Gender Dictates the Relationship between Serum Lipids and Leukocyte Counts in the National Health and Nutrition Examination Survey 1999–2004
Abstract
:1. Introduction
2. Experimental Section
2.1. Study Design and Population
2.2. Survey Data and Sample Collection
2.3. Fasting Serum Lipids
2.4. Differential Leukocyte Counts
2.5. Statistical Analysis
3. Results
3.1. Descriptive Statistics
3.2. Associations between Serum Lipids and Leukocyte Counts in Men
3.3. Associations between Serum Lipids and Leukocyte Counts in Women
3.4. Total Cholesterol Predicts Leukocyte Counts in Women, But Not Men
3.5. LDL-Cholesterol Predicts Leukocyte Counts in Women, But Not Men
3.6. HDL-Cholesterol Predicts Leukocyte Counts in both Men and Women
3.7. Serum Triglycerides Levels Predict Leukocyte Counts in Both Men and Women
4. Discussion
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Wanahita, A.; Goldsmith, E.A.; Musher, D.M. Conditions associated with leukocytosis in a tertiary care hospital, with particular attention to the role of infection caused by clostridium difficile. Clin. Infect. Dis. 2002, 34, 1585–1592. [Google Scholar] [CrossRef] [PubMed]
- Bulusu, M.; Narayan, S.; Shetler, K.; Triadafilopoulos, G. Leukocytosis as a harbinger and surrogate marker of clostridium difficile infection in hospitalized patients with diarrhea. Am. J. Gastroenterol. 2000, 95, 3137–3141. [Google Scholar] [CrossRef] [PubMed]
- Paladino, L.; Subramanian, R.A.; Bonilla, E.; Sinert, R.H. Leukocytosis as prognostic indicator of major injury. West J. Emerg. Med. 2010, 11, 450–455. [Google Scholar] [PubMed]
- Edwards, H.; Rubenstein, M.; Dombkowski, A.A.; Caldwell, J.T.; Chu, R.; Xavier, A.C.; Thummel, R.; Neely, M.; Matherly, L.H.; Ge, Y.; et al. Gene signature of high white blood cell count in b-precursor acute lymphoblastic leukemia. PLoS ONE 2016, 11, e0161539. [Google Scholar] [CrossRef] [PubMed]
- Tang, R.; Xu, H.Y.; Cao, J.; Chen, S.; Sun, J.L.; Hu, H.; Li, H.C.; Diao, Y.; Li, Z. Clinical characteristics of inpatients with anaphylaxis in china. Biomed. Res. Int. 2015, 2015, 429534. [Google Scholar] [CrossRef] [PubMed]
- Twig, G.; Afek, A.; Shamiss, A.; Derazne, E.; Tzur, D.; Gordon, B.; Tirosh, A. White blood cell count and the risk for coronary artery disease in young adults. PLoS ONE 2012, 7, e47183. [Google Scholar] [CrossRef] [PubMed]
- Nieto, F.J.; Szklo, M.; Folsom, A.R.; Rock, R.; Mercuri, M. Leukocyte count correlates in middle-aged adults: The atherosclerosis risk in communities (ARIC) study. Am. J. Epidemiol. 1992, 136, 525–537. [Google Scholar] [CrossRef] [PubMed]
- Haim, M.; Boyko, V.; Goldbourt, U.; Battler, A.; Behar, S. Predictive value of elevated white blood cell count in patients with preexisting coronary heart disease: The bezafibrate infarction prevention study. Arch. Intern. Med. 2004, 164, 433–439. [Google Scholar] [CrossRef] [PubMed]
- Twig, G.; Afek, A.; Shamiss, A.; Derazne, E.; Tzur, D.; Gordon, B.; Tirosh, A. White blood cells count and incidence of type 2 diabetes in young men. Diabetes Care 2013, 36, 276–282. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, G.; Hedberg, P.; Jonason, T.; Lonnberg, I.; Tenerz, A.; Ohrvik, J. White blood cell counts associate more strongly to the metabolic syndrome in 75-year-old women than in men: A population based study. Metab. Syndr. Relat. Disord. 2007, 5, 359–364. [Google Scholar] [CrossRef] [PubMed]
- Oda, E.; Kawai, R. The prevalence of metabolic syndrome and diabetes increases through the quartiles of white blood cell count in Japanese men and women. Intern. Med. 2009, 48, 1127–1134. [Google Scholar] [CrossRef] [PubMed]
- Babio, N.; Ibarrola-Jurado, N.; Bullo, M.; Martinez-Gonzalez, M.A.; Warnberg, J.; Salaverria, I.; Ortega-Calvo, M.; Estruch, R.; Serra-Majem, L.; Covas, M.I.; et al. White blood cell counts as risk markers of developing metabolic syndrome and its components in the predimed study. PLoS ONE 2013, 8, e58354. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhang, C.; Zhang, G.; Yuan, Z.; Liu, Y.; Ding, L.; Sun, X.; Jia, H.; Xue, F. Association between white blood cell count and non-alcoholic fatty liver disease in urban Han Chinese: A prospective cohort study. BMJ Open 2016, 6, e010342. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.J.; Lee, H.R.; Shim, J.Y.; Moon, B.S.; Lee, J.H.; Kim, J.K. Relationship between white blood cell count and nonalcoholic fatty liver disease. Dig. Liver. Dis. 2010, 42, 888–894. [Google Scholar] [CrossRef] [PubMed]
