TNFAIP3, TNIP1, and MyD88 Polymorphisms Predict Septic-Shock-Related Death in Patients Who Underwent Major Surgery
Abstract
:1. Introduction
2. Patients and Methods
2.1. Patients
2.2. Clinical Data
2.3. SNP Selection
2.4. DNA Genotyping
2.5. Outcome Variables
2.6. Statistical Analysis
3. Results
3.1. Clinical Characteristics of the Study Population
3.2. Characteristics of NF-κB-Signaling-Pathway-Related SNPs
3.3. Association between NF-κB-Signaling-Pathway-Related SNPs and Susceptibility to Infection and Septic Shock
3.4. Association between NF-κB-Signaling-Pathway-Related SNPs and Death in Septic Shock Patients
3.5. Diagnostic Performance of NF-κB-Signaling-Pathway-Related SNPs for Prediction of Septic Shock-Related Death
4. Discussion
Limitations of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Genga, K.R.; Russell, J.A. Update of sepsis in the intensive care unit. J. Innate Immun. 2017, 9, 441–455. [Google Scholar] [CrossRef] [PubMed]
- Alvaro-Meca, A.; Jimenez-Sousa, M.A.; Micheloud, D.; Sanchez-Lopez, A.; Heredia-Rodriguez, M.; Tamayo, E.; Resino, S.; Group of Biomedical Research in Critical Care. Epidemiological trends of sepsis in the twenty-first century (2000-2013): An analysis of incidence, mortality, and associated costs in Spain. Popul. Health Metr. 2018, 16, 4. [Google Scholar] [CrossRef] [PubMed]
- Suarez De La Rica, A.; Gilsanz, F.; Maseda, E. Epidemiologic trends of sepsis in western countries. Ann. Transl. Med. 2016, 4, 325. [Google Scholar] [CrossRef] [PubMed]
- Vincent, J.L.; Abraham, E.; Annane, D.; Bernard, G.; Rivers, E.; Van den Berghe, G. Reducing mortality in sepsis: New directions. Crit. Care 2002, 6, S1–S18. [Google Scholar] [CrossRef] [PubMed]
- Esposito, S.; De Simone, G.; Boccia, G.; De Caro, F.; Pagliano, P. Sepsis and septic shock: New definitions, new diagnostic and therapeutic approaches. J. Glob. Antimicrob. Resist. 2017, 10, 204–212. [Google Scholar] [CrossRef] [PubMed]
- Coopersmith, C.M.; De Backer, D.; Deutschman, C.S.; Ferrer, R.; Lat, I.; Machado, F.R.; Martin, G.S.; Martin-Loeches, I.; Nunnally, M.E.; Antonelli, M.; et al. Surviving sepsis campaign: Research priorities for sepsis and septic shock. Intensive Care Med. 2018, 44, 1400–1426. [Google Scholar] [CrossRef] [PubMed]
- Delano, M.J.; Ward, P.A. The immune system’s role in sepsis progression, resolution, and long-term outcome. Immunol. Rev. 2016, 274, 330–353. [Google Scholar] [CrossRef] [PubMed]
- Deutschman, C.S. “Defining” sepsis: Moving toward measuring the “dysregulated host response”. Crit. Care Med. 2017, 45, 927–930. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.F.; Malik, A.B. NF-kappaB activation as a pathological mechanism of septic shock and inflammation. Am. J. Physiol. Lung Cell. Mol. Physiol. 2006, 290, L622–L645. [Google Scholar] [CrossRef] [PubMed]
