Rivaroxaban Effects Illustrate the Underestimated Importance of Activated Platelets in Thrombin Generation Assessed by Calibrated Automated Thrombography
Abstract
:1. Introduction
2. Experimental Section
2.1. Blood Sampling and PRP Preparation
2.2. Platelet Aggregation
2.3. Thrombin Generation Assay
2.4. Statistical Analysis
3. Results
3.1. Addition of Rivaroxaban to agPRP Change the Shape of the TG Curve
3.2. TFPI Modulates the First Phase of the Camelback TG Curves
3.3. Phospholipids Modulate the Camelback Shape of TG Curve in Presence of Rivaroxaban
3.4. A Potential Platelet Secondary Activation Is Not Responsible for the Camelback TG Curves
3.5. Triggering TG with Thrombin in the Presence of Rivaroxaban Abolished the Camelback Curve
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Van Veen, J.J.; Gatt, A.; Makris, M. Thrombin generation testing in routine clinical practice: Are we there yet? Br. J. Haematol. 2008, 142, 889–903. [Google Scholar] [CrossRef]
- Adams, M. Assessment of thrombin generation: Useful or hype? Semin. Thromb. Hemost. 2009, 35, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Castoldi, E.; Duckers, C.; Radu, C.; Spiezia, L.; Rossetto, V.; Tagariello, G.; Rosing, J.; Simioni, P. Homozygous F5 deep-intronic splicing mutation resulting in severe factor V deficiency and undetectable thrombin generation in platelet-rich plasma. J. Thromb. Haemost. 2011, 9, 959–968. [Google Scholar] [CrossRef] [PubMed]
- Hemker, H.C.; Giesen, P.; AlDieri, R.; Regnault, V.; de Smed, E.; Wagenvoord, R.; Lecompte, T.; Béguin, S. The calibrated automated thrombogram (CAT): A universal routine test for hyper- and hypocoagulability. Pathophysiol. Haemost. Thromb. 2002, 32, 249–253. [Google Scholar] [CrossRef] [PubMed]
- Eikelboom, J.W.; Connolly, S.J.; Bosch, J.; Dagenais, G.R.; Hart, R.G.; Shestakovska, O.; Diaz, R.; Alings, M.; Lonn, E.M.; Anand, S.S.; et al. Rivaroxaban with or without Aspirin in Stable Cardiovascular Disease. N. Engl. J. Med. 2017, 377, 1319–1330. [Google Scholar] [CrossRef]
- Hijazi, Z.; Lindbäck, J.; Alexander, J.H.; Hanna, M.; Held, C.; Hylek, E.M.; Lopes, R.D.; Oldgren, J.; Siegbahn, A.; Stewart, R.A.H.; et al. The ABC (age, biomarkers, clinical history) stroke risk score: A biomarker-based risk score for predicting stroke in atrial fibrillation. Eur. Heart J. 2016, 37, 1582–1590. [Google Scholar] [CrossRef]
- Pisters, R.; Lane, D.A.; Nieuwlaat, R.; de Vos, C.B.; Crijns, H.J.G.M.; Lip, G.Y.H. A novel user-friendly score (HAS-BLED) to assess 1-year risk of major bleeding in patients with atrial fibrillation: The Euro Heart Survey. Chest 2010, 138, 1093–1100. [Google Scholar] [CrossRef]
- Boriani, G.; Botto, G.L.; Padeletti, L.; Santini, M.; Capucci, A.; Gulizia, M.; Ricci, R.; Biffi, M.; De Santo, T.; Corbucci, G.; et al. Improving stroke risk stratification using the CHADS2 and CHA2DS2-VASc risk scores in patients with paroxysmal atrial fibrillation by continuous arrhythmia burden monitoring. Stroke 2011, 42, 1768–1770. [Google Scholar] [CrossRef]