- Tolsma, V.; Schwebel, C.; Azoulay, E.; Darmon, M.; Souweine, B.; Vesin, A.; Goldgran-Toledano, D.; Lugosi, M.; Jamali, S.; Cheval, C.; et al. Sepsis severe or septic shock: Outcome according to immune status and immunodeficiency profile. Chest 2014, 146, 1205–1213. [Google Scholar] [CrossRef] [PubMed]
- Zmora, N.; Bashiardes, S.; Levy, M.; Elinav, E. The role of the immune system in metabolic health and disease. Cell Metab. 2017, 25, 506–521. [Google Scholar] [CrossRef] [PubMed]
- Andersen, C.J.; Murphy, K.E.; Fernandez, M.L. Impact of obesity and metabolic syndrome on immunity. Adv. Nutr. 2016, 7, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.S.; Dillon, C.F.; Carroll, M.; Illoh, K.; Ostchega, Y. Effects of statins on serum inflammatory markers: The U.S. National health and nutrition examination survey 1999–2004. J. Atheroscler. Thromb. 2010, 17, 1176–1182. [Google Scholar] [CrossRef] [PubMed]
- Andersen, C.J. Impact of dietary cholesterol on the pathophysiology of infectious and autoimmune disease. Nutrients 2018, 10, 764. [Google Scholar] [CrossRef] [PubMed]
- Ye, R.D.; Sun, L. Emerging functions of serum amyloid A in inflammation. J. Leukoc. Biol. 2015, 98, 923–929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krishnan, S.; Shimoda, M.; Sacchi, R.; Kailemia, M.J.; Luxardi, G.; Kaysen, G.A.; Parikh, A.N.; Ngassam, V.N.; Johansen, K.; Chertow, G.M.; et al. HDL glycoprotein composition and site-specific glycosylation differentiates between clinical groups and affects Il-6 secretion in lipopolysaccharide-stimulated monocytes. Sci. Rep. 2017, 7, 43728. [Google Scholar] [CrossRef] [PubMed]
- Thompson, P.A.; Kitchens, R.L. Native high-density lipoprotein augments monocyte responses to lipopolysaccharide (LPS) by suppressing the inhibitory activity of LPS-binding protein. J. Immunol. 2006, 177, 4880–4887. [Google Scholar] [CrossRef] [PubMed]
- Catapano, A.L.; Pirillo, A.; Bonacina, F.; Norata, G.D. HDL in innate and adaptive immunity. Cardiovasc. Res. 2014, 103, 372–383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armstrong, A.J.; Gebre, A.K.; Parks, J.S.; Hedrick, C.C. ATP-binding cassette transporter G1 negatively regulates thymocyte and peripheral lymphocyte proliferation. J. Immunol. 2010, 184, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Bensinger, S.J.; Bradley, M.N.; Joseph, S.B.; Zelcer, N.; Janssen, E.M.; Hausner, M.A.; Shih, R.; Parks, J.S.; Edwards, P.A.; Jamieson, B.D.; et al. LXR signaling couples sterol metabolism to proliferation in the acquired immune response. Cell 2008, 134, 97–111. [Google Scholar] [CrossRef]
- Zhu, X.; Owen, J.S.; Wilson, M.D.; Li, H.; Griffiths, G.L.; Thomas, M.J.; Hiltbold, E.M.; Fessler, M.B.; Parks, J.S. Macrophage abca1 reduces MYD88-dependent toll-like receptor trafficking to lipid rafts by reduction of lipid raft cholesterol. J. Lipid Res. 2010, 51, 3196–3206. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Lee, J.Y.; Timmins, J.M.; Brown, J.M.; Boudyguina, E.; Mulya, A.; Gebre, A.K.; Willingham, M.C.; Hiltbold, E.M.; Mishra, N.; et al. Increased cellular free cholesterol in macrophage-specific abca1 knock-out mice enhances pro-inflammatory response of macrophages. J. Biol. Chem. 2008, 283, 22930–22941. [Google Scholar] [CrossRef] [PubMed]
- Ferro, D.; Parrotto, S.; Basili, S.; Alessandri, C.; Violi, F. Simvastatin inhibits the monocyte expression of proinflammatory cytokines in patients with hypercholesterolemia. J. Am. Coll. Cardiol. 2000, 36, 427–431. [Google Scholar] [CrossRef] [Green Version]
- Pirillo, A.; Catapano, A.L.; Norata, G.D. HDL in infectious diseases and sepsis. Handb. Exp. Pharmacol. 2015, 224, 483–508. [Google Scholar] [PubMed]
- Toms, T.E.; Panoulas, V.F.; Kitas, G.D. Dyslipidaemia in rheumatological autoimmune diseases. Open Cardiovasc. Med. J. 2011, 5, 64–75. [Google Scholar] [CrossRef] [PubMed]