- Hattori, Y.; Hattori, K.; Suzuki, T.; Matsuda, N. Recent advances in the pathophysiology and molecular basis of sepsis-associated organ dysfunction: Novel therapeutic implications and challenges. Pharmacol. Ther. 2017, 177, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Catrysse, L.; Vereecke, L.; Beyaert, R.; van Loo, G. A20 in inflammation and autoimmunity. Trends Immunol. 2014, 35, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Ma, A.; Malynn, B.A. A20: Linking a complex regulator of ubiquitylation to immunity and human disease. Nat. Rev. Immunol. 2012, 12, 774–785. [Google Scholar] [CrossRef] [PubMed]
- Bronkhorst, M.W.; Patka, P.; Van Lieshout, E.M. Effects of sequence variations in innate immune response genes on infectious outcome in trauma patients: A comprehensive review. Shock 2015, 44, 390–396. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Yao, C.; Yin, J.; Tong, C.; Zhu, D.; Sun, Z.; Jiang, J.; Shao, M.; Zhang, Y.; Deng, Z.; et al. Genetic variation in the TNF receptor-associated factor 6 gene is associated with susceptibility to sepsis-induced acute lung injury. J. Transl. Med. 2012, 10, 166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, Y.; Zhang, L.; Zhou, G.Q.; Wang, Z.F.; Feng, K.; Lou, Z.Y.; Pang, W.; Li, L.; Ling, Y.; Li, Y.X.; et al. Traf6 polymorphisms not associated with the susceptibility to and severity of sepsis in a Chinese population. World J. Emerg. Med. 2010, 1, 169–175. [Google Scholar] [PubMed]
- Shao, Y.; Li, J.; Cai, Y.; Xie, Y.; Ma, G.; Li, Y.; Chen, Y.; Liu, G.; Zhao, B.; Cui, L.; et al. The functional polymorphisms of mir-146a are associated with susceptibility to severe sepsis in the Chinese population. Mediators Inflamm. 2014, 2014, 916202. [Google Scholar] [CrossRef] [PubMed]
- Arcaroli, J.; Silva, E.; Maloney, J.P.; He, Q.; Svetkauskaite, D.; Murphy, J.R.; Abraham, E. Variant irak-1 haplotype is associated with increased nuclear factor-kappab activation and worse outcomes in sepsis. Am. J. Respir. Crit. Care Med. 2006, 173, 1335–1341. [Google Scholar] [CrossRef] [PubMed]
- Sperry, J.L.; Zolin, S.; Zuckerbraun, B.S.; Vodovotz, Y.; Namas, R.; Neal, M.D.; Ferrell, R.E.; Rosengart, M.R.; Peitzman, A.B.; Billiar, T.R. X chromosome-linked irak-1 polymorphism is a strong predictor of multiple organ failure and mortality postinjury. Ann. Surg. 2014, 260, 698–703. [Google Scholar] [CrossRef] [PubMed]
