FABP4 in Gestational Diabetes—Association between Mothers and Offspring
Abstract
:1. Introduction
2. Experimental Section
3. Results
4. Discussion
4.1. Associations between FABP4 and Maternal Weight Parameters
4.2. Associations between FABP4 and Maternal Laboratory Results
4.3. Associations between FABP4 and Leptin
4.4. Associations between FABP4 and Ghrelin
4.5. Associations between FABP4 and Neonatal Anthropometric Measurements
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Marciniak, A.; Patro-Małysza, J.; Kimber-Trojnar, Ż.; Marciniak, B.; Oleszczuk, J.; Leszczyńska-Gorzelak, B. Fetal programming of the metabolic syndrome. Taiwan J. Obstet. Gynecol. 2017, 56, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Phang, M.; Skilton, M.R. Marine Omega-3 Fatty Acids, Complications of Pregnancy and Maternal Risk Factors for Offspring Cardio-Metabolic Disease. Mar. Drugs 2018, 16, 138. [Google Scholar] [CrossRef] [PubMed]
- Barker, D.J. In utero programming of chronic disease. Clin. Sci. 1998, 95, 115–128. [Google Scholar] [CrossRef] [PubMed]
- Villalobos-Labra, R.; Subiabre, M.; Toledo, F.; Pardo, F.; Sobrevia, L. Endoplasmic reticulum stress and development of insulin resistance in adipose, skeletal, liver, and foetoplacental tissue in diabesity. Mol. Aspects Med. 2018, 27, S0098-2997(18)30080-3. [Google Scholar] [CrossRef] [PubMed]
- Kilby, M.D.; Neary, R.H.; Mackness, M.I.; Durrington, P.N. Fetal and maternal lipoprotein metabolism in human pregnancy complicated by type I diabetes mellitus. J. Clin. Endocrinol. Metab. 1998, 83, 1736–1741. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, L.J.; Norman, J.E.; Rice, G.E.; Illanes, S.E. Fetal programming and gestational diabetes mellitus. Placenta 2016, 48, S54–S60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colomiere, M.; Permezel, M.; Lappas, M. Diabetes and obesity during pregnancy alter insulin signalling and glucose transporter expression in maternal skeletal muscle and subcutaneous adipose tissue. J. Mol. Endocrinol. 2010, 44, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Catalano, P.M.; Nizielski, S.E.; Shao, J.; Preston, L.; Qiao, L.; Friedman, J.E. Downregulated IRS-1 and PPARgamma in obese women with gestational diabetes: Relationship to FFA during pregnancy. Am. J. Physiol. Endocrinol. Metab. 2002, 282, E522–E533. [Google Scholar] [CrossRef] [PubMed]
- Kimber-Trojnar, Ż.; Patro-Małysza, J.; Skórzyńska-Dziduszko, K.E.; Oleszczuk, J.; Trojnar, M.; Mierzyński, R.; Leszczyńska-Gorzelak, B. Ghrelin in Serum and Urine of Post-Partum Women with Gestational Diabetes Mellitus. Int. J. Mol. Sci. 2018, 19, 3001. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zhang, S.; Liu, H.; Wang, L.; Zhang, C.; Leng, J.; Yu, Z.; Yang, X.; Tian, H.; Hu, G. Different associations of diabetes with β-cell dysfunction and insulin resistance among obese and nonobese Chinese women with prior gestational diabetes mellitus. Diabetes Care 2014, 37, 2533–2539. [Google Scholar] [CrossRef] [PubMed]
- Ozkorucu, D.; Cetin, N.; Sav, N.M.; Yildiz, B. Urine and serum ghrelin, sCD80 and sCTLA-4 levels in doxorubicin-induced experimental nephrotic syndrome. Int. Urol. Nephrol. 2016, 48, 1187–1196. [Google Scholar] [CrossRef] [PubMed]
- Cabia, B.; Andrade, S.; Carreira, M.C.; Casanueva, F.F.; Crujeiras, A.B. A role for novel adipose tissue-secreted factors in obesity-related carcinogenesis. Obes. Rev. 2016, 17, 361–376. [Google Scholar] [CrossRef] [PubMed]
