Complications after Chest Tube Removal and Reinterventions in Patients with Digital Drainage Systems
Abstract
:1. Introduction
2. Patients and Methods
Statistical Analysis
3. Results
4. Discussion
Author Contributions
Conflicts of Interest
References
- Dernevik, L.; Belboul, A.; Rådberg, G. Initial experience with the world’s first digital drainage system. The benefits of recording air leaks with graphic representation. Eur. J. Cardiothorac. Surg. 2007, 31, 209–213. [Google Scholar] [CrossRef] [PubMed]
- Varela, G.; Jiménez, M.F.; Novoa, N.M.; Aranda, J.L. Postoperative chest tube management: Measuring air leak using an electronic device decreases variability in the clinical practice. Eur. J. Cardiothorac. Surg. 2009, 35, 28–31. [Google Scholar] [CrossRef] [PubMed]
- Cerfolio, R.J.; Varela, G.; Brunelli, A. Digital and smart chest drainage systems to monitor air leaks: The birth of a new era? Thorac. Surg. Clin. 2010, 20, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Mier, J.M.; Fibla, J.J.; Molins, L. The benefits of digital thoracic drainage system for outpatients undergoing pulmonary resection surgery. Rev. Port. Pneumol. 2011, 17, 225–227. [Google Scholar] [CrossRef] [PubMed]
- Brunelli, A.; Cassivi, S.D.; Salati, M.; Fibla, J.; Pompili, C.; Halgren, L.A.; Wigle, D.A.; Di Nunzio, L. Digital measurements of air leak flow and intrapleural pressures in the immediate postoperative period predict risk of prolonged air leak after pulmonary lobectomy. Eur. J. Cardiothorac. Surg. 2011, 39, 584–588. [Google Scholar] [CrossRef]
- Pompili, C.; Brunelli, A.; Salati, M.; Refai, M.; Sabbatini, A. Impact of the learning curve in the use of a novel electronic chest drainage system after pulmonary lobectomy: A case-matched analysis on the duration of chest tube usage. Interact. Cardiovasc. Thorac. Surg. 2011, 13, 490–493. [Google Scholar] [CrossRef]
- Brunelli, A.; Salati, M.; Refai, M.; Di Nunzio, L.; Xiumé, F.; Sabbatini, A. Evaluation of a new chest tube removal protocol using digital air leak monitoring after lobectomy: A prospective randomised trial. Eur. J. Cardiothorac. Surg. 2010, 37, 56–60. [Google Scholar] [CrossRef]
- Pompili, C.; Detterbeck, F.; Papagiannopoulos, K.; Sihoe, A.; Vachlas, K.; Maxfield, M.W.; Lim, H.C.; Brunelli, A. Multicenter international randomized comparison of objective and subjective outcomes between electronic and traditional chest drainage systems. Ann. Thorac. Surg. 2014, 98, 490–496. [Google Scholar] [CrossRef]
- Zhou, J.; Lyu, M.; Chen, N.; Wang, Z.; Hai, Y.; Hao, J.; Liu, L. Digital chest drainage is better than traditional chest drainage following pulmonary surgery: A meta-analysis. Eur. J. Cardiothorac. Surg. 2018, 54, 635–643. [Google Scholar] [CrossRef]
- Pompili, C.; Xiumè, F.; Hristova, R.; Salati, M.; Refai, M.; Milton, R.; Brunelli, A. Regulated drainage reduces the incidence of recurrence after uniportal video-assisted thoracoscopic bullectomy for primary spontaneous pneumothorax: A propensity case-matched comparison of regulated and unregulated drainage. Eur. J. Cardiothorac. Surg. 2016, 49, 1127–1131. [Google Scholar] [CrossRef]