- Carrasco-Colom, J.; Jordan, I.; Alsina, L.; Garcia-Garcia, J.J.; Cambra-Lasaosa, F.J.; Martin-Mateos, M.A.; Juan, M.; Munoz-Almagro, C. Association of polymorphisms in IRAK1, IRAK4 and MYD88, and severe invasive pneumococcal disease. Pediatr. Infect. Dis. J. 2015, 34, 1008–1013. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Yao, C.L.; Liu, C.L.; Song, Z.J.; Tong, C.Y.; Huang, P.Z. Association of genetic variants in the IRAK-4 gene with susceptibility to severe sepsis. World J. Emerg. Med. 2012, 3, 123–127. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Yin, J.; Yao, C.; Sun, Z.; Shao, M.; Zhang, Y.; Tao, Z.; Huang, P.; Tong, C. Variants in the toll-interacting protein gene are associated with susceptibility to sepsis in the Chinese Han population. Crit. Care 2011, 15, R12. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, V.P.; Gurevich, I.; Aneskievich, B.J. Emerging roles for TNIP1 in regulating post-receptor signaling. Cytokine Growth Factor Rev. 2012, 23, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Moreno, R.; Vincent, J.L.; Matos, R.; Mendonca, A.; Cantraine, F.; Thijs, L.; Takala, J.; Sprung, C.; Antonelli, M.; Bruining, H.; et al. The use of maximum sofa score to quantify organ dysfunction/failure in intensive care. Results of a prospective, multicentre study. Working group on sepsis related problems of the ESICM. Intensive Care. Med. 1999, 25, 686–696. [Google Scholar] [CrossRef] [PubMed]
- Knaus, W.A.; Draper, E.A.; Wagner, D.P.; Zimmerman, J.E. Apache II: A severity of disease classification system. Crit. Care Med. 1985, 13, 818–829. [Google Scholar] [CrossRef] [PubMed]
- Levy, M.M.; Fink, M.P.; Marshall, J.C.; Abraham, E.; Angus, D.; Cook, D.; Cohen, J.; Opal, S.M.; Vincent, J.L.; Ramsay, G.; et al. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit. Care Med. 2003, 31, 1250–1256. [Google Scholar] [CrossRef] [PubMed]
- Dellinger, R.P.; Levy, M.M.; Rhodes, A.; Annane, D.; Gerlach, H.; Opal, S.M.; Sevransky, J.E.; Sprung, C.L.; Douglas, I.S.; Jaeschke, R.; et al. Surviving sepsis campaign: International guidelines for management of severe sepsis and septic shock: 2012. Crit. Care Med. 2013, 41, 580–637. [Google Scholar] [CrossRef] [PubMed]
- Rannikko, J.; Syrjanen, J.; Seiskari, T.; Aittoniemi, J.; Huttunen, R. Sepsis-related mortality in 497 cases with blood culture-positive sepsis in an emergency department. Int. J. Infect. Dis. 2017, 58, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.C.; Chang, J.H.; Jin, J. Regulation of nuclear factor-kappab in autoimmunity. Trends Immunol. 2013, 34, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Hawiger, J.; Veach, R.A.; Zienkiewicz, J. New paradigms in sepsis: From prevention to protection of failing microcirculation. J. Thromb. Haemost. 2015, 13, 1743–1756. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.H.; Bae, S.C.; Choi, S.J.; Ji, J.D.; Song, G.G. Associations between TNFAIP3 gene polymorphisms and rheumatoid arthritis: A meta-analysis. Inflamm. Res. 2012, 61, 635–641. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, J.R.; Marinou, I.; Kuet, K.P.; Orozco, G.; Moore, D.J.; Barton, A.; Worthington, J.; Wilson, A.G. Rheumatoid arthritis-associated polymorphisms at 6q23 are associated with radiological damage in autoantibody-positive RA. J. Rheumatol. 2012, 39, 1781–1785. [Google Scholar] [CrossRef] [PubMed]