- Ning, H.; Tao, H.; Weng, Z.; Zhao, X. Plasma fatty acid-binding protein 4 (FABP4) as a novel biomarker to predict gestational diabetes mellitus. Acta Diabetol. 2016, 53, 891–898, Erratum in: Acta Diabetol. 2018, 55, 1089. [Google Scholar] [CrossRef] [PubMed]
- Villeneuve, J.; Bassaganyas, L.; Lepreux, S.; Chiritoiu, M.; Costet, P.; Ripoche, J.; Malhotra, V.; Schekman, R. Unconventional secretion of FABP4 by endosomes and secretory lysosomes. J. Cell. Biol. 2018, 217, 649–665. [Google Scholar] [CrossRef] [PubMed]
- Joung, K.E.; Cataltepe, S.U.; Michael, Z.; Christou, H.; Mantzoros, C.S. Cord Blood Adipocyte Fatty Acid-Binding Protein Levels Correlate with Gestational Age and Birth Weight in Neonates. J. Clin. Endocrinol. Metab. 2017, 102, 1606–1613. [Google Scholar] [CrossRef] [PubMed]
- Xu, A.; Wang, Y.; Xu, J.Y.; Stejskal, D.; Tam, S.; Zhang, J.; Wat, N.M.; Wong, W.K.; Lam, K.S. Adipocyte fatty acid-binding protein is a plasma biomarker closely associated with obesity and metabolic syndrome. Clin. Chem. 2006, 52, 405–413. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.E.; Samocha-Bonet, D.; Whitworth, P.T.; Fazakerley, D.J.; Turner, N.; Biden, T.J.; James, D.E.; Cantley, J. Identification of fatty acid binding protein 4 as an adipokine that regulates insulin secretion during obesity. Mol. Metab. 2014, 3, 465–473. [Google Scholar] [CrossRef] [PubMed]
- Kimber-Trojnar, Ż.; Patro-Małysza, J.; Trojnar, M.; Skórzyńska-Dziduszko, K.E.; Bartosiewicz, J.; Oleszczuk, J.; Leszczyńska-Gorzelak, B. Fatty Acid-Binding Protein 4—An “Inauspicious” Adipokine—In Serum and Urine of Post-Partum Women with Excessive Gestational Weight Gain and Gestational Diabetes Mellitus. J. Clin. Med. 2018, 7, 505. [Google Scholar] [CrossRef] [PubMed]
- Möhlig, M.; Weickert, M.O.; Ghadamgadai, E.; Machlitt, A.; Pfüller, B.; Arafat, A.M.; Pfeiffer, A.F.; Schöfl, C. Adipocyte fatty acid-binding protein is associated with markers of obesity, but is an unlikely link between obesity, insulin resistance, and hyperandrogenism in polycystic ovary syndrome women. Eur. J. Endocrinol. 2007, 157, 195–200. [Google Scholar] [Green Version]
- Hotamisligil, G.S.; Johnson, R.S.; Distel, R.J.; Ellis, R.; Papaioannou, V.E.; Spiegelman, B.M. Uncoupling of obesity from insulin resistance through a targeted mutation in aP2, the adipocyte fatty acid binding protein. Science 1996, 274, 1377–1379. [Google Scholar] [CrossRef] [PubMed]
- Fasshauer, M.; Blüher, M.; Stumvoll, M. Adipokines in gestational diabetes. Lancet Diabetes Endocrinol. 2014, 2, 488–499. [Google Scholar] [CrossRef]
- Ochoa-Martínez, Á.C.; Cardona-Lozano, E.D.; Carrizales-Yáñez, L.; Pérez-Maldonado, I.N. Serum Concentrations of New Predictive Cardiovascular Disease Biomarkers in Mexican Women Exposed to Lead. Arch. Environ. Contam. Toxicol. 2018, 74, 248–258. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, R.; Qasim, A.N.; Mehta, N.N.; Terembula, K.; Kapoor, S.; Braunstein, S.; Schutta, M.; Iqbal, N.; Lehrke, M.; Reilly, M.P. Relation of plasma fatty acid binding proteins 4 and 5 with the metabolic syndrome, inflammation and coronary calcium in patients with type-2 diabetes mellitus. Am. J. Cardiol. 2010, 106, 1118–1123. [Google Scholar] [CrossRef] [PubMed]