- Baringer, K.; Talbert, S. Chest drainage systems and management of air leaks after a pulmonary resection. J. Thorac. Dis. 2017, 9, 5399–5403. [Google Scholar] [CrossRef] [PubMed]
- Plourde, M.; Jad, A.; Dorn, P.; Harris, K.; Mujoomdar, A.; Henteleff, H.; French, D.; Bethune, D. Digital Air Leak Monitoring for Lung Resection Patients: A Randomized Controlled Clinical Trial. Ann. Thorac. Surg. 2018, 106, 1628–1632. [Google Scholar] [CrossRef] [PubMed]
- Cerfolio, R.J.; Bryant, A.S. The benefits of continuous and digital air leak assessment after elective pulmonary resection: A prospective study. Ann. Thorac. Surg. 2008, 86, 396–401. [Google Scholar] [CrossRef] [PubMed]
- Lijkendijk, M.; Licht, P.B.; Neckelmann, K. Electronic versus traditional chest tube drainage following lobectomy: A randomized trial. Eur. J. Cardiothorac. Surg. 2015, 48, 893–898. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, S.; McGuire, A.L.; Maghera, S.; Sundaresan, S.R.; Seely, A.J.; Maziak, D.E.; Shamji, F.M.; Villeneuve, P.J. Randomized trial of digital versus analog pleural drainage in patients with or without a pulmonary air leak after lung resection. J. Thorac. Cardiovasc. Surg. 2015, 150, 1243–1249. [Google Scholar] [CrossRef]
- Lijkendijk, M.; Licht, P.B.; Neckelmann, K. The Influence of Suction on Chest Drain Duration After Lobectomy Using Electronic Chest Drainage. Ann. Thorac. Surg. 2019, 107, 1621–1625. [Google Scholar] [CrossRef]
- Holbek, B.L.; Christensen, M.; Hansen, H.J.; Kehlet, H.; Petersen, R.H. The effects of low suction on digital drainage devices after lobectomy using video-assisted thoracoscopic surgery: A randomized controlled trial. Eur. J. Cardiothorac. Surg. 2019, 55, 673–681. [Google Scholar] [CrossRef]
- Cerfolio, R.J.; Bryant, A.S.; Maniscalco, L.M. Management of subcutaneous emphysema after pulmonary resection. Ann. Thorac. Surg. 2008, 85, 1759–1763. [Google Scholar] [CrossRef]
- Aghajanzadeh, M.; Dehnadi, A.; Ebrahimi, H.; Karkan, M.F.; Jahromi, S.K.; Maafi, A.A.; Aghajanzadeh, G. Classification and management of subcutaneous emphysema: A 10-Year experience. Indian J. Surg. 2015, 77, 673–677. [Google Scholar] [CrossRef]
- Cerfolio, R.J.; Bass, C.S.; Pask, A.H.; Katholi, C.R. Predictors and treatment of persistant air leaks. Ann. Thorac. Surg. 2002, 73, 1727–1730. [Google Scholar] [CrossRef]
- Gaunt, A.; Martin-Ucar, A.E.; Beggs, L.; Beggs, D.; Black, E.A.; Duffy, J.P. Residual apical space following surgery for pneumothorax increases the risk of recurrence. Eur. J. Cardiothorac. Surg. 2008, 34, 169–173. [Google Scholar] [CrossRef] [PubMed]
- Brunelli, A.; Salati, M.; Pompili, C.; Gentili, P.; Sabbatini, A. Intraoperative air leak measured after lobectomy is associated with postoperative duration of air leak. Eur. J. Cardiothorac. Surg. 2017, 52, 963–968. [Google Scholar] [CrossRef] [PubMed]