- Hijazi, Z.; Oldgren, J.; Lindbäck, J.; Alexander, J.H.; Connolly, S.J.; Eikelboom, J.W.; Ezekowitz, M.D.; Held, C.; Hylek, E.M.; Lopes, R.D.; et al. The novel biomarker-based ABC (age, biomarkers, clinical history)-bleeding risk score for patients with atrial fibrillation: A derivation and validation study. Lancet 2016, 387, 2302–2311. [Google Scholar] [CrossRef]
- Killu, A.M.; Granger, C.B.; Gersh, B.J. Risk stratification for stroke in atrial fibrillation: A critique. Eur. Heart J. 2019, 40, 1294–1302. [Google Scholar] [CrossRef]
- Freyburger, G.; Macouillard, G.; Labrouche, S.; Sztark, F. Coagulation parameters in patients receiving dabigatran etexilate or rivaroxaban: Two observational studies in patients undergoing total hip or total knee replacement. Thromb. Res. 2011, 127, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Bloemen, S.; Zwaveling, S.; Douxfils, J.; Roest, M.; Kremers, R.; Mullier, F. The anticoagulant effect of dabigatran is reflected in the lag time and time-to-peak, but not in the endogenous thrombin potential or peak, of thrombin generation. Thromb. Res. 2018, 171, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Wong, P.C.; White, A.; Luettgen, J. Inhibitory effect of apixaban compared with rivaroxaban and dabigatran on thrombin generation assay. Hosp. Pract. 2013, 41, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Didelot, M.; Docq, C.; Wahl, D.; Lacolley, P.; Regnault, V.; Lagrange, J. Platelet aggregation impacts thrombin generation assessed by calibrated automated thrombography. Platelets 2017, 1–6. [Google Scholar] [CrossRef]
- Hemker, H.C.; Giesen, P.; Al Dieri, R.; Regnault, V.; de Smedt, E.; Wagenvoord, R.; Lecompte, T.; Béguin, S. Calibrated automated thrombin generation measurement in clotting plasma. Pathophysiol. Haemost. Thromb. 2003, 33, 4–15. [Google Scholar] [CrossRef]
- Regnault, V.; Hemker, H.C.; Wahl, D.; Lecompte, T. Phenotyping the haemostatic system by thrombography--potential for the estimation of thrombotic risk. Thromb. Res. 2004, 114, 539–545. [Google Scholar] [CrossRef]
- Petzold, T.; Thienel, M.; Konrad, I.; Schubert, I.; Regenauer, R.; Hoppe, B.; Lorenz, M.; Eckart, A.; Chandraratne, S.; Lennerz, C.; et al. Oral thrombin inhibitor aggravates platelet adhesion and aggregation during arterial thrombosis. Sci. Transl. Med. 2016, 8, 367ra168. [Google Scholar] [CrossRef]
- Trabold, K.; Makhoul, S.; Gambaryan, S.; van Ryn, J.; Walter, U.; Jurk, K. The Direct Thrombin Inhibitors Dabigatran and Lepirudin Inhibit GPIbα-Mediated Platelet Aggregation. Thromb. Haemost. 2019, 119, 916–929. [Google Scholar] [CrossRef]
- Panova-Noeva, M.; Schulz, A.; Spronk, H.M.; Beicht, A.; Laubert-Reh, D.; van Oerle, R.; Arnold, N.; Prochaska, J.H.; Blettner, M.; Beutel, M.; et al. Clinical Determinants of Thrombin Generation Measured in Presence and Absence of Platelets-Results from the Gutenberg Health Study. Thromb. Haemost. 2018, 118, 873–882. [Google Scholar]
- Schultz, N.H.; Tran, H.T.T.; Bjørnsen, S.; Henriksson, C.E.; Sandset, P.M.; Holme, P.A. The reversal effect of prothrombin complex concentrate (PCC), activated PCC and recombinant activated factor VII against anticoagulation of Xa inhibitor. Thromb. J. 2017, 15, 6. [Google Scholar] [CrossRef]
