The Effectiveness of Exercise on Cognitive Performance in Individuals with Known Vascular Disease: A Systematic Review
Abstract
:1. Introduction
1.1. Atherosclerosis
1.2. Hypertension
1.3. Cardiac Output
1.4. Cerebral Blood Flow
1.5. Aerobic Capacity
1.6. Exercise as an Intervention
1.7. The Research Question
2. Methods
2.1. Study Types, Participants, and Outcomes
2.2. Search Methods and Identification of Studies
2.3. Data Extraction
- research question and purpose,
- design and method of analysis,
- sample size and participant characteristics, specifically age, gender, and health condition/diagnosis,
- inclusion and exclusion criteria,
- intervention protocols (including type, dose, frequency, and duration) employed,
- outcome measure(s) utilized,
- results, including p-values,
- author’s conclusions, and
- strengths and limitations.
2.4. Critical Appraisal of the Evidence
3. Results
3.1. Search Results
3.2. Study Characteristics
3.2.1. Participants
3.2.2. Outcome Measures
3.3. Interventions
3.4. Study Quality
4. Discussion
Limitations and Implications
5. Conclusions
Supplementary Materials
Author Contributions
Conflicts of Interest
References
- World Health Organization. A Prioritized Research Agenda for Prevention and Control of Noncommunicable Diseases. 2011. Available online: https://apps.who.int/ (accessed on 22 February 2019).
- Bloom, D.E.; Cafiero, E.T.; Jané-Llopis, E.; Abrahams-Gessel, S.; Bloom, L.R.; Fathima, S. The World Economic Forum and Harvard School of Public Health. The Global Economic Burden of Non-Communicable Diseases. 2011. Available online: https://www.world-heart-federation.org/wp-content/uploads/2017/05/WEF_Harvard_HE_GlobalEconomicBurdenNonCommunicableDiseases_2011.pdf (accessed on 22 February 2019).
- Roth, G.A.; Huffman, M.D.; Moran, A.E.; Feigin, V.; Mensah, G.A.; Naghavi, M.; Murray, C.J. Global and regional patterns in cardiovascular mortality from 1990 to 2013. Circulation 2015, 132, 1667–1678. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.E.; Saposnik, G.; Biessels, G.J.; Doubal, F.N.; Fornage, M.; Gorelick, P.B.; Greenberg, S.M.; Higashida, R.T.; Kasner, S.E.; Seshadri, S.; et al. Prevention of stroke in patients with silent cerebrovascular disease: A scientific statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2017, 48, 44–71. [Google Scholar] [CrossRef] [PubMed]
- Leary, M.C.; Saver, J.L. Annual incidences of first silent stroke in the United States: A preliminary estimate. Cerebrovasc. Dis. 2003, 16, 280–285. [Google Scholar] [CrossRef] [PubMed]
- Sing-Manoux, A.; Britton, A.R.; Marmot, M. Vascular disease and cognitive function: Evidence from the whitehall II study. J. Am. Geriatr. Soc. 2003, 51, 1445–1450. [Google Scholar] [CrossRef]
- Krishnamurthi, R.V.; Moran, A.E.; Feigin, V.L.; Barker-Collo, S.; Norrving, B.; Mensah, G.A.; Taylor, S.; Naghavi, M.; Forouzanfar, M.H.; Nguyen, G.; et al. Stroke prevalence, mortality and disability-adjusted life years in adults aged 20–64 years in 1990-2013: Data from the global burden of disease 2013 study. Neuroepidemiology 2015, 45, 190–202. [Google Scholar] [CrossRef] [PubMed]
- Hartley, A.; Marshall, D.C.; Salciccioli, J.D.; Sikkel, M.B.; Maruthappu, M.; Shalhoub, J. Trends in Mortality from Ischaemic Heart Disease and Cerebrovascular Disease in Europe: 1980–2009. Circulation 2016, 133, 1916–1926. [Google Scholar] [CrossRef] [PubMed]
- Haley, A.P.; Forman, D.E.; Poppas, A.; Hoth, K.F.; Gunstad, J.; Jefferson, A.L.; Paul, R.H.; Ler, A.S.; Sweet, L.H.; Cohen, R.A. Carotid artery intima-media thickness and cognition in cardiovascular disease. Int. J. Cardiol. 2007, 121, 148–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sander, K.; Bickel, H.; Förstl, H.; Etgen, T.; Briesenick, C.; Poppert, H.; Sander, D. Carotid- intima media thickness is independently associated with cognitive decline. The invade study. Int. J. Geriatr. Psychiatry 2010, 25, 389–394. [Google Scholar] [CrossRef] [PubMed]