- Madjid, M.; Awan, I.; Willerson, J.T.; Casscells, S.W. Leukocyte count and coronary heart disease: Implications for risk assessment. J. Am. Coll. Cardiol. 2004, 44, 1945–1956. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Kong, X.; Wang, W.; Fan, F.; Zhang, Y.; Zhao, M.; Wang, Y.; Wang, Y.; Wang, Y.; Qin, X.; et al. Association of peripheral differential leukocyte counts with dyslipidemia risk in Chinese patients with hypertension: Insight from the china stroke primary prevention trial. J. Lipid Res. 2017, 58, 256–266. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.S.; Chien, K.L.; Yang, C.Y.; Tsai, K.S.; Wang, C.H. Peripheral differential leukocyte counts in humans vary with hyperlipidemia, smoking, and body mass index. Lipids 2001, 36, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Oda, E.; Kawai, R.; Aizawa, Y. Lymphocyte count was significantly associated with hyper-LDL cholesterolemia independently of high-sensitivity C-reactive protein in apparently healthy Japanese. Heart Vessels 2012, 27, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Grundy, S.M.; Cleeman, J.I.; Daniels, S.R.; Donato, K.A.; Eckel, R.H.; Franklin, B.A.; Gordon, D.J.; Krauss, R.M.; Savage, P.J.; Smith, S.C., Jr.; et al. Diagnosis and management of the metabolic syndrome: An American heart association/national heart, lung, and blood institute scientific statement. Circulation 2005, 112, 2735–2752. [Google Scholar] [CrossRef] [PubMed]
- Zimmet, P.; Magliano, D.; Matsuzawa, Y.; Alberti, G.; Shaw, J. The metabolic syndrome: A global public health problem and a new definition. J. Atheroscler. Thromb. 2005, 12, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Mosca, L.; Barrett-Connor, E.; Wenger, N.K. Sex/gender differences in cardiovascular disease prevention: What a difference a decade makes. Circulation 2011, 124, 2145–2154. [Google Scholar] [CrossRef] [PubMed]
- Fairweather, D.; Frisancho-Kiss, S.; Rose, N.R. Sex differences in autoimmune disease from a pathological perspective. Am. J. Pathol. 2008, 173, 600–609. [Google Scholar] [CrossRef] [PubMed]
- Robinson, D.P.; Lorenzo, M.E.; Jian, W.; Klein, S.L. Elevated 17β-estradiol protects females from influenza a virus pathogenesis by suppressing inflammatory responses. PLoS Pathog. 2011, 7, e1002149. [Google Scholar] [CrossRef] [PubMed]
- Klein, S.L.; Jedlicka, A.; Pekosz, A. The Xs and Y of immune responses to viral vaccines. Lancet Infect. Dis. 2010, 10, 338–349. [Google Scholar] [CrossRef]
- Kim, S. Overview of cotinine cutoff values for smoking status classification. Int. J. Environ. Res. Public Health 2016, 13. [Google Scholar] [CrossRef] [PubMed]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [PubMed]
- Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive summary of the third report of the national cholesterol education program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III). JAMA 2001, 285, 2486–2497. [Google Scholar] [CrossRef]
- Higuchi, T.; Omata, F.; Tsuchihashi, K.; Higashioka, K.; Koyamada, R.; Okada, S. Current cigarette smoking is a reversible cause of elevated white blood cell count: Cross-sectional and longitudinal studies. Prev. Med. Rep. 2016, 4, 417–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herishanu, Y.; Rogowski, O.; Polliack, A.; Marilus, R. Leukocytosis in obese individuals: Possible link in patients with unexplained persistent neutrophilia. Eur. J. Haematol. 2006, 76, 516–520. [Google Scholar] [CrossRef] [PubMed]
- Shamai, L.; Lurix, E.; Shen, M.; Novaro, G.M.; Szomstein, S.; Rosenthal, R.; Hernandez, A.V.; Asher, C.R. Association of body mass index and lipid profiles: Evaluation of a broad spectrum of body mass index patients including the morbidly obese. Obes. Surg. 2011, 21, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Freedman, D.S.; Gates, L.; Flanders, W.D.; Van Assendelft, O.W.; Barboriak, J.J.; Joesoef, M.R.; Byers, T. Black/white differences in leukocyte subpopulations in men. Int. J. Epidemiol. 1997, 26, 757–764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willey, J.Z.; Rodriguez, C.J.; Carlino, R.F.; Moon, Y.P.; Paik, M.C.; Boden-Albala, B.; Sacco, R.L.; DiTullio, M.R.; Homma, S.; Elkind, M.S. Race-ethnic differences in the association between lipid profile components and risk of myocardial infarction: The Northern Manhattan study. Am. Heart J. 2011, 161, 886–892. [Google Scholar] [CrossRef] [PubMed]