- Tu, W.J.; Guo, M.; Shi, X.D.; Cai, Y.; Liu, Q.; Fu, C.W. First-Trimester Serum Fatty Acid-Binding Protein 4 and Subsequent Gestational Diabetes Mellitus. Obstet. Gynecol. 2017, 130, 1011–1016. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.; Liu, X.; Zhang, S.; Su, J.; Zhang, Q.; Chen, J. Molecular Dynamics Exploration of Selectivity of Dual Inhibitors 5M7, 65X, and 65Z toward Fatty Acid Binding Proteins 4 and 5. Int. J. Mol. Sci. 2018, 19, 2496. [Google Scholar] [CrossRef] [PubMed]
- Moseti, D.; Regassa, A.; Kim, W.K. Molecular Regulation of Adipogenesis and Potential Anti-Adipogenic Bioactive Molecules. Int. J. Mol. Sci. 2016, 17, 124. [Google Scholar] [CrossRef] [PubMed]
- International Association of Diabetes and Pregnancy Study Groups Consensus Panel. International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. Diabetes Care 2010, 33, 676–682. [Google Scholar] [CrossRef] [PubMed]
- Diabetes Poland (Polish Diabetes Association). 2018 Guidelines on the management of diabetic patients. A position of Diabetes Poland. Clin. Diabetol. 2018, 7, 1–90. [Google Scholar] [CrossRef] [Green Version]
- López-Tinoco, C.; Roca, M.; Fernández-Deudero, A.; García-Valero, A.; Bugatto, F.; Aguilar-Diosdado, M.; Bartha, J.L. Cytokine profile, metabolic syndrome and cardiovascular disease risk in women with late-onset gestational diabetes mellitus. Cytokine 2012, 58, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Świrska, J.; Zwolak, A.; Dudzińska, M.; Matyjaszek-Matuszek, B.; Paszkowski, T. Gestational diabetes mellitus—literature review on selected cytokines and hormones of confirmed or possible role in its pathogenesis. Ginekol. Pol. 2018, 89, 522–527. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.Y.; Wang, X.J. Expression and significance of adipocyte fatty acid-binding protein in placenta, serum and umbilical cord blood in preeclampsia. Zhonghua Fu Chan Ke Za Zhi 2010, 45, 885–890. [Google Scholar] [PubMed]
- Zhang, Y.; Zhang, H.H.; Lu, J.H.; Zheng, S.Y.; Long, T.; Li, Y.T.; Wu, W.Z.; Wang, F. Changes in serum adipocyte fatty acid-binding protein in women with gestational diabetes mellitus and normal pregnant women during mid- and late pregnancy. J. Diabetes Investig. 2016, 7, 797–804. [Google Scholar] [CrossRef] [PubMed]
- Kralisch, S.; Stepan, H.; Kratzsch, J.; Verlohren, M.; Verlohren, H.J.; Drynda, K.; Lössner, U.; Blüher, M.; Stumvoll, M.; Fasshauer, M. Serum levels of adipocyte fatty acid binding protein are increased in gestational diabetes mellitus. Eur. J. Endocrinol. 2009, 160, 33–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ortega-Senovilla, H.; Schaefer-Graf, U.; Meitzner, K.; Abou-Dakn, M.; Graf, K.; Kintscher, U.; Herrera, E. Gestational diabetes mellitus causes changes in the concentrations of adipocyte fatty acid-binding protein and other adipocytokines in cord blood. Diabetes Care 2011, 34, 2061–2066. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.Y.; Xiao, R.; Li, C.P.; Huangfu, J.; Mao, J.F. Increased plasma levels of FABP4 and PTEN is associated with more severe insulin resistance in women with gestational diabetes mellitus. Med. Sci. Monit. 2015, 21, 426–431. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Lee, S.J.; Kook, S.Y.; Ahn, T.G.; Lee, J.Y.; Hwang, J.Y. Serum from pregnant women with gestational diabetes mellitus increases the expression of FABP4 mRNA in primary subcutaneous human pre-adipocytes. Obstet. Gynecol. Sci. 2017, 60, 274–282. [Google Scholar] [CrossRef] [PubMed]