- Chobanian, A.V.; Bakris, G.L.; Black, H.R.; Cushman, W.C.; Green, L.A.; Jr Izzo, J.L.; Jones, D.W.; Materson, B.J.; Oparil, S.; Jr Wright, J.T.; et al. The seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure. The JNC 7 report. JAMA 2003, 289, 2560–2571. [Google Scholar] [CrossRef] [PubMed]
- Paglieri, C.; Bisbocci, D.; Caserta, M.; Rabbia, F.; Bertello, C.; Canadè, A.; Veglio, F. Hypertension and cognitive function. Clin. Exp. Hypertens. 2008, 30, 701–710. [Google Scholar] [CrossRef] [PubMed]
- Sharp, S.I.; Aarsland, D.; Day, S.; Sønnesyn, H.; Alzheimer’s Society Vascular Dementia Systematic Review Group; Ballard, C. Hypertension is a potential risk factor for vascular dementia: Systematic review. Int. J. Geriatr. Psychiatry 2011, 26, 661–669. [Google Scholar] [CrossRef] [PubMed]
- Rapsomaniki, E.; Timmis, A.; George, J.; Pujades-Rodriguez, M.; Shah, A.D.; Denaxas, S.; White, I.R.; Caulfield, M.J.; Deanfield, J.E.; Smeeth, L.; et al. Blood pressure and incidence of twelve cardiovascular diseases: Lifetime risks, healthy life-years lost, and age-specific associations in 1.25 million people. Lancet 2014, 383, 1899–1911. [Google Scholar] [CrossRef]
- Benjamin, E.J.; Muntner, P.; Alonso, A.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Das, S.R.; et al. Heart disease and stroke statistics-2019 update: A report from the American Heart Association. Circulation 2019, 135, 146–603. [Google Scholar]
- Gunstad, J.; Cohen, R.A.; Tate, D.F.; Paul, R.H.; Poppas, A.; Hoth, K.; Macgregor, K.L.; Jefferson, A.L. Blood pressure variability and white matter hyperintensities in older adults with cardiovascular disease. Blood Press. 2005, 14, 353–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keary, T.A.; Gunstad, J.; Poppas, A.; Paul, R.H.; Jefferson, A.L.; Hoth, K.F.; Sweet, L.H.; Forman, D.E.; Cohen, R.A. Blood pressure variability and dementia rating scale performance in older adults with cardiovascular disease. Cogn. Behav. Neurol. 2007, 20, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Hughes, T.M.; Sink, K.M. Hypertension and its role in cognitive function: Current evidence and challenges for the future. Am. J. Hypertens. 2015, 29, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Poels, M.M.; Zaccai, K.; Verwoert, G.C.; Vernooij, M.W.; Hofman, A.; van der Lugt, A.; Witteman, J.C.; Breteler, M.M.; Mattace-Raso, F.U.; Ikram, M.A. Arterial stiffness and cerebral small vessel disease. Stroke 2012, 43, 2637–2642. [Google Scholar] [CrossRef] [PubMed]
- Jefferson, A.L.; Tate, D.F.; Poppas, A.; Brickman, A.M.; Paul, R.H.; Gunstad, J.; Cohen, R.A. Lower cardiac output is associated with greater white matter hyperintensities in older adults with cardiovascular disease. J. Am. Geriatr. Soc. 2007, 55, 1044–1048. [Google Scholar] [CrossRef] [PubMed]
- Jefferson, A.L.; Poppas, A.; Paul, R.H.; Cohen, R.A. Systemic hypoperfusion is associated with executive dysfunction in geriatric cardiac patients. Neurobiol. Aging 2007, 28, 477–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertsch, K.; Hagemann, D.; Hermes, M.; Walter, C.; Khan, R.; Naumann, E. Resting cerebral blood flow, attention, and aging. Brain Res. 2009, 1267, 77–88. [Google Scholar] [CrossRef] [PubMed]