- Shen, N.; Ruan, Y.; Lu, Y.; Jiang, X.; Sun, H.; Gao, G.; Nong, L.; Ren, K. Three single nucleotide polymorphisms of TNFAIP3 gene increase the risk of rheumatoid arthritis. Oncotarget 2017, 8, 20784–20793. [Google Scholar] [CrossRef] [PubMed]
- Graham, R.R.; Cotsapas, C.; Davies, L.; Hackett, R.; Lessard, C.J.; Leon, J.M.; Burtt, N.P.; Guiducci, C.; Parkin, M.; Gates, C.; et al. Genetic variants near TNFAIP3 on 6q23 are associated with systemic lupus erythematosus. Nat. Genet. 2008, 40, 1059–1061. [Google Scholar] [CrossRef] [PubMed]
- Prieto-Perez, R.; Solano-Lopez, G.; Cabaleiro, T.; Roman, M.; Ochoa, D.; Talegon, M.; Baniandres, O.; Lopez-Estebaranz, J.L.; de la Cueva, P.; Dauden, E.; et al. Polymorphisms associated with age at onset in patients with moderate-to-severe plaque psoriasis. J. Immunol. Res. 2015, 2015, 101879. [Google Scholar] [CrossRef] [PubMed]
- Nordmark, G.; Wang, C.; Vasaitis, L.; Eriksson, P.; Theander, E.; Kvarnstrom, M.; Forsblad-d’Elia, H.; Jazebi, H.; Sjowall, C.; Reksten, T.R.; et al. Association of genes in the NF-KappaB pathway with antibody-positive primary Sjogren’s syndrome. Scand. J. Immunol. 2013, 78, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Fung, E.Y.; Smyth, D.J.; Howson, J.M.; Cooper, J.D.; Walker, N.M.; Stevens, H.; Wicker, L.S.; Todd, J.A. Analysis of 17 autoimmune disease-associated variants in type 1 diabetes identifies 6q23/tnfaip3 as a susceptibility locus. Genes Immun. 2009, 10, 188–191. [Google Scholar] [CrossRef] [PubMed]
- Ungerback, J.; Belenki, D.; Jawad ul-Hassan, A.; Fredrikson, M.; Fransen, K.; Elander, N.; Verma, D.; Soderkvist, P. Genetic variation and alterations of genes involved in NFkappaB/TNFAIP3- and NLRP3-inflammasome signaling affect susceptibility and outcome of colorectal cancer. Carcinogenesis 2012, 33, 2126–2134. [Google Scholar] [CrossRef] [PubMed]
- G’Sell, R.T.; Gaffney, P.M.; Powell, D.W. A20-binding inhibitor of NF-kappaB activation 1 is a physiologic inhibitor of NF-kappaB: A molecular switch for inflammation and autoimmunity. Arthritis Rheumatol. 2015, 67, 2292–2302. [Google Scholar] [CrossRef] [PubMed]
- Bossini-Castillo, L.; Martin, J.E.; Broen, J.; Simeon, C.P.; Beretta, L.; Gorlova, O.Y.; Vonk, M.C.; Ortego-Centeno, N.; Espinosa, G.; Carreira, P.; et al. Confirmation of TNIP1 but not RHOB and PSORS1C1 as systemic sclerosis risk factors in a large independent replication study. Ann. Rheum. Dis. 2013, 72, 602–607. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Jia, Y.; Hou, S.; Fang, J.; Zhou, Y.; Kijlstra, A.; Yang, P. Association of a TNIP1 polymorphism with Vogt-Koyanagi-Harada syndrome but not with ocular Behcet’s disease in Han Chinese. PLoS ONE 2014, 9, e95573. [Google Scholar] [CrossRef] [PubMed]