- Tuuri, A.L.; Jauhiainen, M.S.; Tikkanen, M.J.; Kaaja, R.J. Systolic blood pressure and fatty acid-binding protein 4 predict pregnancy-induced hypertension in overweight nulliparous women. Placenta 2014, 35, 797–801. [Google Scholar] [CrossRef] [PubMed]
- Park, S.E.; Rhee, E.J.; Lee, W.Y.; Kim, W.J.; Yoo, S.H.; Bae, J.C.; Choi, E.S.; Park, C.Y.; Oh, K.W.; Park, S.W.; et al. The role of serum adipocyte fatty acid-binding protein on the development of metabolic syndrome is independent of pro-inflammatory cytokines. Nutr. Metab. Cardiovasc. Dis. 2012, 22, 525–532. [Google Scholar] [CrossRef] [PubMed]
- Huopio, H.; Hakkarainen, H.; Pääkkönen, M.; Kuulasmaa, T.; Voutilainen, R.; Heinonen, S.; Cederberg, H. Long-Term changes in glucose metabolism after gestational diabetes: A double cohort study. BMC Pregnancy Childbirth 2014, 14, 296. [Google Scholar] [CrossRef] [PubMed]
- Bellamy, L.; Casas, J.; Hingorani, A.; Williams, D. Type 2 diabetes mellitus after gestational diabetes: A systematic review and meta-analysis. Lancet 2009, 373, 1773–1779. [Google Scholar] [CrossRef]
- Dubé, E.; Gravel, A.; Martin, C.; Desparois, G.; Moussa, I.; Ethier-Chiasson, M.; Forest, J.C.; Giguère, Y.; Masse, A.; Lafond, J. Modulation of fatty acid transport and metabolism by maternal obesity in the human full-term placenta. Biol. Reprod. 2012, 87, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Viteri, O.A.; Sallman, M.A.; Berens, P.M.; Berens, P.D.; Amro, F.H.; Hutchinson, M.S.; Ramin, S.M.; Blackwell, S.C.; Refuerzo, J.S.; Smith, J.A. Potential of Metformin to Improve Cardiac Risk in Postpartum Women with Gestational Diabetes. Front. Med. 2017, 4, 180. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.P.; Xu, C.L.; Lin, K.S.; Gu, H.B.; Chen, L.; Wang, Y.; Weng, B.C.; Huang, H.Q.; Li, Y.P.; Zou, Y.L.; et al. Study on the correlation between adipocyte fatty-acid binding protein, glucolipid metabolism, and pre-eclampsia. J. Obstet. Gynaecol. Res. 2018, 44, 655–662. [Google Scholar] [CrossRef] [PubMed]
- Fuseya, T.; Furuhashi, M.; Yuda, S.; Muranaka, A.; Kawamukai, M.; Mita, T.; Ishimura, S.; Watanabe, Y.; Hoshina, K.; Tanaka, M.; et al. Elevation of circulating fatty acid-binding protein 4 is independently associated with left ventricular diastolic dysfunction in a general population. Cardiovasc. Diabetol. 2014, 13, 126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishimura, S.; Furuhashi, M.; Watanabe, Y.; Hoshina, K.; Fuseya, T.; Mita, T.; Okazaki, Y.; Koyama, M.; Tanaka, M.; Akasaka, H.; et al. Circulating levels of fatty acid-binding protein family and metabolic phenotype in the general population. PLoS ONE 2013, 8, e81318. [Google Scholar] [CrossRef] [PubMed]
- Terra, X.; Quintero, Y.; Auguet, T.; Porras, J.A.; Hernández, M.; Sabench, F.; Aguilar, C.; Luna, A.M.; Del Castillo, D.; Richart, C. FABP 4 is associated with inflammatory markers and metabolic syndrome in morbidly obese women. Eur. J. Endocrinol. 2011, 164, 539–547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelly, C.B.; Hookham, M.B.; Yu, J.Y.; Lockhart, S.M.; Du, M.; Jenkins, A.J.; Nankervis, A.; Hanssen, K.F.; Henriksen, T.; Garg, S.K.; et al. Circulating adipokines are associated with pre-eclampsia in women with type 1 diabetes. Diabetologia 2017, 60, 2514–2524. [Google Scholar] [CrossRef] [PubMed]