- Lucas, S.J.; Ainslie, P.N.; Murrell, C.J.; Thomas, K.N.; Franz, E.A.; Cotter, J.D. Effect of age on exercise-induced alterations in cognitive executive function: Relationship to cerebral perfusion. Exp. Gerontol. 2012, 47, 541–551. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhang, J. Cerebral hypoperfusion and cognitive impairment: The pathogenic role of vascular oxidative stress. Int. J. Neurosci. 2012, 122, 494–499. [Google Scholar] [CrossRef] [PubMed]
- Fjell, A.M.; Walhovd, K.B. Structural Brain Changes in Aging: Courses, Causes and Cognitive Consequences. Rev. Neurosci. 2010, 21, 187–221. [Google Scholar] [CrossRef] [PubMed]
- Fjell, A.M.; Westlye, L.T.; Grydeland, H.; Amlien, I.; Espeseth, T.; Reinvang, I.; Raz, N.; Holland, D.; Dale, A.M.; Walhovd, K.B.; et al. Critical ages in the life course of the adult brain: Nonlinear subcortical aging. Neurobiol. Aging 2013, 34, 2239–2247. [Google Scholar] [CrossRef] [PubMed]
- Jernigan, T.L.; Archibald, S.L.; Fennema-Notestine, C.; Gamst, A.C.; Stout, J.C.; Bonner, J.; Hesselink, J.R. Effects of age on tissues and regions of the cerebrum and cerebellum. Neurobiol. Aging 2001, 22, 581–594. [Google Scholar] [CrossRef] [Green Version]
- Lockhart, S.N.; DeCarli, C. Structural imaging measures of brain aging. Neuropsychol. Rev. 2014, 24, 271–289. [Google Scholar] [CrossRef] [PubMed]
- Colcombe, S.J.; Erickson, K.I.; Raz, N.; Webb, A.G.; Cohen, N.J.; McAuley, E.; Kramer, A.F. Aerobic fitness reduces brain tissue loss in aging humans. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2003, 58, 176–180. [Google Scholar] [CrossRef]
- Colcombe, S.J.; Erickson, K.I.; Scalf, P.E.; Kim, J.S.; Prakash, R.; McAuley, E.; Elavsky, S.; Marquez, D.X.; Hu, L.; Kramer, A.F. Aerobic exercise training increases brain volume in aging humans. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2006, 61, 1166–1170. [Google Scholar] [CrossRef]
- Smith, P.J.; Blumenthal, J.A.; Hoffman, B.M.; Cooper, H.; Strauman, T.A.; Welsh-Bohmer, K.; Browndyke, J.N.; Sherwood, A. Aerobic exercise and neurocognitive performance: A meta-analytic review of randomized controlled trails. Psychosom. Med. 2010, 72, 239–252. [Google Scholar] [CrossRef] [PubMed]
- Marzolini, S.; Oh, P.I.; Brooks, D. Effect of combined aerobic and resistance training versus aerobic training alone in individuals with coronary artery disease: A meta-analysis. Eur. J. Prev. Cardiol. 2012, 19, 81–94. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 2015, 4, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alosco, M.L.; Spitznagel, M.B.; Sweet, L.H.; Josephson, R.; Hughes, J.; Gunstad, J. Cognitive dysfunction mediates the effects of poor physical fitness on decreased functional independence in heart failure. Geriatr. Gerontol. Int. 2015, 15, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Grace, S.L.; Russell, K.L.; Reid, R.D.; Oh, P.; Anand, S.; Rush, J.; Williamson, K.; Gupta, M.; Alter, D.A.; Stewart, D.E. Effect of cardiac rehabilitation referral strategies on utilization rates: A prospective, controlled study. Arch. Intern. Med. 2011, 171, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Grace, S.L.; Oh, P.I.; Marzolini, S.; Colella, T.; Tan, Y.; Alter, D.A. Observing temporal trends in cardiac rehabilitation from 1996 to 2010 in Ontario: Characteristics of referred patients, programme participation and mortality rates. BMJ Open 2015, 5, e009523. [Google Scholar] [CrossRef] [PubMed]
- Supervía, M.; Medina-Inojosa, J.R.; Yeung, C.; Lopez-Jimenez, F.; Squires, R.W.; Pérez-Terzic, C.M.; Brewer, L.C.; Leth, S.E.; Thomas, R.J. Cardiac rehabilitation for women: A systematic review of barriers and solutions. Mayo Clin. Proc. 2017, 92, 565–577. [Google Scholar] [CrossRef] [PubMed]