Number (%) | Total (n = 497) | Air Leak-Related Complications (n = 175) | No Air Leak-Related Complications (n = 322) | p Value |
---|---|---|---|---|
Age (years, mean ± SD) | 59.07 ± 15.13 | 60.81 ± 13.96 | 58.12 ± 15.67 | 0.050 |
Gender | 0.012 | |||
Male | 232 (46.7) | 95 (54.3) | 137 (42.4) | |
Female | 265 (53.3) | 80 (45.7) | 185 (57.5) | |
BMI (Kg/m2, mean ± SD) | 23.71 ± 3.29 | 23.74 ± 3.50 | 23.70 ± 3.18 | 0.831 |
Positive smoking history | 127 (25.6) | 65 (37.1) | 62 (19.3) | <0.001 |
Previous chest surgery history | 74 (14.9) | 34 (19.4) | 40 (12.4) | 0.036 |
FEV1 (%, mean ± SD) | 94.36 ± 18.12 | 91.63 ± 19.83 | 95.84 ± 16.97 | 0.008 |
Normal FEV1 (≥80%) | 401 (80.7) | 132 (75.4) | 269 (83.5) | 0.029 |
DLCO (%, mean ± SD) | 68.03 ± 15.71 | 67.36 ± 15.11 | 68.39 ± 16.04 | 0.559 |
Normal DLCO (≥80%) | 115 (23.1) | 37 (21.1) | 78 (24.2) | 0.437 |
Surgical approach | <0.001 | |||
Single port VATS | 286 (57.5) | 79 (45.1) | 207 (64.3) | |
Multi-port VATS | 197 (39.6) | 90 (51.4) | 107 (33.2) | |
Open thoracotomy | 14 (2.8) | 6 (3.4) | 8 (2.5) | |
Lesion location * | ||||
RUL | 184 (37.0) | 71 (40.6) | 113 (35.1) | 0.227 |
RML | 85 (17.1) | 27 (15.4) | 58 (18.0) | 0.465 |
RLL | 140 (28.2) | 56 (32.0) | 84 (26.1) | 0.162 |
LUL | 141 (28.4) | 49 (28.0) | 92 (28.6) | 0.893 |
LLL | 103 (20.7) | 33 (18.9) | 70 (21.7) | 0.449 |
Extent of resection | <0.001 | |||
Wedge resection | 233 (46.9) | 68 (38.9) | 165 (51.2) | |
Segmentectomy | 63 (12.7) | 15 (8.6) | 48 (14.9) | |
Lobectomy | 200 (40.2) | 92 (52.6) | 108 (33.5) | |
Bilobectomy | 1 (0.2) | 0 | 1 (0.3) | |
Presence of pleural adhesion | 51 (10.3) | 20 (11.4) | 31 (9.6) | 0.527 |
Size of drainage tube (Fr.) | <0.001 | |||
16 | 211 (42.5) | 42 (24) | 169 (52.5) | |
20 | 99 (19.9) | 39 (22.3) | 60 (18.6) | |
24 | 86 (17.3) | 39 (22.3) | 47 (14.6) | |
28 | 101 (20.3) | 55 (31.4) | 46 (14.3) | |
Suction pressure (cmH2O) | 0.001 | |||
≤−10 | 68 (13.7) | 36 (20.6) | 32 (9.9) | |
>−10 | 429 (86.3) | 139 (79.4) | 290 (90.1) | |
Presence of initial air leak | 151 (30.4) | 77 (44) | 74 (23) | <0.001 |
Duration of chest drainage (d, mean ± SD) | 4.9 ± 4.4 | 6.55 ± 5.6 | 4.05 ± 3.2 | <0.001 |
Fluid amount on removal day (mL, mean ± SD) | 101.6 ± 91.6 | 109.5 ± 93.3 | 97.3 ± 90.5 | 0.075 |
Diagnosis | 0.020 | |||
Primary lung cancer | 334 (67.2) | 131 (74.9) | 203 (63) | |
Metastatic tumor | 98 (19.7) | 24 (13.7) | 74 (23) | |
Benign lesion | 65 (13.1) | 20 (11.4) | 45 (14) |
Number (%) | Reintervention (n = 25) | No Reintervention (n = 472) | p Value |
---|---|---|---|
Age (years, mean ± SD) | 64.2 ± 11.26 | 58.80 ± 15.27 | 0.057 |
Gender | 0.075 | ||
Male | 16 (64.0) | 216 (45.8) | |
Female | 9 (36.0) | 256 (54.2) | |
BMI (Kg/m2, mean ± SD) | 22.57 ± 2.92 | 23.77 ± 3.30 | 0.118 |
Positive smoking history | 12 (48) | 115 (24.4) | 0.008 |
Previous chest surgery history | 3 (12) | 71 (15) | 1.000 |
FEV1 (%, mean ± SD) | 88.04 ± 22.54 | 94.69 ± 17.82 | 0.146 |
Normal FEV1 (≥80%) | 17 (68.0) | 384 (81.4) | 0.117 |