- Rigano, J.; Ng, C.; Nandurkar, H.; Ho, P. Thrombin generation estimates the anticoagulation effect of direct oral anticoagulants with significant interindividual variability observed. Blood Coagul. Fibrinolysis 2018, 29, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Borst, O.; Münzer, P.; Alnaggar, N.; Geue, S.; Tegtmeyer, R.; Rath, D.; Droppa, M.; Seizer, P.; Heitmeier, S.; Heemskerk, J.W.M.; et al. Inhibitory mechanisms of very low-dose rivaroxaban in non-ST-elevation myocardial infarction. Blood Adv. 2018, 2, 715–730. [Google Scholar] [CrossRef] [PubMed]
- Harenberg, J.; Krämer, S.; Du, S.; Zolfaghari, S.; Schulze, A.; Krämer, R.; Weiss, C.; Wehling, M.; Lip, G.Y.H. Measurement of rivaroxaban and apixaban in serum samples of patients. Eur. J. Clin. Invest. 2014, 44, 743–752. [Google Scholar] [CrossRef] [PubMed]
- Kremers, R.M.W.; Wagenvoord, R.J.; Hemker, H.C. Comment on the use of computational models to study the effect of apixaban and rivaroxaban on thrombin generation. Thromb. Haemost. 2016, 115, 869–870. [Google Scholar]
- Maroney, S.A.; Mast, A.E. Expression of tissue factor pathway inhibitor by endothelial cells and platelets. Transfus. Apher. Sci. 2008, 38, 9–14. [Google Scholar] [CrossRef]
- Winckers, K.; Thomassen, S.; ten Cate, H.; Hackeng, T.M. Platelet full length TFPI-α in healthy volunteers is not affected by sex or hormonal use. PLoS ONE 2017, 12. [Google Scholar] [CrossRef]
- Jiang, L.; Xu, C.; Yu, S.; Liu, P.; Luo, D.; Zhou, Q.; Gao, C.; Hu, H. A critical role of thrombin/PAR-1 in ADP-induced platelet secretion and the second wave of aggregation. J. Thromb. Haemost. 2013, 11, 930–940. [Google Scholar] [CrossRef]
- Podoplelova, N.A.; Sveshnikova, A.N.; Kotova, Y.N.; Eckly, A.; Receveur, N.; Nechipurenko, D.Y.; Obydennyi, S.I.; Kireev, I.I.; Gachet, C.; Ataullakhanov, F.I.; et al. Coagulation factors bound to procoagulant platelets concentrate in cap structures to promote clotting. Blood 2016, 128, 1745–1755. [Google Scholar] [CrossRef]
- Van Der Meijden, P.E.J.; Van Schilfgaarde, M.; Van Oerle, R.; Renné, T.; ten Cate, H.; Spronk, H.M.H. Platelet- and erythrocyte-derived microparticles trigger thrombin generation via factor XIIa. J. Thromb. Haemost. 2012, 10, 1355–1362. [Google Scholar] [CrossRef]
- Tarandovskiy, I.D.; Artemenko, E.O.; Panteleev, M.A.; Sinauridze, E.I.; Ataullakhanov, F.I. Antiplatelet agents can promote two-peaked thrombin generation in platelet rich plasma: Mechanism and possible applications. PLoS ONE 2013, 8, e55688. [Google Scholar] [CrossRef]
- Van Hylckama Vlieg, A.; Baglin, C.A.; Luddington, R.; MacDonald, S.; Rosendaal, F.R.; Baglin, T.P. The risk of a first and a recurrent venous thrombosis associated with an elevated D-dimer level and an elevated thrombin potential: Results of the THE-VTE study. J. Thromb. Haemost. 2015, 13, 1642–1652. [Google Scholar] [CrossRef] [PubMed]
- Besser, M.; Baglin, C.; Luddington, R.; van Hylckama Vlieg, A.; Baglin, T. High rate of unprovoked recurrent venous thrombosis is associated with high thrombin-generating potential in a prospective cohort study. J. Thromb. Haemost. 2008, 6, 1720–1725. [Google Scholar] [CrossRef] [PubMed]