- Carles, S., Jr.; Curnier, D.; Pathak, A.; Roncalli, J.; Bousquet, M.; Garcia, J.L.; Galinier, M.; Senard, J.M. Effects of short-term exercise and exercise training on cognitive function among patients with cardiac disease. J. Cardiopulm. Rehabil. Prev. 2007, 27, 395–399. [Google Scholar] [CrossRef] [PubMed]
- Alosco, M.L.; Spitznagel, M.B.; Cohen, R.; Raz, N.; Sweet, L.H.; Josephson, R.; Hughes, J.; Rosneck, J.; Gunstad, J. Decreased physical activity predicts cognitive dysfunction and reduced cerebral blood flow in heart failure. J. Neurol. Sci. 2014, 339, 169–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alosco, M.L.; Spitznagel, M.B.; Raz, N.; Cohen, R.; Sweet, L.H.; Colbert, L.H.; Josephson, R.; Waechter, D.; Hughes, J.; Rosneck, J.; et al. The 2-minute step test is independently associated with cognitive function in older adults with heart failure. Aging Clin. Exp. Res. 2012, 24, 468–474. [Google Scholar] [PubMed]
- Stanek, K.M.; Gunstad, J.; Spitznagel, M.B.; Waechter, D.; Hughes, J.W.; Luyster, F.; Josephson, R.; Rosneck, J. Improvements in cognitive function following cardiac rehabilitation for older adults with cardiovascular disease. Int. J. Neurosci. 2011, 121, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Baldasseroni, S.; Mossello, E.; Romboli, B.; Orso, F.; Colombi, C.; Fumagalli, S.; Ungar, A.; Tarantini, F.; Masotti, G.; Marchionni, N. Relationship between cognitive function and 6-minute walking test in older outpatients with chronic heart failure. Aging Clin. Exp. Res. 2010, 22, 308–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Tamawy, M.S.; Abd-Allah, F.; Ahmed, S.M.; Darwish, M.H.; Khalifa, H.A. Aerobic exercises enhance cognitive functions and brain derived neurotrophic factor in ischemic stroke patients. NeuroRehabilitation 2014, 34, 209–213. [Google Scholar] [PubMed]
- El-Tamawy, M.S.; Darwish, M.H.; Abd-Allah, F.; Ahmed, S.; Khalifa, H.A. Aerobic exercises improve blood flow and cognitive functions in anterior circulation ischemic strokes. Egypt J. Neurol. Psychiatry Neurosurg. 2012, 49, 305–308. [Google Scholar]
- Quaney, B.M.; Boyd, L.A.; McDowd, J.M.; Zahner, L.H.; He, J.; Mayo, M.S.; Macko, R.F. Aerobic exercise improves cognition and motor function poststroke. Neurorehabilit. Neural Repair 2009, 23, 879–885. [Google Scholar] [CrossRef] [PubMed]
- Liu-Ambrose, T.; Eng, J.J. Exercise training and recreational activities to promote executive functions in chronic stroke: A proof-of-concept study. J. Stroke Cerebrovasc. Dis. 2015, 24, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Fulcher, K.K.; Alosco, M.L.; Miller, L.; Spitznagel, M.B.; Cohen, R.; Raz, N.; Sweet, L.; Colbert, L.H.; Josephson, R.; Hughes, J.; et al. Greater physical activity is associated with better cognitive function in heart failure. Health Psychol. 2014, 33, 1337. [Google Scholar] [CrossRef] [PubMed]
- Alosco, M.L.; Spitznagel, M.B.; Cohen, R.; Sweet, L.H.; Hayes, S.M.; Josephson, R.; Hughes, J.; Gunstad, J. Decreases in daily physical activity predict acute decline in attention and executive function in heart failure. J. Card. Fail. 2015, 21, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Tanne, D.; Freimark, D.; Poreh, A.; Merzeliak, O.; Bruck, B.; Schwammenthal, Y.; Schwammenthal, E.; Motro, M.; Adler, Y. Cognitive functions in severe congestive heart failure before and after an exercise training program. Int. J. Cardiol. 2005, 103, 145–149. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Gonzalo, R.; Fernandez-Gonzalo, S.; Turon, M.; Prieto, C.; Tesch, P.A.; del Carmen García-Carreira, M. Muscle, functional and cognitive adaptations after flywheel resistance training in stroke patients: A pilot randomized controlled trial. J. Neuroeng. Rehabil. 2016, 13, 37. [Google Scholar] [CrossRef] [PubMed]