DLCO (%, mean ± SD) | 65.44 ± 17.27 | 68.17 ± 15.63 | 0.398 |
Normal DLCO (≥80%) | 6 (24) | 109 (23.1) | 0.566 |
Surgical approach | 0.510 | ||
Single port VATS | 13 (52) | 273 (57.8) | |
Multi-port VATS | 12 (48) | 185 (39.2) | |
Open thoracotomy | 0 | 14 (3) | |
Lesion location * | |||
RUL | 11 (44.0) | 173 (36.7) | 0.458 |
RML | 7 (28.0) | 78 (16.5) | 0.168 |
RLL | 10 (40.0) | 130 (27.5) | 0.177 |
LUL | 5 (20.0) | 136 (29) | 0.341 |
LLL | 4 (16.0) | 99 (21.0) | 0.550 |
Extent of resection | 0.027 | ||
Wedge resection | 5 (20.0) | 228 (48.3) | |
Segmentectomy | 3 (12.0) | 60 (12.7) | |
Lobectomy | 17 (68.0) | 183 (38.8) | |
Bilobectomy | 0 | 1 (0.2) | |
Presence of pleural adhesion | 2 (8.0) | 49 (10.4) | 1.000 |
Suction pressure (cmH2O) | 0.013 | ||
≤−10 | 8 (32) | 60 (12.7) | |
>−10 | 17 (68) | 412 (87.3) | |
Size of drainage tube (Fr.) | 0.220 | ||
16 | 6 (24.0) | 205 (43.4) | |
20 | 6 (24.0) | 93 (19.7) | |
24 | 6 (24.0) | 80 (16.9) | |
28 | 7 (28.0) | 94 (19.9) | |
Presence of initial air leak | 18 (72.0) | 133 (28.2) | <0.001 |
Duration of chest drainage (d, mean ± SD) | 12.16 ± 9.52 | 4.54 ± 3.58 | <0.001 |
Fluid amount on removal day (mL, mean ± SD) | 115.84 ± 91.34 | 100.82 ± 91.65 | 0.439 |
Diagnosis | 0.098 | ||
Primary lung cancer | 21 (84.0) | 313 (66.3) | |
Metastatic tumor | 1 (4.0) | 97 (20.6) | |
Benign lesion | 3 (12.0) | 62 (13.1) |
Variables | Odds Ratio (95% Confidence Interval) | p Value |
---|---|---|
Air leak-related complications after pleural drainage tube removal | ||
Previous chest surgery history | 2.031 (1.144–3.605) | 0.016 |
Size of drainage tube (16 Fr.) | 0.483 (0.270–0.865) | 0.014 |
Presence of initial air leaks | 1.695 (1.088–2.641) | 0.020 |
Chest drainage more than five days | 2.178 (1.319–3.596) | 0.002 |
Reinterventions after pleural drainage tube removal | ||
Presence of initial air leaks | 4.342 (1.714–11.001) | 0.002 |
Chest drainage more than five days | 2.991 (1.005–8.905) | 0.049 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.-Y.; Hsu, P.-K.; Huang, C.-S.; Wu, Y.-C.; Hsu, H.-S. Complications after Chest Tube Removal and Reinterventions in Patients with Digital Drainage Systems. J. Clin. Med. 2019, 8, 2092. https://doi.org/10.3390/jcm8122092
Lee Y-Y, Hsu P-K, Huang C-S, Wu Y-C, Hsu H-S. Complications after Chest Tube Removal and Reinterventions in Patients with Digital Drainage Systems. Journal of Clinical Medicine. 2019; 8(12):2092. https://doi.org/10.3390/jcm8122092
Chicago/Turabian StyleLee, Yi-Ying, Po-Kuei Hsu, Chien-Sheng Huang, Yu-Chung Wu, and Han-Shui Hsu. 2019. "Complications after Chest Tube Removal and Reinterventions in Patients with Digital Drainage Systems" Journal of Clinical Medicine 8, no. 12: 2092. https://doi.org/10.3390/jcm8122092
APA StyleLee, Y.-Y., Hsu, P.-K., Huang, C.-S., Wu, Y.-C., & Hsu, H.-S. (2019). Complications after Chest Tube Removal and Reinterventions in Patients with Digital Drainage Systems. Journal of Clinical Medicine, 8(12), 2092. https://doi.org/10.3390/jcm8122092