- Stewart, R.A.; White, H.D.; Kirby, A.C.; Heritier, S.R.; Simes, R.J.; Nestel, P.J.; West, M.J.; Colquhoun, D.M.; Tonkin, A.M.; Long-Term Intervention With Pravastatin in Ischemic Disease (LIPID) Study Investigators. White blood cell count predicts reduction in coronary heart disease mortality with pravastatin. Circulation 2005, 111, 1756–1762. [Google Scholar] [CrossRef] [PubMed]
- Pi-Sunyer, F.X.; Becker, D.M.; Bouchard, C.; Carleton, R.A.; Colditz, G.A.; Dietz, W.H.; Foreyt, J.P.; Garrison, R.J.; Grundy, S.M.; Hansen, B.C.; et al. Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults: Executive summary. Expert panel on the identification, evaluation, and treatment of overweight in adults. Am. J. Clin. Nutr. 1998, 68, 899–917. [Google Scholar] [CrossRef] [PubMed]
- Adeli, K.; Raizman, J.E.; Chen, Y.; Higgins, V.; Nieuwesteeg, M.; Abdelhaleem, M.; Wong, S.L.; Blais, D. Complex biological profile of hematologic markers across pediatric, adult, and geriatric ages: Establishment of robust pediatric and adult reference intervals on the basis of the Canadian health measures survey. Clin. Chem. 2015, 61, 1075–1086. [Google Scholar] [CrossRef] [PubMed]
- Silverman, M.G.; Ference, B.A.; Im, K.; Wiviott, S.D.; Giugliano, R.P.; Grundy, S.M.; Braunwald, E.; Sabatine, M.S. Association between lowering LDL-C and cardiovascular risk reduction among different therapeutic interventions: A systematic review and meta-analysis. JAMA 2016, 316, 1289–1297. [Google Scholar] [CrossRef] [PubMed]
- Waterhouse, D.F.; Cahill, R.A.; Sheehan, F.; McCreery, C. Prediction of calculated future cardiovascular disease by monocyte count in an asymptomatic population. Vasc. Health Risk Manag. 2008, 4, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Haumer, M.; Amighi, J.; Exner, M.; Mlekusch, W.; Sabeti, S.; Schlager, O.; Schwarzinger, I.; Wagner, O.; Minar, E.; Schillinger, M. Association of neutrophils and future cardiovascular events in patients with peripheral artery disease. J. Vasc. Surg. 2005, 41, 610–617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersen, C.J.; Lee, J.Y.; Blesso, C.N.; Carr, T.P.; Fernandez, M.L. Egg intake during carbohydrate restriction alters peripheral blood mononuclear cell inflammation and cholesterol homeostasis in metabolic syndrome. Nutrients 2014, 6, 2650–2667. [Google Scholar] [CrossRef] [PubMed]
- Swiger, K.J.; Martin, S.S.; Blaha, M.J.; Toth, P.P.; Nasir, K.; Michos, E.D.; Gerstenblith, G.; Blumenthal, R.S.; Jones, S.R. Narrowing sex differences in lipoprotein cholesterol subclasses following mid-life: The very large database of lipids (VLDL-10B). J. Am. Heart Assoc. 2014, 3, e000851. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhang, Y.; Zhao, G.; Chen, C.; Yang, P.; Ye, S.; Tan, X. Difference in leukocyte composition between women before and after menopausal age, and distinct sexual dimorphism. PLoS ONE 2016, 11, e0162953. [Google Scholar] [CrossRef] [PubMed]
- Seidell, J.C.; Cigolini, M.; Charzewska, J.; Ellsinger, B.M.; Bjorntorp, P.; Hautvast, J.G.; Szostak, W. Fat distribution and gender differences in serum lipids in men and women from four European communities. Atherosclerosis 1991, 87, 203–210. [Google Scholar] [CrossRef]
- Goh, V.H.; Tong, T.Y.; Mok, H.P.; Said, B. Differential impact of aging and gender on lipid and lipoprotein profiles in a cohort of healthy Chinese Singaporeans. Asian J. Androl. 2007, 9, 787–794. [Google Scholar] [CrossRef] [PubMed]
- Karp, I.; Chen, S.F.; Pilote, L. Sex differences in the effectiveness of statins after myocardial infarction. CMAJ 2007, 176, 333–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plakogiannis, R.; Arif, S.A. Women versus men: Is there equal benefit and safety from statins? Curr. Atheroscler. Rep. 2016, 18, 6. [Google Scholar] [CrossRef] [PubMed]