- Hron, G.; Kollars, M.; Binder, B.R.; Eichinger, S.; Kyrle, P.A. Identification of patients at low risk for recurrent venous thromboembolism by measuring thrombin generation. JAMA 2006, 296, 397–402. [Google Scholar] [CrossRef] [PubMed]
- Van Hylckama Vlieg, A.; Christiansen, S.C.; Luddington, R.; Cannegieter, S.C.; Rosendaal, F.R.; Baglin, T.P. Elevated endogenous thrombin potential is associated with an increased risk of a first deep venous thrombosis but not with the risk of recurrence. Br. J. Haematol. 2007, 138, 769–774. [Google Scholar] [CrossRef] [PubMed]
- Regnault, V.; Béguin, S.; Lecompte, T. Calibrated automated thrombin generation in frozen-thawed platelet-rich plasma to detect hypercoagulability. Pathophysiol. Haemost. Thromb. 2003, 33, 23–29. [Google Scholar] [CrossRef] [Green Version]
- Gulilat, M.; Tang, A.; Gryn, S.E.; Leong-Sit, P.; Skanes, A.C.; Alfonsi, J.E.; Dresser, G.K.; Henderson, S.L.; Rose, R.V.; Lizotte, D.J.; et al. Interpatient Variation in Rivaroxaban and Apixaban Plasma Concentrations in Routine Care. Can. J. Cardiol. 2017, 33, 1036–1043. [Google Scholar] [CrossRef]
- Siguret, V.; Abdoul, J.; Delavenne, X.; Curis, E.; Carlo, A.; Blanchard, A.; Salem, J.-E.; Gaussem, P.; Funck-Brentano, C.; Azizi, M.; et al. Rivaroxaban pharmacodynamics in healthy volunteers evaluated with thrombin generation and the active protein C system: Modeling and assessing interindividual variability. J. Thromb. Haemost. 2019. [Google Scholar] [CrossRef]
ETP (nM.min) | ||||
PRP | PRP + Rivaroxaban | agPRP | agPRP + Rivaroxaban | |
TF | 1489 (1231–2185) | 1299 (819–1759) ** | 1680 (1437–2692) | 1330 (1016–1915) ### |
TF + anti-TFPI | 1473 (1231–2185) | 1375 (1175–1759) | 1579 (1510–2692) | 1324 (1016–1915) |
TF + Vorapaxar | 1348 (1196–1483) | 1148 (546–1443) | 1911 (1514–2130) | 1461 (1220–1621) # |
TF + BMS 986120 | 1332 (1190–1463) | 977 (667–1423) | 1737 (1481–2078) | 1259 (1084–1753) |
TF + Vorapaxar + BMS 986120 | 1414 (1231–1538) | 1143 (779–1445) | 1864 (1556–2095) | 1363 (873–1519) ## |
TF + 14E11 | 1124 (821–1370) | 692 (570–1482) | 1621 (1375–1727) | 917 (719–1304) |
Thrombin | 1220 (873–1380) | 794 (300–1002) * | 834 (615–1086) | 758 (610–1003) |
Peak (nM) | ||||
PRP | PRP + Rivaroxaban | agPRP | agPRP + Rivaroxaban | |
TF | 91 (64–152) | 35 (22–72) *** | 137 (82–270) | 48 (26–87) ### |
TF + anti-TFPI | 85 (64–115) | 36 (34–49) ** | 105 (91–219) | 36 (28–66) ## |
TF + Vorapaxar | 79 (64–106) | 38 (24–46) * | 182 (140–328) | 52 (33–101) ## |
TF + BMS 986120 | 75 (66–98) | 28 (26–49) * | 168 (110–227) | 47 (34–129) # |
TF + Vorapaxar + BMS 986120 | 88 (57–99) | 35 (29–58) | 199 (171–245) | 37 (30–61) ## |
TF + 14E11 | 49 (45–73) | 16 (12–29) * | 120 (104–183) | 29 (15–42) |
Thrombin | 70 (43–92) | 21 (15–38) * | 33 (28–56) | 13 (11–24) ## |
tt peak (min) | ||||
PRP | PRP + Rivaroxaban | agPRP | agPRP + Rivaroxaban | |
TF | 18 (14–25) | 35 (18–51) *** | 14 (9.7–19) | 26 (15–40) ### |
TF + anti-TFPI | 17 (16–18) | 35 (30–37) | 14 (12–16) | 29 (22–31) |
TF + Vorapaxar | 21 (19–22) | 39 (32–72) * | 14 (9.0–15) | 20 (14–34) # |
TF + BMS 986120 | 22 (1–23) | 39 (30–72) * | 13 (12–17) | 26 (15–33) |
TF + Vorapaxar + BMS 986120 | 21 (19–24) | 38 (29–72) * | 12 (11–13) | 25 (20–32) ## |