- Caspersen, C.J.; Powell, K.E.; Christenson, G.M. Physical activity, exercise, and physical fitness: Definitions and distinctions for health-related research. Public Health Rep. 1985, 100, 126–131. [Google Scholar] [PubMed]
- Gunstad, J.; MacGregor, K.L.; Paul, R.H.; Poppas, A.; Jefferson, A.L.; Todaro, J.F.; Cohen, R.A. Cardiac rehabilitation improves cognitive performance in older adults with cardiovascular disease. J. Cardiopulm. Rehabil. 2005, 25, 173–176. [Google Scholar] [CrossRef] [PubMed]
- Alosco, M.L.; Spitznagel, M.B.; Cohen, R.; Sweet, L.H.; Josephson, R.; Hughes, J.; Rosneck, J.; Gunstad, J. Cardiac rehabilitation is associated with lasting improvements in cognitive function in older adults with heart failure. Acta Cardiol. 2014, 69, 407–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia, S.; Alosco, M.L.; Spitznagel, M.B.; Cohen, R.; Raz, N.; Sweet, L.; Josephson, R.; Hughes, J.; Rosneck, J.; Oberle, M.L.; et al. Cardiovascular fitness associated with cognitive performance in heart failure patients enrolled in cardiac rehabilitation. BMC Cardiovasc. Disord. 2013, 13, 29. [Google Scholar] [CrossRef] [PubMed]
- Blanchet, S.; Richards, C.L.; Leblond, J.; Olivier, C.; Maltais, D.B. Cardiorespiratory fitness and cognitive functioning following short-term interventions in chronic stroke survivors with cognitive impairment: A pilot study. Int. J. Rehabil. Res. 2016, 39, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Kluding, P.M.; Tseng, B.Y.; Billinger, S.A. Exercise and executive function in individuals with chronic stroke: A pilot study. J. Neurol. Phys. Ther. 2011, 35, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Marzolini, S.; Oh, P.; McIlroy, W.; Brooks, D. The effects of an aerobic and resistance exercise training program on cognition following stroke. Neurorehabilit. Neural Repair 2013, 27, 392–402. [Google Scholar] [CrossRef] [PubMed]
- Rand, D.; Eng, J.J.; Liu-Ambrose, T.; Tawashy, A.E. Feasibility of a 6-month exercise and recreation program to improve executive functioning and memory in individuals with chronic stroke. Neurorehabil. Neural Repair 2010, 24, 722–729. [Google Scholar] [CrossRef] [PubMed]
- Tang, A.; Eng, J.J.; Tsang, T.S.; Liu-Ambrose, T. High-and low-intensity exercise do not improve cognitive function after stroke: A randomized controlled trial. J. Rehabil. Med. 2016, 48, 841–846. [Google Scholar] [CrossRef] [PubMed]
- Cassilhas, R.C.; Viana, V.A.; Grassmann, V.; Santos, R.T.; Santos, R.F.; Tufik, S.E.R.G.I.O.; Mello, M.T. The impact of resistance exercise on the cognitive function of the elderly. Med. Sci. Sports Exerc. 2007, 39, 1401–1407. [Google Scholar] [CrossRef] [PubMed]
- Nagamatsu, L.S.; Handy, T.C.; Hsu, C.L.; Voss, M.; Liu-Ambrose, T. Resistance training promotes cognitive and functional brain plasticity in seniors with probably mild cognitive impairment. Arch. Intern. Med. 2012, 172, 666–668. [Google Scholar] [CrossRef] [PubMed]
- Voss, M.W.; Nagamatsu, L.S.; Liu-Ambrose, T.; Kramer, A.F. Exercise, brain, and cognition across the life span. J. Appl. Physiol. 2011, 111, 1505–1513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasan, S.M.; Rancourt, S.N.; Austin, M.W.; Ploughman, M. Defining optimal aerobic exercise parameters to affect complex motor and cognitive outcomes after stroke: A systematic review and synthesis. Neural Plast. 2016, 2016, 2961573. [Google Scholar] [CrossRef] [PubMed]