- Long, E.M.; Martin, H.L., Jr.; Kreiss, J.K.; Rainwater, S.M.; Lavreys, L.; Jackson, D.J.; Rakwar, J.; Mandaliya, K.; Overbaugh, J. Gender differences in HIV-1 diversity at time of infection. Nat. Med. 2000, 6, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Palmisano, B.T.; Zhu, L.; Eckel, R.H.; Stafford, J.M. Sex differences in lipid and lipoprotein metabolism. Mol. Metab. 2018, 15, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Klein, S.L.; Flanagan, K.L. Sex differences in immune responses. Nat. Rev. Immunol. 2016, 16, 626–638. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Magkos, F.; Mittendorfer, B. Sex differences in lipid and lipoprotein metabolism: It’s not just about sex hormones. J. Clin. Endocrinol. Metab. 2011, 96, 885–893. [Google Scholar] [CrossRef] [PubMed]
- Martin-Fuentes, P.; Civeira, F.; Recalde, D.; Garcia-Otin, A.L.; Jarauta, E.; Marzo, I.; Cenarro, A. Individual variation of scavenger receptor expression in human macrophages with oxidized low-density lipoprotein is associated with a differential inflammatory response. J. Immunol. 2007, 179, 3242–3248. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Ruiz, I.; Puchalska, P.; Narasimhulu, C.A.; Sengupta, B.; Parthasarathy, S. Differential lipid metabolism in monocytes and macrophages: Influence of cholesterol loading. J. Lipid Res. 2016, 57, 574–586. [Google Scholar] [CrossRef] [PubMed]
- Palvinskaya, T.; Antkowiak, M.; Burg, E.; Lenox, C.C.; Ubags, N.; Cramer, A.; Rincon, M.; Dixon, A.E.; Fessler, M.B.; Poynter, M.E.; et al. Effects of acute and chronic low density lipoprotein exposure on neutrophil function. Pulm. Pharmacol. Ther. 2013, 26, 405–411. [Google Scholar] [CrossRef] [PubMed]
- Yvan-Charvet, L.; Pagler, T.; Gautier, E.L.; Avagyan, S.; Siry, R.L.; Han, S.; Welch, C.L.; Wang, N.; Randolph, G.J.; Snoeck, H.W.; et al. ATP-binding cassette transporters and HDL suppress hematopoietic stem cell proliferation. Science 2010, 328, 1689–1693. [Google Scholar] [CrossRef] [PubMed]
- Triantafilou, M.; Mouratis, M.A.; Lepper, P.M.; Haston, R.M.; Baldwin, F.; Lowes, S.; Ahmed, M.A.; Schumann, C.; Boyd, O.; Triantafilou, K. Serum proteins modulate lipopolysaccharide and lipoteichoic acid-induced activation and contribute to the clinical outcome of sepsis. Virulence 2012, 3, 136–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levels, J.H.; Abraham, P.R.; van Barreveld, E.P.; Meijers, J.C.; van Deventer, S.J. Distribution and kinetics of lipoprotein-bound lipoteichoic acid. Infect. Immun. 2003, 71, 3280–3284. [Google Scholar] [CrossRef] [PubMed]
- Munford, R.S.; Dietschy, J.M. Effects of specific antibodies, hormones, and lipoproteins on bacterial lipopolysaccharides injected into the rat. J. Infect. Dis. 1985, 152, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Pajkrt, D.; Doran, J.E.; Koster, F.; Lerch, P.G.; Arnet, B.; van der Poll, T.; ten Cate, J.W.; van Deventer, S.J. Antiinflammatory effects of reconstituted high-density lipoprotein during human endotoxemia. J. Exp. Med. 1996, 184, 1601–1608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, L.; Ai, J.; Zheng, Z.; Howatt, D.A.; Daugherty, A.; Huang, B.; Li, X.A. High density lipoprotein protects against polymicrobe-induced sepsis in mice. J. Biol. Chem. 2013, 288, 17947–17953. [Google Scholar] [CrossRef] [PubMed]
- Murphy, A.J.; Woollard, K.J.; Suhartoyo, A.; Stirzaker, R.A.; Shaw, J.; Sviridov, D.; Chin-Dusting, J.P. Neutrophil activation is attenuated by high-density lipoprotein and apolipoprotein A-I in in vitro and in vivo models of inflammation. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 1333–1341. [Google Scholar] [CrossRef] [PubMed]
- Catalano, G.; Duchene, E.; Julia, Z.; Le Goff, W.; Bruckert, E.; Chapman, M.J.; Guerin, M. Cellular SR-BI and ABCA1-mediated cholesterol efflux are gender-specific in healthy subjects. J. Lipid Res. 2008, 49, 635–643. [Google Scholar] [CrossRef] [PubMed]
- Sparks, J.D.; Sparks, C.E.; Adeli, K. Selective hepatic insulin resistance, VLDL overproduction, and hypertriglyceridemia. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 2104–2112. [Google Scholar] [CrossRef] [PubMed]