TF + 14E11 | 26 (24–28) | 49 (47–50) * | 16 (15–16) | 33 (28–36) |
Thrombin | 18 (14–21) | 30 (26–58) * | 15 (12–22) | 35 (30–49) ## |
Lag Time (s) | ||||
PFP | PFP + Rivaroxaban 15 ng/mL | PFP + Rivaroxaban 50 ng/mL | PFP + Rivaroxaban 200 ng/mL | |
1 µM PV | 8.6 (5.2–14) | 10.5 (6.8–15) | 12 (7.9–17) | 19 (9.6–32) * |
4 µM PV | 7.1 (4.6–11) | 8.9 (5.9–14) | 11 (6.8–16) | 16 (9.8–26) ** |
48 µM PV | 7.9 (4.6–11) | 8.6 (5.9–13) | 11 (7.3–19) | 15 (10–22) ** |
ETP (nM.min) | ||||
PFP | PFP + Rivaroxaban 15 ng/mL | PFP + Rivaroxaban 50 ng/mL | PFP + Rivaroxaban 200 ng/mL | |
1 µM PV | 572 (387–1837) | 426 (322–1150) | 300 (184–663) | 104 (67–332) * |
4 µM VS | 687 (457–2035) | 616 (409–1527) | 320 (210–1021) | 163 (111–363) ** |
48 µM PV | 907 (737–1878) | 745 (596–1779) | 516 (282–1176) | 245 (144–483) ** |
Peak (nM) | ||||
PFP | PFP + Rivaroxaban 15 ng/mL | PFP + Rivaroxaban 50 ng/mL | PFP + Rivaroxaban 200 ng/mL | |
1 µM PV | 43 (30–170) | 27 (17–70) | 12 (10–34) * | 4.2 (3.1–16) * |
4 µM PV | 60 (39–280) | 45 (21–121) | 16 (11–65) | 7 (5.6–19) ** |
48 µM PV | 100 (76–336) | 67 (40–201) | 29 (18–94) * | 12 (9.3–33) *** |
tt peak (s) | ||||
PFP | PFP + Rivaroxaban 15 ng/mL | PFP + Rivaroxaban 50 ng/mL | PFP + Rivaroxaban 200 ng/mL | |
1 µM PV | 18 (11–21) | 21 (17–25) | 26 (21–29) | 34 (23–48) *** |
4 µM PV | 14 (11–20) | 17 (11–20) | 22 (14–25) | 29 (20–38) ** |
48 µM PV | 13 (7.9–15) | 12.9 (9.9–19) | 18 (12–27) | 25 (19–32) *** |
Velocity (nM/min) | ||||
PFP | PFP + Rivaroxaban 15 ng/mL | PFP + Rivaroxaban 50 ng/mL | PFP + Rivaroxaban 200 ng/mL | |
1 µM PV | 5 (3.9–27) | 2.3 (1.2–6.7) | 1 (0.6–2.6) * | 0.3 (0.2–1.1) *** |
4 µM PV | 8.4 (5–64) | 6.3 (2.1–22) | 2.3 (0.9–11) | 0.6 (0.4–1.8) ** |
48 µM PV | 23 (16–100) | 16 (4.2–50) | 4.9 (2.3–19) | 1.3 (0.8–4.0) *** |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makhoul, S.; Panova-Noeva, M.; Regnault, V.; Ruf, W.; Wenzel, P.; Lagrange, J. Rivaroxaban Effects Illustrate the Underestimated Importance of Activated Platelets in Thrombin Generation Assessed by Calibrated Automated Thrombography. J. Clin. Med. 2019, 8, 1990. https://doi.org/10.3390/jcm8111990
Makhoul S, Panova-Noeva M, Regnault V, Ruf W, Wenzel P, Lagrange J. Rivaroxaban Effects Illustrate the Underestimated Importance of Activated Platelets in Thrombin Generation Assessed by Calibrated Automated Thrombography. Journal of Clinical Medicine. 2019; 8(11):1990. https://doi.org/10.3390/jcm8111990
Chicago/Turabian StyleMakhoul, Stephanie, Marina Panova-Noeva, Véronique Regnault, Wolfram Ruf, Philip Wenzel, and Jeremy Lagrange. 2019. "Rivaroxaban Effects Illustrate the Underestimated Importance of Activated Platelets in Thrombin Generation Assessed by Calibrated Automated Thrombography" Journal of Clinical Medicine 8, no. 11: 1990. https://doi.org/10.3390/jcm8111990
APA StyleMakhoul, S., Panova-Noeva, M., Regnault, V., Ruf, W., Wenzel, P., & Lagrange, J. (2019). Rivaroxaban Effects Illustrate the Underestimated Importance of Activated Platelets in Thrombin Generation Assessed by Calibrated Automated Thrombography. Journal of Clinical Medicine, 8(11), 1990. https://doi.org/10.3390/jcm8111990