- Masley, S.; Roetzheil, R.; Gualtieri, T. Aerobic exercise enhances cognitive flexibility. J. Clin. Psychol. Med. Settings 2009, 16, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.K.; Labban, J.D.; Gapin, J.I.; Etnier, J.L. The effects of acute exercise on cognitive performance: A meta-analysis. Brain Res. 2012, 1453, 87–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alves, C.R.; Tessaro, V.H.; Teixeira, L.A.; Murakava, K.; Roschel, H.; Gualano, B.; Takito, M.Y. Influence of acute high-intensity aerobic interval exercise bout on selective attention and short-term memory tasks. Percept. Mot. Skills 2014, 118, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Varela, S.; Ayán, C.; Cancela, J.M.; Martín, V. Effects of two different intensities of aerobic exercise on elderly people with mild cognitive impairment: A randomized pilot study. Clin. Rehabil. 2012, 26, 442–450. [Google Scholar] [CrossRef] [PubMed]
- Gruhn, N.; Larsen, F.S.; Boesgaard, S.; Knudsen, G.M.; Mortensen, S.A.; Thomsen, G.; Aldershvile, J. Cerebral blood flow in patients with chronic heart failure before and after transplantation. Stroke 2001, 32, 2530–2533. [Google Scholar] [CrossRef] [PubMed]
- Bailey, D.M.; Marley, C.J.; Brugniaux, J.V.; Hodson, D.; New, K.J.; Ogoh, S.; Ainslie, P.N. Elevated aerobic fitness sustained throughout the adult lifespan is associated with improved cerebral hemodynamics. Stroke 2013, 44, 3235–3238. [Google Scholar] [CrossRef] [PubMed]
- Murrell, C.J.; Cotter, J.D.; Thomas, K.N.; Lucas, S.J.; Williams, M.J.; Ainslie, P.N. Cerebral blood flow and cerebrovascular reactivity at rest and during sub-maximal exercise: Effect of age and 12-week exercise training. Age 2013, 35, 905–920. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Larsen, K.T.; Ried-Larsen, M.; Møller, N.C.; Andersen, L.B. The effects of physical activity and exercise on brain-derived neurotrophic factor in healthy human: A review. Scand. J. Med. Sci. Sports 2014, 24, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Knaepen, K.; Goekint, M.; Heyman, E.M.; Meeusen, R. Neuroplasticity-exercise induced response to peripheral brain-derived neurotrophic factor. Sports Med. 2010, 40, 765–801. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.L.; Tong, K.Y.; Yip, S.P. Relationship of serum brain-derived neurotrophic factor (BDNF) and health-related lifestyle in healthy human subjects. Neurosci. Lett. 2008, 447, 124–128. [Google Scholar] [CrossRef] [PubMed]
- Currie, J.; Ramsbottom, R.; Ludlow, H.; Nevill, A.; Gilder, M. Cardio-respiratory fitness, habitual physical activity and serum brain derived neurotrophic factor (BDNF) in men and women. Neurosci. Lett. 2009, 451, 152–155. [Google Scholar] [CrossRef] [PubMed]
Study (year) | Cognition Outcome Measures | Physical Fitness Outcome Measures | Additional Outcome Measures |
---|---|---|---|
Cardiovascular Studies | |||
Alosco et al. (Feb 2015) [34] | Attention/Executive Function Trail Making Test A/B LNS DSCT Memory CVLT-II | 2MST | Lawton–Brody ADL scale |
Alosco et al. (April 2015) [48] | Attention/Executive Function FAB LNS DSCT Memory CVLT-II Language BNT Animal Fluency Test | Accelerometer × 7 days | BDI-II |
Alosco et al. (April 2014) [39] | Global Cognition 3MS Attention/Executive Function Trail Making Test A/B FAB Memory CVLT-II | Accelerometer × 7 days 2MST | TCDBDI-II |
Alosco et al. (Aug 2014) [53] | Global Cognition MMSE Attention/Executive Function Trail Making Test A/B DSCT Memory CVLT-II Language BNT Animal Fluency Test | 2MST | N/A |
Alosco et al. (2012) [40] | Global Cognition 3MS Attention/Executive Function SCWT FAB LNS DSCT Memory CVLT-II Language BNT Animal Fluency Test | 2MST | BDI-II |
Baldasseroni et al. (2010) [42] | Global Cognition MMSE | 6MWT | Sickness Impact Profile (Psychosocial subscale) HR-QOL ADL Scale |
Carles et al. (2007) [38] | Attention Trail Making Test Cognitive solicitation Motor Precision Tracking Task | Incremental Exercise Test | N/A |