- Balogun, K.A.; Cheema, S.K. Dietary Omega-3 Fatty Acids Prevented Adipocyte Hypertrophy by Downregulating DGAT-2 and FABP-4 in a Sex-Dependent Fashion. Lipids 2016, 51, 25–38. [Google Scholar] [CrossRef] [PubMed]
- Zachariah, J.P.; Quiroz, R.; Enserro, D.; Andersson, C.; Keaney, J.F.Jr.; Sullivan, L.M.; Vasan, R.S. Association of Parental Obesity and Diabetes Mellitus with Circulating Adipokines in Nonobese Nondiabetic Offspring. J. Am. Heart Assoc. 2017, 6, e004973. [Google Scholar] [CrossRef] [PubMed]
- Basak, S.; Sarkar, A.; Mathapati, S.; Duttaroy, A.K. Cellular growth and tube formation of HTR8/SVneo trophoblast: Effects of exogenously added fatty acid-binding protein-4 and its inhibitor. Mol. Cell. Biochem. 2018, 437, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Gan, L.; Liu, Z.; Cao, W.; Zhang, Z.; Sun, C. FABP4 reversed the regulation of leptin on mitochondrial fatty acid oxidation in mice adipocytes. Sci. Rep. 2015, 5, 13588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, K.; Santibanez-Koref, M.; Polvikoski, T.; Birchall, D.; Mendelow, A.D.; Keavney, B. Increased expression of fatty acid binding protein 4 and leptin in resident macrophages characterises atherosclerotic plaque rupture. Atherosclerosis 2013, 226, 74–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.; Chai, B.; Li, J.Y.; Wang, H.; Mulholland, M.W. Effect of des-acyl ghrelin on adiposity and glucose metabolism. Endocrinology 2008, 149, 4710–4716. [Google Scholar] [CrossRef] [PubMed]
- Makkar, A.; Mishima, T.; Chang, G.; Scifres, C.; Sadovsky, Y. Fatty acid binding protein-4 is expressed in the mouse placental labyrinth, yet is dispensable for placental triglyceride accumulation and fetal growth. Placenta 2014, 35, 802–807. [Google Scholar] [CrossRef] [PubMed]
- Ciborowski, M.; Zbucka-Kretowska, M.; Bomba-Opon, D.; Wielgos, M.; Brawura-Biskupski-Samaha, R.; Pierzynski, P.; Szmitkowski, M.; Wolczynski, S.; Lipinska, D.; Citko, A.; et al. Potential first trimester metabolomic biomarkers of abnormal birth weight in healthy pregnancies. Prenat. Diagn. 2014, 34, 870–877. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.C.; Bilodeau, J.F.; Nuyt, A.M.; Fraser, W.D.; Julien, P.; Audibert, F.; Xiao, L.; Garofalo, C.; Levy, E. Perinatal Oxidative Stress May Affect Fetal Ghrelin Levels in Humans. Sci. Rep. 2015, 5, 17881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gluckman, P.D.; Hanson, M.A. Living with the past: Evolution, development, and patterns of disease. Science 2004, 305, 1733–1736. [Google Scholar] [CrossRef] [PubMed]
Variables | Control Group (n = 28) | GDM Group (n = 26) | p |
---|---|---|---|
Maternal Characteristics | |||
age, years | 29 (24–38) | 34.5 (32–41) | 0.0021 * |
prepregnancy BMI, kg/m2 | 20.3 (19.5–24.4) | 27.55 (24.53–29.8) | 0.000001 *** |
gestational weight gain, kg | 15 (11.5–15.6) | 13.3 (9.2–15.0) | 0.018 * |
gestational BMI gain, kg/m2 | 5.4 (3.0–5.6) | 5.508 (3.11–5.72) | NS |
BMI at delivery, kg/m2 | 26.3 (24.2–29.1) | 32.3 (30.23–33.9) | 0.000007 *** |
BMI after delivery, kg/m2 | 22 (21–23.9) | 28.8 (25.3–30.65) | 0.000003 *** |
gestational age at delivery, weeks | 39.8 (38.8–40.6) | 39.2 (37.8–39.6) | NS |
Maternal Serum | |||
albumin, g/dL | 3.68 (3.43–3.73) | 3.46 (3.37–3.64) | 0.007 * |
total cholesterol, mg/dL | 249 (188–287) | 209 (192.5–247.5) | NS |
HDL, mg/dL | 78 (75–82) | 67.5 (54.5–73.5) | 0.001 * |
