Liu, G.; Li, Y.; Sheth, V.R.; Pagel, M.D. Imaging in vivo extracellular ph with a single paramagnetic chemical exchange saturation transfer magnetic resonance imaging contrast agent. Mol. Imaging 2012, 11, 47–57. [Google Scholar] [CrossRef]
- Longo, D.L.; Bartoli, A.; Consolino, L.; Bardini, P.; Arena, F.; Schwaiger, M.; Aime, S. In Vivo Imaging of Tumor Metabolism and Acidosis by Combining PET and MRI-CEST pH Imaging. Cancer Res. 2016, 76, 6463–6470. [Google Scholar] [CrossRef]
- Jia, G.; Abaza, R.; Williams, J.D.; Zynger, D.L.; Zhou, J.; Shah, Z.K.; Patel, M.; Sammet, S.; Wei, L.; Bahnson, R.R.; et al. Amide Proton Transfer MR Imaging of prostate cancer: A preliminary study. J. Magn. Res. Imaging 2011, 33, 647–654. [Google Scholar] [CrossRef]
- Walker, R.; Kessar, P.; Blanchard, R.; Dimasi, M.; Harper, K.; DeCarvalho, V.; Yucel, E.K.; Patriquin, L.; Eustace, S. Turbo STIR magnetic resonance imaging as a whole-body screening tool for metastases in patients with breast carcinoma: Preliminary clinical experience. J. Magn. Res. Imaging 2000, 11, 343–350. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fiordelisi, M.F.; Cavaliere, C.; Auletta, L.; Basso, L.; Salvatore, M. Magnetic Resonance Imaging for Translational Research in Oncology. J. Clin. Med. 2019, 8, 1883. https://doi.org/10.3390/jcm8111883
Fiordelisi MF, Cavaliere C, Auletta L, Basso L, Salvatore M. Magnetic Resonance Imaging for Translational Research in Oncology. Journal of Clinical Medicine. 2019; 8(11):1883. https://doi.org/10.3390/jcm8111883
Chicago/Turabian StyleFiordelisi, Maria Felicia, Carlo Cavaliere, Luigi Auletta, Luca Basso, and Marco Salvatore. 2019. "Magnetic Resonance Imaging for Translational Research in Oncology" Journal of Clinical Medicine 8, no. 11: 1883. https://doi.org/10.3390/jcm8111883
APA StyleFiordelisi, M. F., Cavaliere, C., Auletta, L., Basso, L., & Salvatore, M. (2019). Magnetic Resonance Imaging for Translational Research in Oncology. Journal of Clinical Medicine, 8(11), 1883. https://doi.org/10.3390/jcm8111883