Fulcher et al. (2014) [47] | Global Cognition 3MS Attention/Executive Function Trail Making Test A/B SCWT LNS Memory CVLT-II | Accelerometer × 7 days | BDI-II |
Garcia et al. (2013) [54] | Global Cognition 3MS Attention Trail Making Test A/B SCWT FAB LNS DSCT Memory CVLT-II Language BNT Animal Naming Test | GXT 2MST DASI | BDI-II |
Gunstad et al. (2005) [52] | Psychomotor Speed Trail Making Test A Grooved Pegboard DSCT Language Animal Category Fluency | GXT | BDI-II |
Stanek et al. (2011) [41] | Global Cognition MMSE Attention/Executive Function Trail Making Test A/B Grooved Pegboard FAB LNS Memory HVLT-R Delayed Recall and Recognition BVMT-R Language BNT Animal Naming Test | GXT Modified ramp protocol | TCD |
Tanne et al. (2005) [49] | Global Cognition MMSE Attention Trail Making Test A/B SCWT Continuous Performance Test Memory Rey–Osterrieth Complex Figure Phenomic/Semantic Fluency Verbal Fluency Tests | 6MWT GXT Modified Bruce Protocol | Thoracic Electrical Bioimpedence TCD Breath-Holding Index |
Cerebrovascular Studies | |||
Blanchet et al. (2016) [55] | Memory HVLT-R Attention CPT Brown–Petersen paradigm | GXT recumbent cycle ergometer | N/A |
El-Tamawy et al. (2014) [43] | Global Cognition ACER | N/A | Serum BDNF |
El-Tamawy et al. (2012) [44] | Global Cognition ACER | N/A | TCD |
Fernandez-Gonzalo et al. (2016) [50] | Attention/Executive Function SCWT DSCT CPT-II Memory RAVLT | Peak power Muscle CSA (MRI) | BERG balance scale |
Kluding et al. (2011) [56] | Attention Flanker Task Digit Span Backward Test Memory SIS | 6MWT | Fugl–Meyer Test |
Lui-Ambrose et al. (2015) [46] | Global Cognition MOCA Attention/Executive Function Trail Making Test A/B SCWT Digit Span Forward and Backward Test | 6MWT | BERG balance scale |
Marzolini et al. (2013) [57] | Global Cognition MOCA | GXT cycle ergometer ATGE 1RM 6MWT | CES-D |
Quaney et al. (2009) [45] | Attention Trail Making Test A/B SCWT WCST SRTT Conditional Learning PGFM | GXT | Fugl–Meyer Test |
Rand et al. (2010) [58] | Attention/Executive Function Trail Making Test B SCWT Digit Span Backward Test Walk While Talking Task Memory RAVLT | 6MWT Dynamometer | Geriatric Depression Scale |
Tang et al. (2016) [59] | Global Cognition MOCA Attention/Executive Function Trail Making Test B SCWT DSCT | GXT cycle ergometer6MWT | CES-D Scale |
Study (year) Oxford Rating * PEDro Rating | Intervention | Outcome Measure Timing | Duration (weeks) Frequency (times per week) | Aerobic Training (Duration and Intensity) | Resistance Training (Sets/Repetitions No. of Muscle Groups %1RM) |
---|---|---|---|---|---|
Cardiovascular Studies | |||||
Alosco et al. (Feb 2015) [34] 2B PEDro 5 | PF | Single assessment | Single time measurement | 2MST | N/A |
Alosco et al. (April 2015) [48] 2B PEDro 5 | PF | Pre- & post-intervention | 12 wk; with 1wk accelerometer | Accelerometer × 7 days | N/A |
Alosco et al. (April 2014) [39] 1B PEDro 5 | PF | Single assessment TCD measured at baseline and 12-months follow up | 1wk | Accelerometer × 7 days | N/A |
Alosco et al. (Aug 2014) [53] 2B PEDro 5 | AT | Pre- and post-intervention 12-months follow-up | 12 wk 3 × /wk | CR; 60 min total Warm up, 40 min circuit training, cool down; Customized intensity + 30 min education | N/A |
Alosco et al. (2012) [40] 2B PEDro 5 | PF | Single assessment | Single time measurement | 2MST | N/A |
Baldasseroni et al. (2010) [42] 2B PEDro 5 | PF | Single assessment | Single time measurement | 6MWT | N/A |
Carles et al. (2007) [38] 2B PEDro 5 | AT | Pre- and post-intervention | 2 wks 5 × /wk | CR; 50 min total Warm up, aerobic exercise, cool down; 70–80% HRR | N/A |
Fulcher et al. (2014) [47] 3B PEDro 5 | PF | Single assessment | 1 wk | Accelerometer × 7 days | N/A |