- Willecke, F.; Scerbo, D.; Nagareddy, P.; Obunike, J.C.; Barrett, T.J.; Abdillahi, M.L.; Trent, C.M.; Huggins, L.A.; Fisher, E.A.; Drosatos, K.; et al. Lipolysis, and not hepatic lipogenesis, is the primary modulator of triglyceride levels in streptozotocin-induced diabetic mice. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Van de Woestijne, A.P.; Monajemi, H.; Kalkhoven, E.; Visseren, F.L. Adipose tissue dysfunction and hypertriglyceridemia: Mechanisms and management. Obes. Rev. 2011, 12, 829–840. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C. The relationship between the fatty acid composition of immune cells and their function. Prostaglandins Leukot. Essent. Fatty Acids 2008, 79, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Youm, Y.H.; Vandanmagsar, B.; Rood, J.; Kumar, K.G.; Butler, A.A.; Dixit, V.D. Obesity accelerates thymic aging. Blood 2009, 114, 3803–3812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dixon, J.B.; O’Brien, P.E. Obesity and the white blood cell count: Changes with sustained weight loss. Obes. Surg. 2006, 16, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Chae, J.S.; Paik, J.K.; Kang, R.; Kim, M.; Choi, Y.; Lee, S.H.; Lee, J.H. Mild weight loss reduces inflammatory cytokines, leukocyte count, and oxidative stress in overweight and moderately obese participants treated for 3 years with dietary modification. Nutr. Res. 2013, 33, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Zeiser, R. Immune modulatory effects of statins. Immunology 2018, 154, 69–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Men | Women | p-Value | ||||||
---|---|---|---|---|---|---|---|---|
IQR | IQR | |||||||
Median | Lower | Upper | Median | Lower | Upper | |||
Subjects (n (%)) | 2682 | (47.5) | 2965 | (52.5) | ||||
Age, years | 43 | 32 | 56 | 44 | 33 | 58 | 0.0005 | |
Race/ethnicity (n (%)) | 0.0152 | |||||||
Hispanic | 739 | (27.6) | 821 | (27.7) | ||||
Non-Hispanic White | 1378 | (51.4) | 1499 | (50.6) | ||||
Non-Hispanic Black | 470 | (17.5) | 542 | (18.3) | ||||
Other | 95 | (3.5) | 103 | (3.5) | ||||
BMI (kg/m2) | 27.1 | 24.2 | 30.3 | 26.6 | 23.1 | 31.5 | 0.2536 | |
Waist circumference (cm) | 97.8 | 89.4 | 107.6 | 90.9 | 81.1 | 102.3 | <0.0001 | |
Serum cotinine (ng/mL) | 0.20 | 0.03 | 119.19 | 0.06 | 0.03 | 1.39 | <0.0001 | |
Statin use (n (%)) | 0.0049 | |||||||
No | 2368 | (88.3) | 2698 | (91.0) | ||||
Yes | 314 | (11.7) | 267 | (9.0) | ||||
Fasting serum lipids (mg/dL) | ||||||||
Total cholesterol | 195.6 | 171.7 | 220.6 | 197.6 | 174.0 | 225.7 | 0.0066 | |
LDL-cholesterol | 120.5 | 97.7 | 144.0 | 115.2 | 93.9 | 139.9 | 0.0007 | |
HDL-cholesterol | 44.6 | 38.3 | 52.8 | 55.1 | 45.1 | 66.6 | <0.0001 | |
Triglycerides | 120.7 | 84.4 | 173.7 | 108.4 | 76.6 | 157.6 | <0.0001 | |
Total cholesterol (n (%)) | 0.1876 | |||||||
<200 mg/dL | 1451 | (54.1) | 1436 | (48.4) | ||||
200 to <240 mg/dL | 880 | (32.8) | 978 | (33.0) | ||||
>240 mg/dL | 351 | (13.1) | 551 | (18.6) | ||||
LDL-cholesterol (n (%)) | 0.0058 | |||||||
<100 mg/dL | 727 | (27.1) | 862 | (29.1) | ||||
100 to <130 mg/dL | 905 | (33.7) | 1032 | (34.8) | ||||
130 to <160 mg/dL | 683 | (25.5) | 684 | (23.1) | ||||
160 to <190 mg/dL | 274 | (10.2) | 268 | (9.0) | ||||
>190 mg/dL | 93 | (3.5) | 119 | (4.0) | ||||
HDL-cholesterol (n (%)) | <0.0001 | |||||||
M: ≥40 mg/dL; W: ≥50 mg/dL | 1959 | (73.0) | 1926 | (65.0) | ||||
M: <40 mg/dL; W: <50 mg/dL | 723 | (27.0) | 1039 | (35.0) | ||||
Triglycerides (n (%)) | 0.074 | |||||||
<150 mg/dL | 1763 | (65.7) | 1966 | (66.3) | ||||
150 to <200 mg/dL | 434 | (16.2) | 495 | (16.7) | ||||
≥200 mg/dL | 485 | (18.1) | 504 | (17.0) | ||||
Blood leukocyte counts (103 cells/μL) | ||||||||
Lymphocytes | 1.76 | 1.43 | 2.18 | 1.81 | 1.48 | 2.27 | 0.0003 | |
Monocytes | 0.50 | 0.40 | 0.62 | 0.44 | 0.34 | 0.55 | <0.0001 | |
Neutrophils | 3.65 | 2.91 | 4.61 | 3.81 | 2.96 | 4.87 | 0.0064 | |
Eosinophil | 0.13 | 0.06 | 0.22 | 0.10 | 0.04 | 0.18 | <0.0001 | |
Basophil | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.03 | 0.0025 |
Lymphocytes | Monocytes | Neutrophils | Eosinophils | Basophils | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GM | 95% CI | GM | 95% CI | GM | 95% CI | GM | 95% CI | GM | 95% CI | ||||||
Total cholesterol (mg/dL) | |||||||||||||||
<200 | 1.85 | 1.79 | 1.91 | 0.55 | 0.53 | 0.57 | 3.66 | 3.55 | 3.78 | 1.22 | 1.20 | 1.25 | 1.03 | 1.02 | 1.03 |
200 to <240 | 1.84 | 1.78 | 1.90 | 0.54 | 0.52 | 0.56 | 3.79 | 3.63 | 3.96 | 1.23 | 1.20 | 1.26 | 1.03 | 1.02 | 1.04 |
>240 | 1.93 | 1.84 | 2.03 | 0.54 | 0.51 | 0.56 | 3.81 | 3.62 | 4.00 | 1.23 | 1.21 | 1.25 | 1.03 | 1.03 | 1.04 |