LDL, mg/dL | 129 (93–152) | 107 (85.5–129) | NS |
triglycerides, mg/dL | 177 (150–254) | 240.5 (170–261) | NS |
HgbA1c, % | 5.3 (4.6–5.4) | 5.5 (5.2–5.6) | 0.018 * |
FABP4, ng/mL | 10.99 (10.63–11.56) | 18.23 (13.32–24.29) | 0.00022 ** |
ghrelin, ng/mL | 0.933 (0.646–1.115) | 0.4 (0.19–1.23) | NS |
leptin, ng/mL | 10.43 (6.04–14.9) | 18.15 (10.84–51.91) | 0.005 * |
Maternal Urine | |||
FABP4, ng/mL | 0.04 (0.03–0.1) | 0.06 (0.02–0.34) | NS |
ghrelin, ng/mL | 0.102 (0.096–0.288) | 0.21 (0.07–6.6) | NS |
Umbilical Cord Serum | |||
FABP4, ng/mL | 13.29 (10.79–17.56) | 30.83 (19.94–39.38) | 0.000001 *** |
ghrelin, ng/mL | 0.195 (0.187–0.282) | 0.32 (0.18–0.71) | NS |
leptin, ng/mL | 7.53 (4.9–14.01) | 12.13 (4.81–27.14) | NS |
Neonatal Anthropometric Measurements | |||
birth weight, g | 3400 (3170–3830) | 3225 (3005–3510) | NS |
birth body length, cm | 55 (53–56) | 53 (52.5–55.5) | NS |
head circumference, cm | 34 (33–35) | 34 (34–35) | NS |
chest circumference, cm | 34 (34–35) | 34 (32.5–35) | NS |
Variables | Umbilical Cord Serum FABP4 | |
---|---|---|
r | p | |
Maternal Characteristics | ||
prepregnancy BMI | 0.524 | 0.00026 ** |
gestational weight gain | −0.108 | 0.437 |
gestational BMI gain | −0.251 | 0.093 |
BMI at delivery | 0.523 | 0.00027 ** |
BMI after delivery | 0.574 | 0.000047 *** |
gestational age at delivery | 0.153 | 0.114 |
Maternal Serum | ||
albumin | −0.285 | 0.055 |
total cholesterol | −0.522 | 0.00028 ** |
HDL | −0.394 | 0.008 * |
LDL | −0.515 | 0.00035 ** |
triglycerides | 0.005 | 0.97 |
HgbA1c | 0.153 | 0.31 |
FABP4 | 0.356 | 0.015 * |
ghrelin | −0.279 | 0.060 |
leptin | 0.494 | 0.00047 ** |
Maternal Urine | ||
FABP4 | −0.057 | 0.705 |
ghrelin | 0.210 | 0.161 |
Umbilical Cord Serum | ||
ghrelin | −0.147 | 0.331 |
leptin | 0.188 | 0.21 |
Neonatal Anthropometric Measurements | ||
birth weight | −0.381 | 0.011 * |
birth body length | −0.184 | 0.232 |
head circumference | −0.241 | 0.114 |
chest circumference | −0.216 | 0.159 |
Variable | B | β | 95% CI | p |
---|---|---|---|---|
Serum FABP4 | 0.89 | 0.39 | 0.15–0.64 | 0.002 * |
HDL | −0.57 | −0.44 | −0.69 to −0.19 | 0.0011 * |
umbilical cord serum ghrelin | −3.14 | −0.27 | −0.52 to −0.02 | 0.037 * |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patro-Małysza, J.; Trojnar, M.; Kimber-Trojnar, Ż.; Mierzyński, R.; Bartosiewicz, J.; Oleszczuk, J.; Leszczyńska-Gorzelak, B. FABP4 in Gestational Diabetes—Association between Mothers and Offspring. J. Clin. Med. 2019, 8, 285. https://doi.org/10.3390/jcm8030285
Patro-Małysza J, Trojnar M, Kimber-Trojnar Ż, Mierzyński R, Bartosiewicz J, Oleszczuk J, Leszczyńska-Gorzelak B. FABP4 in Gestational Diabetes—Association between Mothers and Offspring. Journal of Clinical Medicine. 2019; 8(3):285. https://doi.org/10.3390/jcm8030285
Chicago/Turabian StylePatro-Małysza, Jolanta, Marcin Trojnar, Żaneta Kimber-Trojnar, Radzisław Mierzyński, Jacek Bartosiewicz, Jan Oleszczuk, and Bożena Leszczyńska-Gorzelak. 2019. "FABP4 in Gestational Diabetes—Association between Mothers and Offspring" Journal of Clinical Medicine 8, no. 3: 285. https://doi.org/10.3390/jcm8030285
APA StylePatro-Małysza, J., Trojnar, M., Kimber-Trojnar, Ż., Mierzyński, R., Bartosiewicz, J., Oleszczuk, J., & Leszczyńska-Gorzelak, B. (2019). FABP4 in Gestational Diabetes—Association between Mothers and Offspring. Journal of Clinical Medicine, 8(3), 285. https://doi.org/10.3390/jcm8030285