- Caster, D.J.; Korte, E.A.; Nanda, S.K.; McLeish, K.R.; Oliver, R.K.; G’Sell R, T.; Sheehan, R.M.; Freeman, D.W.; Coventry, S.C.; Kelly, J.A.; et al. ABIN1 dysfunction as a genetic basis for lupus nephritis. J. Am. Soc. Nephrol. 2013, 24, 1743–1754. [Google Scholar] [CrossRef] [PubMed]
- Rizk, M.M.; Elsayed, E.T.; ElKeraie, A.F.; Ramzy, I. Association of tumor necrosis factor alpha-induced protein 3 interacting protein 1 (TNIP1) gene polymorphism (rs7708392) with lupus nephritis in Egyptian patients. Biochem. Genet. 2018, 56, 478–488. [Google Scholar] [CrossRef] [PubMed]
- Adrianto, I.; Wang, S.; Wiley, G.B.; Lessard, C.J.; Kelly, J.A.; Adler, A.J.; Glenn, S.B.; Williams, A.H.; Ziegler, J.T.; Comeau, M.E.; et al. Association of two independent functional risk haplotypes in TNIP1 with systemic lupus erythematosus. Arthritis Rheum. 2012, 64, 3695–3705. [Google Scholar] [CrossRef] [PubMed]
- Gateva, V.; Sandling, J.K.; Hom, G.; Taylor, K.E.; Chung, S.A.; Sun, X.; Ortmann, W.; Kosoy, R.; Ferreira, R.C.; Nordmark, G.; et al. A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus. Nat. Genet. 2009, 41, 1228–1233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Qin, H.; Wu, J.; Xu, J. Association of TNFAIP3 and TNIP1 polymorphisms with systemic lupus erythematosus risk: A meta-analysis. Gene 2018, 668, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Oka, S.; Higuchi, T.; Furukawa, H.; Nakamura, M.; Komori, A.; Abiru, S.; Nagaoka, S.; Hashimoto, S.; Naganuma, A.; Naeshiro, N.; et al. Association of a single nucleotide polymorphism in tnip1 with type-1 autoimmune hepatitis in the Japanese population. J. Hum. Genet. 2018, 63, 739–744. [Google Scholar] [CrossRef] [PubMed]
- Lessard, C.J.; Li, H.; Adrianto, I.; Ice, J.A.; Rasmussen, A.; Grundahl, K.M.; Kelly, J.A.; Dozmorov, M.G.; Miceli-Richard, C.; Bowman, S.; et al. Variants at multiple loci implicated in both innate and adaptive immune responses are associated with Sjogren’s syndrome. Nat. Genet. 2013, 45, 1284–1292. [Google Scholar] [CrossRef] [PubMed]
- Fay, K.T.; Ford, M.L.; Coopersmith, C.M. The intestinal microenvironment in sepsis. Biochim. Biophys. Acta Mol. Basis Dis. 2017, 1863, 2574–2583. [Google Scholar] [CrossRef] [PubMed]
- Yoseph, B.P.; Klingensmith, N.J.; Liang, Z.; Breed, E.R.; Burd, E.M.; Mittal, R.; Dominguez, J.A.; Petrie, B.; Ford, M.L.; Coopersmith, C.M. Mechanisms of intestinal barrier dysfunction in sepsis. Shock 2016, 46, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Matsunaga, K.; Tahara, T.; Shiroeda, H.; Otsuka, T.; Nakamura, M.; Shimasaki, T.; Toshikuni, N.; Kawada, N.; Shibata, T.; Arisawa, T. The *1244 a>g polymorphism of MYD88 (rs7744) is closely associated with susceptibility to ulcerative colitis. Mol. Med. Rep. 2014, 9, 28–32. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Nakajima, T.; Inoue, Y.; Kudo, T.; Jibiki, M.; Iwai, T.; Kimura, A. A single nucleotide polymorphism in the 3′-untranslated region of MYD88 gene is associated with Buerger disease but not with Takayasu arteritis in Japanese. J. Hum. Genet. 2011, 56, 545–547. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Sun, L.; Xu, Q.; Gong, Y.; Wang, H.; Yang, J.; Yuan, Y. SNP–SNP interaction between TLR4 and MYD88 in susceptibility to coronary artery disease in the Chinese Han population. Int. J. Environ. Res. Public Health 2016, 13, 278. [Google Scholar] [CrossRef] [PubMed]
- Salzman, J.; Chen, R.E.; Olsen, M.N.; Wang, P.L.; Brown, P.O. Cell-type specific features of circular RNA expression. PLoS Genet. 2013, 9, e1003777. [Google Scholar] [CrossRef]
- Thomas, L.F.; Saetrom, P. Circular RNAs are depleted of polymorphisms at microrna binding sites. Bioinformatics 2014, 30, 2243–2246. [Google Scholar] [CrossRef] [PubMed]
- Daviaud, F.; Grimaldi, D.; Dechartres, A.; Charpentier, J.; Geri, G.; Marin, N.; Chiche, J.D.; Cariou, A.; Mira, J.P.; Pène, F. Timing and causes of death in septic shock. Ann. Intensive Care. 2015, 5, 16. [Google Scholar] [CrossRef] [PubMed]
Characteristics | SIRS Group | Septic Shock Group | p-Value * |
---|---|---|---|
No. patients | 212 | 184 | – |
Gender (male) | 136 (64.1%) | 121 (65.8%) | 0.819 |
Age (years) | 72 (65–78) | 73 (63–79) | 0.456 |
Prior or pre-existing conditions | |||
Smoker | 27 (12.7%) | 33 (17.9%) | 0.207 |
Alcoholism | 6 (2.8%) | 11 (6.0%) | 0.203 |
Obesity | 26 (12.3%) | 29 (15.8%) | 0.400 |
Diabetes | 43 (20.3%) | 25 (13.6%) | 0.104 |
Heart disease | 123 (58.0%) | 83 (45.1%) | 0.012 |
COPD | 30 (14.1%) | 32 (17.4%) | 0.478 |
Hypertension | 127 (59.9%) | 102 (55.4%) | 0.463 |
Chronic kidney disease | 13 (6.1%) | 29 (15.8%) | 0.004 |
Cancer | 76 (35.8%) | 43 (23.4%) | 0.008 |
Liver disease | 3 (1.4%) | 7 (3.8%) | 0.199 |
Surgery | |||
Cardiac (versus abdominal) | 117 (55.2%) | 76 (41.3%) | 0.006 |
Emergency (versus scheduled) | 19 (9.0%) | 116 (63.0%) | <0.001 |
Severity indexes | |||
SOFA score | 3 (3–4) | 9 (7–10) | <0.001 |
APACHE II score | 9 (8–10) | 16 (13–19) | <0.001 |
Characteristics | All Patients | Nonexitus | Exitus | p-Value * |
---|---|---|---|---|
No. patients | 184 | 80 | 104 | – |
Gender (male) | 121 (65.8%) | 56 (70.0%) | 65 (62.5%) | 0.288 |
Age (years) | 73 (63–79) | 68 (58–77) | 77 (69–81) | <0.001 |
Pre-existing conditions | ||||
Smoker | 33 (17.9%) | 14 (17.5%) | 19 (18.3%) | 0.670 |
Alcoholism | 11 (6.0%) | 4 (5.0%) | 7 (6.7%) | 0.597 |
Obesity | 29 (15.8%) | 12 (15.0%) | 17 (16.3%) | 0.654 |
Diabetes | 25 (13.6%) | 11 (13.8%) | 14 (13.5%) | 0.679 |
Heart disease | 83 (45.1%) | 33 (41.3%) | 50 (48.1%) | 0.419 |