p-trend | 0.17 | 0.13 | 0.72 | 0.20 | 0.92 | ||||||||||
LDL-cholesterol (mg/dL) | |||||||||||||||
<100 | 1.86 | 1.80 | 1.93 | 0.56 | 0.53 | 0.58 | 3.78 | 3.64 | 3.92 | 1.23 | 1.21 | 1.25 | 1.03 | 1.03 | 1.04 |
100 to <130 | 1.83 | 1.76 | 1.90 | 0.53 | 0.52 | 0.55 | 3.64 | 3.49 | 3.78 | 1.23 | 1.21 | 1.25 | 1.03 | 1.02 | 1.03 |
130 to <160 | 1.85 | 1.78 | 1.93 | 0.54 | 0.52 | 0.57 | 3.73 | 3.59 | 3.88 | 1.22 | 1.19 | 1.25 | 1.03 | 1.02 | 1.03 |
160 to <190 | 1.88 | 1.80 | 1.96 | 0.53 | 0.51 | 0.56 | 3.72 | 3.52 | 3.93 | 1.23 | 1.21 | 1.26 | 1.03 | 1.02 | 1.04 |
>190 | 1.98 | 1.80 | 2.17 | 0.55 | 0.50 | 0.62 | 3.79 | 3.36 | 4.27 | 1.21 | 1.17 | 1.26 | 1.03 | 1.02 | 1.05 |
p-trend | 0.33 | 0.24 | 0.96 | 0.50 | 0.89 | ||||||||||
HDL-cholesterol (mg/dL) | |||||||||||||||
≥40 | 1.82 | 1.76 | 1.88 | 0.54 | 0.52 | 0.56 | 3.67 | 3.54 | 3.79 | 1.22 | 1.20 | 1.24 | 1.03 | 1.02 | 1.03 |
<40 | 1.95 | 1.89 | 2.01 | 0.55 | 0.52 | 0.57 | 3.83 | 3.70 | 3.98 | 1.24 | 1.22 | 1.26 | 1.03 | 1.03 | 1.04 |
p-value | 0.0004 | 0.60 | 0.0114 | 0.05 | 0.0077 | ||||||||||
Triglyceride (mg/dL) | |||||||||||||||
<150 | 1.80 | 1.75 | 1.84 | 0.55 | 0.53 | 0.57 | 3.74 | 3.61 | 3.86 | 1.23 | 1.21 | 1.25 | 1.03 | 1.03 | 1.03 |
150 to <200 | 1.93 | 1.85 | 2.01 | 0.56 | 0.53 | 0.58 | 3.66 | 3.53 | 3.78 | 1.22 | 1.20 | 1.25 | 1.03 | 1.02 | 1.03 |
≥200 | 1.97 | 1.89 | 2.05 | 0.53 | 0.51 | 0.56 | 3.74 | 3.50 | 4.01 | 1.22 | 1.19 | 1.24 | 1.03 | 1.02 | 1.04 |
p-trend | < 0.0001 | 0.26 | 0.05 | 0.41 | 0.035 |
Lymphocytes | Monocytes | Neutrophils | Eosinophils | Basophils | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GM | 95% CI | GM | 95% CI | GM | 95% CI | GM | 95% CI | GM | 95% CI | ||||||
Total cholesterol (mg/dL) | |||||||||||||||
<200 | 1.94 | 1.87 | 2.01 | 0.50 | 0.49 | 0.51 | 3.77 | 3.65 | 3.89 | 1.19 | 1.17 | 1.20 | 1.03 | 1.02 | 1.03 |
200 to <240 | 2.00 | 1.94 | 2.07 | 0.48 | 0.46 | 0.50 | 4.11 | 3.93 | 4.30 | 1.18 | 1.16 | 1.20 | 1.03 | 1.03 | 1.04 |
>240 | 2.08 | 1.20 | 2.17 | 0.49 | 0.46 | 0.52 | 4.21 | 3.97 | 4.46 | 1.20 | 1.18 | 1.22 | 1.04 | 1.04 | 1.05 |
p-trend | 0.0008 | 0.14 | 0.35 | 0.75 | 0.18 | ||||||||||
LDL-cholesterol (mg/dL) | |||||||||||||||
<100 | 1.93 | 1.86 | 1.21 | 0.51 | 0.49 | 0.52 | 4.01 | 3.84 | 4.18 | 1.19 | 1.18 | 1.20 | 1.03 | 1.03 | 1.04 |
100 to <130 | 1.99 | 1.92 | 2.06 | 0.49 | 0.47 | 0.51 | 3.90 | 3.75 | 4.05 | 1.18 | 1.17 | 1.20 | 1.03 | 1.03 | 1.04 |
130 to <160 | 2.00 | 1.92 | 2.09 | 0.48 | 0.46 | 0.50 | 3.83 | 3.64 | 4.04 | 1.19 | 1.17 | 1.20 | 1.03 | 1.02 | 1.04 |
160 to <190 | 2.06 | 1.93 | 2.20 | 0.49 | 0.46 | 0.52 | 3.86 | 3.56 | 4.18 | 1.17 | 1.15 | 1.19 | 1.04 | 1.03 | 1.04 |
>190 | 2.09 | 1.95 | 2.23 | 0.46 | 0.42 | 0.52 | 3.71 | 3.40 | 4.06 | 1.22 | 1.15 | 1.28 | 1.04 | 1.02 | 1.05 |
p-trend | 0.0045 | 0.0089 | 0.046 | 0.92 | 0.51 | ||||||||||
HDL-cholesterol (mg/dL) | |||||||||||||||
≥50 | 1.93 | 1.88 | 1.99 | 0.49 | 0.47 | 0.51 | 3.89 | 3.75 | 4.03 | 1.18 | 1.17 | 1.20 | 1.03 | 1.03 | 1.04 |
<50 | 2.03 | 1.95 | 2.12 | 0.50 | 0.41 | 0.51 | 3.97 | 3.81 | 4.15 | 1.20 | 1.18 | 1.21 | 1.03 | 1.03 | 1.04 |
p-trend | 0.0079 | 0.36 | 0.25 | 0.08 | 0.29 | ||||||||||
Triglycerides (mg/dL) | |||||||||||||||
<150 | 1.88 | 1.82 | 1.93 | 0.48 | 0.46 | 0.50 | 3.97 | 3.84 | 4.10 | 1.19 | 1.18 | 1.20 | 1.03 | 1.03 | 1.04 |
150 to <200 | 2.06 | 1.98 | 2.14 | 0.50 | 0.48 | 0.52 | 3.84 | 3.66 | 4.02 | 1.18 | 1.17 | 1.20 | 1.03 | 1.03 | 1.04 |
≥200 | 2.18 | 2.06 | 2.30 | 0.53 | 0.51 | 0.56 | 3.91 | 3.67 | 4.18 | 1.19 | 1.16 | 1.21 | 1.04 | 1.03 | 1.04 |
p-trend | <0.0001 | <0.0001 | <0.0001 | 0.41 | 0.0002 |
Men | Women | ||||||||
---|---|---|---|---|---|---|---|---|---|
Cell Count | Model | β | SE | % Δ | p | β | SE | % Δ | p |
Lymphocytes | unadjusted | 0.045 | 0.046 | 0.4 | 0.33 | 0.083 | 0.035 | 0.8 | <0.05 |
adjusted | 0.081 | 0.044 | 0.8 | 0.07 | 0.168 | 0.036 | 1.6 | <0.0001 | |
Monocytes | unadjusted | −0.038 | 0.037 | −0.4 | 0.30 | 0.002 | 0.037 | 0.0 | 0.95 |
adjusted | −0.064 | 0.036 | −0.6 | 0.08 | −0.079 | 0.040 | −0.7 | 0.06 | |
Neutrophils | unadjusted | 0.051 | 0.045 | 0.5 | 0.27 | −0.038 | 0.045 | −0.4 | 0.40 |
adjusted | 0.002 | 0.042 | 0.0 | 0.97 | −0.035 | 0.047 | −0.3 | 0.46 | |