Garcia et al. (2013) [54] 3B PEDro 5 | PF | Single assessment | Single time measurement | GXT TM: elevation increase every min, speed increased every 3 min to increase workload by 15% | N/A |
Gunstad et al. (2005) [52] 1B PEDro 5 | AT | Pre- and post-intervention | 12 wks 3 × /wk +2 × /wk education | CR; 75 min total Warm up, 15 min intervals, 45 min continuous exercise; Intensity not specified | N/A |
Stanek et al. (2011) [41] 2B PEDro 5 | AT | Pre- and post-intervention | 12 wks 3 × /wk | CR; 60 min total Warm up, 40 min circuit training, cool down; Customized intensity + 30 min education | N/A |
Tanne et al. (2005) [49] 1B PEDro 6 | AT | Pre- and post-intervention | 18 wks 2 × /wk | CR; 50 min total Warm up, aerobic exercise, cool down; 60–70% HRmax | N/A |
Cerebrovascular Studies | |||||
Blanchet et al. (2016) [55] 1B PEDro 7 | AT | Pre- and post-intervention 3-months follow up | 8 wks 2 × /wk | 30 min plus warm up and cool down; 60–70% HRR Increased 5–10% in last 4 weeks BORG 6–7 | N/A |
El-Tamawy et al. (2014) [43] 2B PEDro 6 | AT | Pre- and post-intervention | 8 wks 3 × /wk | 75 min total 30 min PT session; stretching, balance, functional training; 45 min aerobic exercise; ‘Intensive’ intensity | N/A |
El-Tamawy et al. (2012) [44] 2B PEDro 6 | AT | Pre- and post-intervention | 8 wks 3 × /wk | 75 min total 30 min PT session; stretching, balance, functional training; 45 min aerobic exercise; ‘Intensive’ intensity | N/A |
Fernandez-Gonzalo et al. (2016) [50] 1B PEDro 8 | RT | Pre- and post-intervention | 12 wks 2 × /wk | N/A | 4 sets of 7 maximal repetitions <2min contractile activity |
Kluding et al. (2011) [56] 3B PEDro 5 | CT | Pre- and post-intervention | 12 wks 3 × /wk | 30 min Warm up, aerobic exercise, cool down; 50% peak 02 uptakeRPE 11–14 +1 hr recreation | Seated exercises Elastic resistance bands of varying resistance 1 set × 10 reps |
Lui-Ambrose et al. (2015) [46] 1B PEDro 8 | CT | Baseline and every 3 months with a 6-month follow-up | 9 months 2 × /wk | 60 min total Community-based training; +1 hr/wk recreational activities; Intensity not specified | Not specified FAME protocol |
Marzolini et al. (2013) [57] 2B PEDro 5 | CT | Pre- and post-intervention | 6 months 5 × /wk +2 × /wk RT | 60 min total 40–70% HRR BORG 11–16 | Task-specific exercises Unaffected limb: 50–60% 1RM Affected limb; >50% 1RM or RPE 13–14 10–15 repetitions |
Quaney et al. (2009) [45] 1B PEDro 8 | AT | Pre- and post-intervention 8-weeksfollow-up | 8 wks 3 × /wk | 45 min total Warm up and cool down; 70% HRmax | N/A |
Rand et al. (2010) [58] 3B PEDro 5 | CT | Baseline, halfway, and post-intervention | 6 months 2 × /wk | 60 min total FAME protocol ‘moderate intensity’ +1 hr/wk recreation | Not specified FAME protocol |
Tang et al. (2016) [59] 1B PEDro 8 | AT | 1 month pre- and post-intervention | 6 months 3 × /wk | 60 min Individualized exercise program; 40–80% HRR | N/A |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brunt, A.; Albines, D.; Hopkins-Rosseel, D. The Effectiveness of Exercise on Cognitive Performance in Individuals with Known Vascular Disease: A Systematic Review. J. Clin. Med. 2019, 8, 294. https://doi.org/10.3390/jcm8030294
Brunt A, Albines D, Hopkins-Rosseel D. The Effectiveness of Exercise on Cognitive Performance in Individuals with Known Vascular Disease: A Systematic Review. Journal of Clinical Medicine. 2019; 8(3):294. https://doi.org/10.3390/jcm8030294
Chicago/Turabian StyleBrunt, Alyssa, David Albines, and Diana Hopkins-Rosseel. 2019. "The Effectiveness of Exercise on Cognitive Performance in Individuals with Known Vascular Disease: A Systematic Review" Journal of Clinical Medicine 8, no. 3: 294. https://doi.org/10.3390/jcm8030294