COPD | 32 (17.4%) | 14 (17.5%) | 18 (17.3%) | 0.679 |
Hypertension | 102 (55.4%) | 43 (53.8%) | 59 (56.7%) | 0.606 |
Chronic kidney disease | 29 (15.8%) | 4 (5.0%) | 25 (24.0%) | 0.001 |
Cancer | 43 (23.4%) | 14 (17.5%) | 29 (27.9%) | 0.099 |
Liver disease | 7 (3.8%) | 3 (3.8%) | 4 (3.8%) | 0.679 |
Surgery | ||||
Cardiac (versus abdominal) | 76 (41.3%) | 38 (47.5%) | 38 (36.5%) | 0.134 |
Emergency (versus scheduled) | 116 (63.0%) | 40 (50.0%) | 28 (73.1%) | 0.001 |
Severity | ||||
Time to septic shock (days) | 1(0–4) | 2 (1–5) | 1 (0–4) | 0.047 |
Late septic shock (>4 days) | 41 (22.3%) | 20 (25.0%) | 21 (20.2%) | 0.437 |
Lactate (mg/dL) | 26.0 (16.0–42.2) | 21.0 (14.0–30.0) | 30.0 (18.0–49.0) | <0.001 |
Lactate (>18 mg/dL or 2 mmol/L) | 122 (66.3%) | 45 (56.3%) | 77 (74%) | 0.040 |
White Blood Cell (×103 cells/mm3) | 14.9 (9.4–20.3) | 16.1 (10.5–20.6) | 13.7 (9.1–20.3) | 0.358 |
C-Reactive protein (mg/L) | 241.0 (130.2–307.2) | 236.4 (123.8–307.7) | 241.5 (133.5–306.9) | 0.951 |
Procalcitonin (ng/mL) | 5.0 (1.7–20.2) | 3.5 (1.2–17.2) | 5.9 (2.0–32.8) | 0.033 |
SOFA score | 9 (7–10) | 8 (7–10) | 9 (8–11) | 0.004 |
APACHE II score | 16 (13–19) | 15 (12–18) | 18 (14–21) | <0.001 |
Exitus | ||||
At 7 days | 23 (12.5%) | – | 23 (22.1%) | – |
At 28 days | 66 (35.9%) | – | 66 (63.5%) | – |
At 90 days | 102 (55.4%) | – | 102 (98.1%) | – |
Microorganism isolated | ||||
Gram-positive | 94 (51.1%) | 40 (50.0%) | 54 (51.9%) | 0.796 |
Gram-negative | 98 (53.3%) | 47 (58.8%) | 51 (49.0%) | 0.191 |
Fungus | 38 (20.7%) | 13 (16.3%) | 25 (24.0%) | 0.196 |
Site of infection | ||||
Catheter bacteraemia | 66 (35.9%) | 35 (43.8%) | 31 (29.8%) | 0.051 |
Surgical site infection | 47 (25.5%) | 20 (25.0%) | 27 (26.0%) | 0.882 |
Urinary tract infection | 19 (10.3%) | 8 (10.0%) | 11 (10.6%) | 0.899 |
Endocarditis | 10 (5.4%) | 4 (5.0%) | 6 (5.8%) | 0.820 |
Peritonitis | 83 (45.1%) | 30 (37.5%) | 53 (51.0%) | 0.069 |
Pneumonia | 90 (48.9%) | 42 (52.5%) | 48 (46.2%) | 0.393 |
Adequate initial empirical treatment | 161 (87.5%) | 69 (86.3%) | 92 (88.5%) | 0.653 |
Gene | SNPs | Genotype | n | 28 Days | 90 Days | ||||
---|---|---|---|---|---|---|---|---|---|
Deaths | p * | p ** | Deaths | p * | p ** | ||||
MyD88 | rs7744 | AA/AG | 178 | 63 (35.4%) | 0.026 | 0.123 | 98 (55.1%) | 0.005 | 0.043 |
GG | 4 | 3 (75.0%) | 4 (100%) | ||||||
TNFAIP3 | rs6920220 | GG/GA | 176 | 61 (34.7%) | 2.28 × 10−4 | 0.007 | 97 (55.1%) | 2.28 × 10−4 | 0.007 |
AA | 7 | 5 (71.4%) | 5 (71.4%) | ||||||
TNIP1 | rs73272842 | GG/GA | 178 | 62 (34.8%) | 0.003 | 0.025 | 98 (55.1%) | 0.003 | 0.033 |
AA | 5 | 4 (80.0%) | 4 (80%) | ||||||
rs3792783 | AA/AG | 177 | 61 (34.5%) | 4.40 × 10−4 | 0.007 | 97 (54.8%) | 4.40 × 10−4 | 0.007 | |
GG | 6 | 5 (83.3%) | 5 (83.3%) | ||||||
rs7708392 | GG/GC | 169 | 57 (33.7%) | 0.003 | 0.025 | 92 (54.4%) | 0.013 | 0.083 | |