Eosinophils | unadjusted | −0.012 | 0.017 | −0.1 | 0.49 | −0.006 | 0.015 | −0.1 | 0.67 |
adjusted | −0.014 | 0.017 | −0.1 | 0.41 | −0.012 | 0.017 | −0.1 | 0.49 | |
Basophils | unadjusted | 0.009 | 0.006 | 0.1 | 0.18 | 0.013 | 0.006 | 0.1 | <0.05 |
adjusted | 0.006 | 0.006 | 0.1 | 0.34 | 0.006 | 0.005 | 0.1 | 0.27 |
Men | Women | ||||||||
---|---|---|---|---|---|---|---|---|---|
Cell Count | Model | β | SE | % Δ | p | β | SE | % Δ | p |
Lymphocytes | unadjusted | 0.025 | 0.032 | 0.2 | 0.43 | 0.063 | 0.026 | 0.6 | <0.05 |
adjusted | 0.037 | 0.031 | 0.3 | 0.24 | 0.063 | 0.026 | 0.6 | <0.05 | |
Monocytes | unadjusted | −0.019 | 0.026 | −0.2 | 0.47 | −0.023 | 0.023 | −0.2 | 0.33 |
adjusted | −0.035 | 0.026 | −0.3 | 0.19 | −0.075 | 0.023 | −0.7 | <0.01 | |
Neutrophils | unadjusted | 0.017 | 0.031 | 0.2 | 0.59 | −0.036 | 0.030 | −0.3 | 0.25 |
adjusted | −0.008 | 0.029 | −0.1 | 0.80 | −0.065 | 0.031 | −0.6 | <0.05 | |
Eosinophils | unadjusted | −0.007 | 0.011 | −0.1 | 0.50 | −0.002 | 0.010 | 0.0 | 0.85 |
adjusted | −0.006 | 0.011 | −0.1 | 0.61 | −0.007 | 0.012 | −0.1 | 0.56 | |
Basophils | unadjusted | 0.004 | 0.004 | 0.0 | 0.35 | 0.004 | 0.003 | 0.0 | 0.28 |
adjusted | 0.003 | 0.004 | 0.0 | 0.48 | −0.002 | 0.003 | 0.0 | 0.56 |
Men | Women | ||||||||
---|---|---|---|---|---|---|---|---|---|
Cell Count | Model | β | SE | % Δ | p | β | SE | % Δ | p |
Lymphocytes | unadjusted | −0.204 | 0.035 | −1.9 | <0.0001 | −0.234 | 0.027 | −2.2 | <0.0001 |
adjusted | −0.171 | 0.032 | −1.6 | <0.0001 | −0.098 | 0.033 | −0.9 | <0.01 | |
Monocytes | unadjusted | −0.067 | 0.031 | −0.6 | <0.05 | −0.101 | 0.021 | −1.0 | <0.0001 |
adjusted | −0.018 | 0.033 | −0.2 | 0.59 | −0.059 | 0.022 | −0.6 | <0.01 | |
Neutrophils | unadjusted | −0.192 | 0.032 | −1.8 | <0.0001 | −0.205 | 0.031 | −1.9 | <0.0001 |
adjusted | −0.118 | 0.031 | −1.1 | <0.001 | −0.049 | 0.035 | −0.5 | 0.17 | |
Eosinophils | unadjusted | −0.035 | 0.012 | −0.3 | <0.01 | −0.029 | 0.009 | −0.3 | <0.01 |
adjusted | −0.032 | 0.012 | −0.3 | <0.05 | −0.019 | 0.010 | −0.2 | 0.06 | |
Basophils | unadjusted | −0.014 | 0.003 | −0.1 | <0.001 | −0.009 | 0.004 | −0.1 | <0.05 |
adjusted | −0.011 | 0.004 | −0.1 | <0.01 | −0.002 | 0.004 | 0.0 | 0.64 |
Men | Women | ||||||||
---|---|---|---|---|---|---|---|---|---|
Cell Count | Model | β | SE | % Δ | p | β | SE | % Δ | p |
Lymphocytes | unadjusted | 0.097 | 0.012 | 0.9 | <0.0001 | 0.135 | 0.014 | 1.3 | <0.0001 |
adjusted | 0.112 | 0.013 | 1.1 | <0.0001 | 0.145 | 0.015 | 1.4 | <0.0001 | |
Monocytes | unadjusted | 0.025 | 0.013 | 0.2 | 0.06 | 0.100 | 0.017 | 1.0 | <0.0001 |
adjusted | 0.000 | 0.014 | 0.0 | 1.00 | 0.067 | 0.019 | 0.6 | <0.001 | |
Neutrophils | unadjusted | 0.123 | 0.018 | 1.2 | <0.0001 | 0.161 | 0.017 | 1.6 | <0.0001 |
adjusted | 0.075 | 0.020 | 0.7 | <0.001 | 0.124 | 0.020 | 1.2 | <0.0001 | |
Eosinophils | unadjusted | 0.016 | 0.006 | 0.2 | <0.05 | 0.012 | 0.005 | 0.1 | <0.05 |
adjusted | 0.010 | 0.006 | 0.1 | 0.10 | 0.006 | 0.005 | 0.1 | 0.21 | |
Basophils | unadjusted | 0.010 | 0.002 | 0.1 | <0.0001 | 0.013 | 0.002 | 0.1 | <0.0001 |
adjusted | 0.008 | 0.002 | 0.1 | <0.01 | 0.011 | 0.002 | 0.1 | <0.0001 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andersen, C.J.; Vance, T.M. Gender Dictates the Relationship between Serum Lipids and Leukocyte Counts in the National Health and Nutrition Examination Survey 1999–2004. J. Clin. Med. 2019, 8, 365. https://doi.org/10.3390/jcm8030365
Andersen CJ, Vance TM. Gender Dictates the Relationship between Serum Lipids and Leukocyte Counts in the National Health and Nutrition Examination Survey 1999–2004. Journal of Clinical Medicine. 2019; 8(3):365. https://doi.org/10.3390/jcm8030365
Chicago/Turabian StyleAndersen, Catherine J., and Terrence M. Vance. 2019. "Gender Dictates the Relationship between Serum Lipids and Leukocyte Counts in the National Health and Nutrition Examination Survey 1999–2004" Journal of Clinical Medicine 8, no. 3: 365. https://doi.org/10.3390/jcm8030365
APA StyleAndersen, C. J., & Vance, T. M. (2019). Gender Dictates the Relationship between Serum Lipids and Leukocyte Counts in the National Health and Nutrition Examination Survey 1999–2004. Journal of Clinical Medicine, 8(3), 365. https://doi.org/10.3390/jcm8030365