CC | 14 | 9 (64.3%) | 10 (71.4%) |
Genes | SNPs | Day 28 | Day 90 | ||||
---|---|---|---|---|---|---|---|
aHR (95% CI) | p * | p ** | aHR (95% CI) | p * | p ** | ||
MyD88 | rs7744 (GG) | 1.64 (0.36; 7.56) | 0.525 | 0.525 | 4.32 (1.15; 16.23) | 0.030 | 0.030 |
TNFAIP3 | rs6920220 (AA) | 8.37 (2.97; 23.55) | 5.74× 10−5 | 9.57× 10−5 | 7.56 (2.88; 19.84) | 3.92× 10−5 | 1.96× 10−4 |
TNIP1 | rs73272842 (AA) | 10.84 (3.50; 33.55) | 3.56× 10−5 | 8.89× 10−5 | 5.68 (1.79; 18.06) | 0.003 | 0.005 |
rs3792783 (GG) | 10.06 (3.73; 27.17) | 5.22× 10−6 | 2.61× 10−5 | 5.10 (1.87; 13.87) | 0.001 | 0.004 | |
rs7708392 (CC) | 3.58 (1.66; 7.72) | 0.001 | 0.001 | 2.33 (1.14; 4.76) | 0.020 | 0.025 |
TNIP1 Haplotypes | Association | |||||
---|---|---|---|---|---|---|
Exitus | rs73272842 | rs3792783 | rs7708392 | Freq. | aOR (95% CI) | p-Value |
28 days | G | A | G | 0.745 | 0.53 (0.30; 0.92) | 0.024 |
A | G | C | 0.122 | 1.90 (0.96; 3.79) | 0.069 | |
G | A | C | 0.111 | 1.59 (0.75; 3.37) | 0.227 | |
90 days | G | A | G | 0.745 | 0.62 (0.36; 1.05) | 0.071 |
A | G | C | 0.122 | 2.09 (1.05; 4.17) | 0.031 | |
G | A | C | 0.111 | 1.08 (0.53; 2.20) | 0.840 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiménez-Sousa, M.Á.; Fadrique, A.; Liu, P.; Fernández-Rodríguez, A.; Lorenzo-López, M.; Gómez-Sánchez, E.; Gómez-Sanz, A.; Heredia-Rodríguez, M.; Gómez-Pesquera, E.; Martínez, I.; et al. TNFAIP3, TNIP1, and MyD88 Polymorphisms Predict Septic-Shock-Related Death in Patients Who Underwent Major Surgery. J. Clin. Med. 2019, 8, 283. https://doi.org/10.3390/jcm8030283
Jiménez-Sousa MÁ, Fadrique A, Liu P, Fernández-Rodríguez A, Lorenzo-López M, Gómez-Sánchez E, Gómez-Sanz A, Heredia-Rodríguez M, Gómez-Pesquera E, Martínez I, et al. TNFAIP3, TNIP1, and MyD88 Polymorphisms Predict Septic-Shock-Related Death in Patients Who Underwent Major Surgery. Journal of Clinical Medicine. 2019; 8(3):283. https://doi.org/10.3390/jcm8030283
Chicago/Turabian StyleJiménez-Sousa, Maria Ángeles, Alejandra Fadrique, Pilar Liu, Amanda Fernández-Rodríguez, Mario Lorenzo-López, Esther Gómez-Sánchez, Alicia Gómez-Sanz, María Heredia-Rodríguez, Estefanía Gómez-Pesquera, Isidoro Martínez, and et al. 2019. "TNFAIP3, TNIP1, and MyD88 Polymorphisms Predict Septic-Shock-Related Death in Patients Who Underwent Major Surgery" Journal of Clinical Medicine 8, no. 3: 283. https://doi.org/10.3390/jcm8030283
APA StyleJiménez-Sousa, M. Á., Fadrique, A., Liu, P., Fernández-Rodríguez, A., Lorenzo-López, M., Gómez-Sánchez, E., Gómez-Sanz, A., Heredia-Rodríguez, M., Gómez-Pesquera, E., Martínez, I., Tamayo, E., & Resino, S. (2019). TNFAIP3, TNIP1, and MyD88 Polymorphisms Predict Septic-Shock-Related Death in Patients Who Underwent Major Surgery. Journal of Clinical Medicine, 8(3), 283. https://doi.org/10.3390/jcm8030283